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ABSTRACT⎯A balanced dual-band bandpass filter based 
on λ/2 stepped-impedance resonators and open-loop 
resonators is proposed in this letter. By employing a type of 
self-feedback structure, an extra transmission zero is 
introduced near the common-mode resonance frequency, and 
the common-mode signal is suppressed. The measured results 
indicate that the filter can operate in 2.46 GHz and 5.6 GHz 
bands, and the insertion loss is 1.85 dB and 1.9 dB, respectively. 
Also, better common-mode suppression is achieved. 

Keywords⎯ Balanced, dual-band, SIR, open-loop resonator, 
common-mode suppression. 

I. Introduction 
The rapid development of wireless communication is 

creating extraordinary demand for dual-band radio frequency 
(RF) front-end solutions. Various dual-band filters have 
recently been proposed. In [1]，transmission zeros are 
introduced in the middle of a wide bandpass filter to enforce 
the emergence of two separate passbands. Also, some dual-
band filters and tri-band filters have been designed using 
stepped impedance resonators (SIRs) [2]-[4]. Balanced circuits 
are still essential for a front-end. Recently, a few balanced 
single-band filters have been investigated [5], [6].  

In this letter, a balanced dual-band bandpass filter based on 
λ/2 SIRs and open-loop resonators is presented. The dual-band 
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operation can be realized by adjusting the length ratio and the 
impedance ratio of the SIRs. To improve the insertion loss, 
open-loop resonators are used. Also, by employing a type of 
self-feedback structure, an extra transmission zero is introduced 
near the common-mode resonance frequency, and the 
common-mode signal is suppressed.  

II. Design Theory of the Filter  

Figure 1 shows the proposed balanced dual-band filter, 
which consists of two λ/2 SIRs (resonators 1 and 4) and two 
open-loop resonators (resonators 2 and 3). Under differential-
mode operation, resonators 1 and 4 resonate at the center 
frequency of the first and second bands, while resonators 2 and  

 

  

Fig. 1. Structure of the proposed filter (l11 = 9 mm, l12 = 4.3 mm,
l13 = 4 mm, w11 = 4.2 mm, w12 = 1.2 mm, l2 = 8.5 mm,
w2 = 0.5 mm, win = 3 mm, g12 = 0.3 mm, s12 = 0.5 mm, 
g23 = 0.3 mm, g14 = 0.3 mm, lin = 5.5 mm). 
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Fig. 2. SIR structure: (a) basic SIR structure, (b) differential-
mode equivalent-half-circuit, and (c) common-mode
equivalent-half-circuit. 
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3 resonate at the center frequency of the second band. 

Figure 2 shows the basic structure of a λ/2 SIR. It consists of 
two microstrip lines with characteristic impedances Z1 and Z2 
and electrical lengths θ1 and θ2. The impedance ratio is defined 
as RZ=Ζ2/Ζ1 and the length ratio is defined as U=θ2/(θ1+θ2). 

Due to the symmetric structure, under differential-mode 
excitation, a perfect electric conductor (PEC) wall appears along 
the symmetric line. Therefore, resonators 1 and 4 can be treated 
as shorted λ/4 SIRs as shown in Fig. 2(b). In addition, under 
common-mode excitation, a perfect magnetic conductor (PMC) 
wall appears along the symmetric-line. Therefore, resonators 1 
and 4 may be treated as λ/2 resonators as shown in Fig. 2(c) [6]. 

Neglecting the effects of discontinuities and open end, the 
input impedance seen from the open end of Fig. 2(b) can be 
expressed as 
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The parallel resonance occurs whenΥin_dif=1/Ζin_dif=0. We can 
deduce the differential-mode resonance condition as 

1 2tan tanZR θ θ= .                (2) 

In addition, one can express the input impedance seen from the 
open end of Fig. 2(c) as  
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Then the common-mode resonance condition can be deduced as 

1 2cot tan .ZR θ θ= −               (4) 

According to (2) and (4), the fd2/fd1, fc1/fd1 for different RZ and 
U are plotted in Fig. 3, where fd1, fd2, and fc1 are the differential-
mode first, second, and common-mode first-resonance 
frequencies, respectively. As seen in Fig. 3, resonators 1 and 4 
can resonate at fd1 and fd2 when RZ and U are properly selected. 
In addition, fc1/fd1 is smaller than fd2/fd1 for a given value of RZ 
and U. In other words, fc1 will appear between fd1 and fd2 and 

 

Fig. 3. The fd2/fd1 and fc1/fd1 for various RZ and U. 
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Fig. 4. Relationship between fz and l13. 
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cause poor common-mode suppression. To suppress the 
common-mode signal, a type of self-feedback is formed by 
employing the folded SIR so that an extra transmission zero is 
introduced near fc1. The transmission zero (fz) can be 
determined by the coupled length of l13. The relationship 
between fz and l13 is shown in Fig. 4. It can be seen that the fz 
decreases as l13 increases. 

III. Simulated and Measured Results 

A balanced dual-band filter with Butterworth and quasi- 
elliptic frequency responses for the first and second band is 
designed with the following specifications: 

fd1=2.4 GHz, FBW1 (relative bandwidth)=12.5%, 
fd2=5.6 GHz, FBW2=25%. 

The design procedure for the filter can be summarized as 
follows. First, select the structure parameters. Resonators 1 and 
4 operate at 2.4 GHz and 5.6 GHz. Hence, RZ=2 and U=0.58 
are chosen. Resonators 2 and 3 have to operate at 5.6 GHz. 
Therefore, fc1=3.6 GHz; thus, fc1/fd1=1.5, and l13 can be obtained 
as 4 mm as seen in Fig. 4. Then, determine the design 
parameters of the filter, namely, the coupling coefficients and 
external quality factors. The parameters of the designed filter 
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Table 1. Design parameters of filter. 

Band Element of low-pass prototype Design parameters 

1 g0=g3=1, g1=g2=1.4142 
M14=0.085,  

Qei= Qeo=11.78 
 
2 

g1=0.94982, g2=1.35473, 
J1= -0.12333, J2=1.0181 

M12=0.220, M23=0.220,
M14= -0.032, 

Qei= Qeo= 3.799 

 
Fig. 5. Differential-mode response of the proposed filter. 
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Fig. 6. Common-mode response of the proposed filter. 
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are listed in Table 1. To obtain g12, s12, g23, and g14, the full-
wave simulator was used. The filter was fabricated on an FR4 
substrate (εr=4.4, h=1.6 mm, tanδ=0.02), and the circuit size of 
the filter is 17.3 mm×18 mm (equal to 0.24λg×0.25λg, where λg 

is the guided wavelength at fd1).  
The standard four-port S parameters were measured with the 

network analyzer. The two-port differential-mode and 
common-mode S parameters can be extracted from standard 
four-port S parameters [5]. The simulated and measured 
differential-mode and common-mode responses of the realized 
filter are shown in Figs. 5 and 6.  

Figure 5 shows the differential-mode response of the 
proposed filter. It indicates that the center frequency of the first 
passband is at 2.46 GHz, with an insertion loss of less than  

1.85 dB and a 3 dB-FBW of 16% (2.27 GHz to 2.67 GHz), 
and the center frequency of the second passband is at 5.6 GHz, 
with an insertion loss of less than 1.9 dB and a 3 dB-FBW of 
34% (4.38 GHz to 6.27 GHz). Figure 6 shows the common-
mode response of the proposed filter. The common-mode 
signal is suppressed to the levels of -15 dB and -22 dB at   
2.46 GHz and 5.6 GHz, respectively. Moreover, the common-
mode signal is suppressed below -13 dB from 1 GHz to 7 GHz 
because the common-mode transmission zero at 3.5 GHz is 
introduced. Compared with the simulated results, the 
passbands are widened and the common-mode transmission 
zero is slightly shifted. The differences are mainly caused by 
fabrication error of the line spacing and the electric constant 
deviation of the fabricated FR4. 

IV. Conclusion 

This letter proposed a balanced dual-band band-pass filter 
which consists of symmetric SIRs and open-loop resonators. 
By properly adjusting the impedance ratio and length ratio of 
the SIRs and the length of the open-loop resonators, the 
designed filter can operate at 2.46 GHz and 5.6 GHz, with the 
insertion loss of 1.85 dB and 1.9 dB, respectively. Furthermore, 
the filter achieves acceptable common-mode suppression at the 
two passbands. Good agreement between measured and 
simulated results was achieved. 
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