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In recent years, semiconductor manufacturers have been able to steadily reduce the
physical area required by devices, thus allowing an increasing number of circuit func-
tions on a single chip. Smaller semiconductor devices require more detailed and accurate
analysis because minor errors can degrade their performance substantially.
A new, completely numerical three-dimensional model of a MOSFET allows a unified

treatment of small devices. Preliminary results show that device size effects the surface
potential and threshold voltage. Classical theory does not predict these effects. Although
the model currently converges slowly, it can still be useful in analysing new small
geometry devices.
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I. INTRODUCTION

The field effect transistor is a semiconductor device which depends for
its operation on the control of current by an electric field. Its operation
is based on the flow of majority carriers only. It is therefore a unipolar
device. There are two types of field effect transistors the junction field
effect transistor (JFET) and the insulated gate field effect transistor
(IGFET) which is more commonly called the metal oxide semicon-
ductor FET (MOSFET).
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The importance of the FET is a consequence of its properties. The
first is its physical size; the MOSFET is so small compared to the BJT
that it occupies only 20 to 30 per cent of the chip area taken up by a
BJT. Thus MOSFETs can be packed quite densely on an IC chip and
they are widely used for large scale integration (LSI). The second
property is their extremely high input resistance. This means that the
time constant of the input circuit is long enough to enable the charge
stored on the small capacitance to remain sufficiently long for the
device to be useful as a storage element in digital circuits. Another
important property is that over a portion of their operating range they
act like voltage controlled resistance elements and occupy much less
area on the chip than the corresponding IC resistor. Also, MOSFETs
can dissipate high power and switch large current is several nano-
seconds; this enables the FET to be used as a high frequency high
power switch.

Simple classical or regional approximation models and a completely
numerical model are some of the options available for analysing the
behaviour of semi conductor device before fabrication. A numerical
model is preferred over a simple classical or regional approximation
one. Numerical techniques can generate exact solutions of the most
general character to simulate the semi conductor device. The exact
model allows for arbitrary impurity distributions, recombination laws,
mobility dependencies, injection levels and boundary conditions.
The number of dimensions one must use to describe the behaviour

of a semi conductor device depends on the geometry of the structure
and the type of device. One of the widely used semi conductor device is
the MOSFET. Normally MOSFETs are simulated with two dimen-
sional models which assume no variation of properties in the width
direction. The assumption is only valid when the width is much greater
than the depth of the channel depletion region, typically 0.5 lxm. As the
dimensions of the device are reduced, variations of properties along
with the width as well as coupling with the length become significant.
A MOSFET is considered small when its length and width have been
shrunk to within an order of magnitude of the depth of the depletion
region. For such small geometry MOSFETs, the third dimension has
an important role in the overall device performance. Therefore, a
general model must include this dimension.
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II. VARIOUS TWO DIMENSIONAL APPROACHES

To obtain general and exact analytical solutions for the MOSFET
problem we require the solution of a system of non linear partial
differential equations involving the Poisson equation, the majority
carrier transport equation and the current continuity equation. But
exact analytical solutions are improbable. As an alternative approach,
several numerical solutions have been published.
De la Moneda used a finite difference method for solving the two

dimensional Poisson equation [1]. But this method is an extension of
the old model to take into account the two dimensional nature of the
electrostatic potential, and is based on that developed by Kim and
Yang in their JFET analysis [2].

Scott and Chamberlain have used a regional charge density approxi-
mation in the solution of Poisson’s equation, and derived an analytical
solution of the continuity equation. This model can be used for the
estimation of subthreshold leakage current in MOSFET dynamic ran-
dom access memories.
Poon has suggested a compact four parameter fitting, model that

can be applied over a wide range of currents and channel lengths.
Narrow width devices exhibit an increase in threshold voltage. This

effect becomes more pronounced as the device width becomes smaller.
To calculate this effect, a two dimensional numerical analysis of
Buturula and Cettrell can be employed.

III. THREE DIMENSIONAL MODELLING

a. Its Requirement

The device structure is essentially three dimensional. When channel
length and/or width is large, this three dimensional problem can be
reduced to a two dimensional one. However, with the advent of VLSI
where MOSFETs of sub micrometer channel lengths and widths are
called for, device simulation at the three dimensional level has become
a must.
Most investigators have focussed on two dimensional models to

account for short channel effects. But Kothecha and Bellistein have
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pointed out that three dimensional effects should be taken into
account for more representative current and capacitive models. It is
only with a three dimensional device simulator that the mechanism
whereby narrow channel effects occur has been first explained
adequately.

Considerable differences exist between two and three dimensional
analysis. The differences becomes more pronounced as the device size
gets reduced. Therefore, three dimensional models are preferable for
the analysis of small geometry devices.

b. Various Three Dimensional Attempts

Shima, Sugwara and Moriyana made a table look up MOSFET model
for circuit simulation [11]. A major problem is that it requires a mas-
sive storage capacity for three dimensional table structure.

Accurate three dimensional analysis of semi conductor devices
based on general transport equation is given by Toshii, Sudo et al.
They used the finite difference scheme for numerical analysis; formu-
lation to reduce time and memory requirements; and relaxation meth-
od to help solve a large size matrix.

Besides these, threshold voltage analysis ,of short and narrow
channel MOSFETs by three dimensional computer simulation is given
by Kasai, Sudo et al. [7]. Here sufficient convergence rate with accept-
able memory size is obtained from optimum mode discretization and
initial solution guess with sophisticated boundary conditions.

IV. THE NOVEL THREE DIMENSIONAL MODEL

Symbols and their normalizing constants

Symbol Name of variable Normalizing
constant

NA Doping density n
E Electric field kT/qLn
k Boltzmann’s constant
L Channel length Ln
m Iteration number
n,p,n Electron, hole and intrinsic carrier density n
N+ Source and drain doped regions n
q Electron charge
T Absolute temperature
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Symbol

Symbols and their normalizing constants (Continued)

Name of variable Normalizing
constant

x, y, z
V
V2

s,

E1

W

kT/q
LD

Source, drain, gate and backgate voltage
Space coordinates
Gradient operator
Laplacian operator

Permittivity of silicon and SiO2 insulator
material

Small error margin
Difference in electrostatic potential

Electron and hole quasi-Fermi potentials
Electrostatic potential

Relaxation factor

kT/q
kT/q
kT/q

a. Lindholm-Hamilton Theory

Before proceeding with the development of the modeling theory, we
briefly discuss the theory of Lindholm and Hamilton. Models obtained
by using Lindholm and Hamilton’s techniques are derived system-
atically. The models incorporate a direct relationship to device mor-
phology and the physical processes. Furthermore, models of variable
complexity and accuracy can be developed.
The theory of Lindholm and Hamilton contains some limitations

which must be removed. The entire theory is based on the assumption
of one directional current flow. Also, the theory does not incorporate
non linear effects. Indeed, even some linear effects e.g., surface recom-
bination, are not related to the modelling.
The theory suggests the use of four distinct approaches i.e., ap-

proximating techniques to the modelling problem. When the model
is extended to three dimensions, it is convenient to use a combination
of approximating techniques. The fundamental approximation used
here is the quasi static approximation i.e., the use of steady state
information in the solution of a time varying problem. The assumption
involved here is that relations among various parameters e.g., current
components and cartier densities, under steady state (DC) conditions
prevail under time varying conditions as well.

b. Boundary Conditions

In modelling theory, we must describe the relations existing between
the terminal currents and terminal voltages. Therefore, we must
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supplement the model of the bulk region with the model of the sur-
rounding surface.

Generally, the surfaces subject to external constraints are bounda-
ries of depletion regions ofp-n junctions i.e., a forward biased junction
would result in non-zero independent boundary conditions on the
minority carrier densities on either side of the junction. Hence, the
model must be supplemented in this case with p-n junction models as
well as other pertinent information.

V. MODEL DEVELOPMENT

The three dimensional steady state model of a MOSFET consists of a
set of coupled, non linear partial differential equations. The complete
set of equations include Poisson and Laplace’s equations, the majority
and minority continuity equations, the transport equations and auxilia-
ry equations describing mobility, recombination and carrier densities.
One objective of the model was to investigate the effects of geometry

on the threshold voltage (the voltage required to turn the device on).
The current is very low at this voltage level and its effect on the field
can be neglected. Thus we can remove the transport and continuity
equations from the system equations. We need then develop only an
electrostatic model.

Figures and 2 show the geometry of the model of the MOSFET
used here. The device consists of a p type semi conductor substrate
and two N+ regions formed by either diffusion or ion implantation.
The upper surface of the device is covered with an insulator (SiO2)
which is covered by an electrode. The electrode may be aluminum
(A1), N Polysilicon, P Polysilicon, molybdenum dislicide (MoSi2), or
other materials as long as the work function is defined.
We use Cartesian coordinates to describe the model. The horizon-

tal coordinate x is parallel to the surface insulator. The horizontal
original is the left edge of the device and the axis is positive in the right
direction. The vertical coordinate y is normal to the insulator inter-
faces. The vertical origin is the top of the SiO2 insulator and the axis is
positive in the direction of the substrate. The width direction z is posi-
tive into the device.
The MOSFET is assumed to be structurally perfect. Deliberately

introduced impurity densities are not considered defects. Lattice
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FIGURE 2 Width cross section of a MOSFET.

strains and dislocations introduced during the diffusion of high con-
centrations of impurities are neglected.
We must make several assumption and approximations to make

the calculations manageable. All of these which are given below are
reasonable under normal operating conditions.

1. Ideal contacts and charge neutrality at the source and drain.
2. The impurity dopant is completely ionized and its distribution re-

mains constant in time.
3. Non degenerate doping levels to allow the use of Boltzmann

statistics for calculating hole and electron concentrations.
4. Isothermal spatial conditions.
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The electrical behavior of the semi conductor device can be
described by Poisson’s and Laplace’s equations. Solving this set of
non linear partial differential equations with appropriate boundary
conditions gives us the potential distribution and the carrier concen-
trations.
The Poisson equation can be expressed as

d :gg (x, y, z)
dx2

d2(x,y,z) dggg(x,y,z)+dy:Z dz:

q[P(x,y,z) + n(x,y,z) + NA(X,y,z)]
Es

(1)

where

is the electrostatic potential
q is the electron charge
es is the permitivity of silicon
p is the hole carrier density
n is the electron density and
Na is the doping profile.

Laplace’s equation is expressed as Poisson’s equation with the right
hand side equal to zero.
The carrier concentration can be obtained from the Boltzmann

approximation of Fermi statistics as

n(x,y,z) niexp{(q/kT)[Na(x,y,z) n(x,y,z)]} (2)

p(x,y,z) niexp{(q/kT)[p(x,y,z) Na(x,y,z)]} (3)

where

n is the electron quasi Fermi potential
p is the hole quasi Fermi potential
ni is the intrinsic carrier concentration
k is Boltzmann’s constant and
T is the absolute temperature.

The semiconductor bulk impurity distribution N.(x,y,z) may be
described by several methods. A uniform impurity distribution, an
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analytic function or output files from a process fabrication program
are all acceptable.
For mathematical convenience as well as numerical efficiency, we

have normalized all variables. The normalization factors are in the list
of Symbols and their normalizing equations will be listed., but it should
be noted that the equations are not in their final form. The numerical
approximations and solution methods determine the best form of the
equations.

V2 n -p + NA (4)

=0 (5)

n exp( On) (6)

p exp(bt, ) (7)

We must also determine appropriate boundary conditions for the
device of Figure 1. Using the labelling of this figure, we have:

0
on AB, CD 0- 0 (8)

0
and on AE, FC 0 (9)

oy

Using Figure 2 we have

on /(B’, C’D’ 0-- 0 (10)

On the contacts the applied voltage is known. Since the space charge
density is zero, the quasi-Fermi potentials can be determined.
Therefore,

1. on the source contact:

N+Nak_.Tln
q + Vs + Vs] (11)
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, In [Nani
2. on the drain contact:

(12)

kT [N+NA 1D ln 2 + Vm + V6 (1)
q ni

Cn p ln [N+NA (14)

3. on the substrate contact:

G 0 (15)

The backgate of the substrate is taken as the zero level for the
electrostatic potential. Therefore, we must add the built in voltage
between the source and substrate and the drain and substrate to the
source and drain potential.

4. on the gate contact:

v_a
’s (16)kT

on the substrate-oxide interface

a. is continuous
b. (O/Oy) is discontinuous by the amount of fixed interface

charge.

The elliptical Eqs. (4) and (7) together with the mixed boundary
conditions (8) to (18) determine the steady state behaviour of the
MOSFET.
The first step is solving the system equations numerically is to

discretize the spatial variables. Either finite difference or element meth-
ods could be used. We choose the finite difference method. We would
like to know whether a unique solution exists, but this is difficult to
demonstrate for a MOSFET. In this work, we assume the existence and
uniqueness of the solution. Previous results justify this assumption.
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We define

% exp(-) (19)

"y exp(-) (20)

So that we may write Poisson’s equation in the semi conductor as

72ffff "y,e "y,e- + NA (21)

and Laplace’s equation in the insulator as

V2 0 (22)

The solution of Poisson’s equation requires the initialization of ,
n and p. The most common approach to solving Poisson’s equation
is a quasi linearization method. Defining the solution of Eq. (4) as
I/exac and the difference between XI/exac and xI/iterated as
where

6 exact- iterated (23)

Equation (4) now takes the form

V2I, + V26 exp0I, + 6- 0.) exp( 6- ) + Na (24)

if 6 << 1 and exp(+/- 6) 1 + 6 then,

V:6 6[ expOI, 4’,,) + exp(, )]
V2 + exp( .) exp(. ) + Na

(26)

Here stands for I/iterated.
The general form of a linear elliptical differential equation with

constant coefficients can be expressed as

AUxx + BUry + CUzz + DUx + EUr + FYz + GU + H O (27)

with A > O, B > O, C > O and G <= O.
We takeA= 1, B=I,C= 1, D=E=F=O.
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The discrete analog for the general linear elliptic differential equa-
tion is

ao(i,j,k) + 01(i+ 1,j,k) + a2(i,j+ 1,k) + a3(i,j,k+ 1)
+ o4(i- 1,j,k)+a5(i,j- 1,k)+a6(i,j,k- 1) +H=0

(28)

where

2kj-1 2kj 2 ]o -2 -h + kj kj + kj-1) "+"
kj-1 kj + kj-1) -+- -2kj_l

01 - 02 kjkj_ kj -+- kj- 0,3 - 04 -2k]
05 kjkj-1 (kj + kj-1) 06 12

here h, k and I are defined as shown in Figure 3.
Solving for the potential at the mth iteration gives

(29)

c(i, j, k)m

(30)

This expression includes the Gauss-Seidel scheme of solution ordering.
The solution goes from (i,j, k), (i + 1, j, k), (i / 2,j, k) (i, j/ 1, k)

(i-1 ,j,k)

(I, j+l,k)

(I,j,k)

kl.

(I,j,k-1 (I,j-1 ,k)

j+l,k)

(l+l,j,k)

FIGURE 3 Mesh point notation.
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(i+ 1,j+ 1,k) (i/2,j+ 1,k)...(i,j,k/ 1), (i+l,j,k+ 1) The old
values are replaced with the new solutions instantaneously instead of
waiting for a row, block or complete matrix update.
We use a successive relaxation method with the following general

form

m m-1 + w(m Xx/m-1) (31)

where when

w < under relaxation for potentially unstable solutions
w direct substitution
< w < 2 over relaxation, for stable solutions and helps to speed

convergence.

This optimum is normally impossible to determine analytically, and
experimentation as well as experience is required. The complete ex-
pression for the potential in the silicon can be expressed as:

01 k)m_l o2 (i, + k)m-1XI/m (1 W) ffffm-1 @ W -oo + 1, J’ ao
j

33 (i,j,k + 1)m-1 04 P(i- 1,j,k)m
o0 o0

aSao (i,j-1,k)m -a6(i,j,k-ao 1)m

(32)

In the gate-oxide region, Laplacc’s equation must be solved. The
coefficient reduce to

D=E=F=G=H=O

The potential is then

01 (i+ 1,j,k)m-1 o (i,j+ k)m-1xI/m (1 w)xI]m-1 + W --00 CeO
013 (i,j,k / 1)m-1 04 (i-- 1,j,k)m
o0
aSao j k m a-a6 P j k 1)m -ooH ]

(33)
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VI. THE ITERATIVE METHOD

An initial state i.e., c,(i,j, z), c,(x,j, z) is required to specify the device
completely for the first iteration. This initial state can be a zero bias state
or a steady state bias state. Experience shows that the initial guess is
important. A good initial guess reduces the number of required itera-
tions considerably whereas a poor initial guess can cause stability prob-
lems. We made extensive use of results from a two dimensional model
to provide the initial guess. The initial distribution of the variables is
then inserted into Poisson’s or Laplaee’s equation and an improved

(i,j, k)m+l results. The superscript rn is the space iteration number.
After obtaining an improved solution for the dependent variables,

we check to see if a predetermined degree of consistency has been
achieved in the iterative solution. For example, let

I(i,j,k)m+ (i,j,k)ml < e (34)

where el is a small error such as 10-6. If the criterion stated in the
Eq. (34) is met over the entire spatial grid, the iterative process has
converged. If the desired degree of consistency has not been achieved,
the iterative process continues until convergence is obtained.

VII. CONCLUSION

A three dimensional model of a small geometry MOSFET has been
described. The model calculates the internal distributions for the po-
tential and the carrier density for various gate and drain voltages.

Numerical instabilities were eliminated by the proper choice of the
relaxation factor, w 1.2. The convergence rate is very slow and has to
be improved.
The model can be modified to include the effect of a tapered recessed

oxide. This is important since most devices today have a tapered rather
than as abrupt oxide transition region. This will require changing the
semi conductor oxide interface from the surface to a depth of approxi-
mately 4000 and then stair stepping the interface to the surface.
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