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Disordered lattices are discussed in terms of the spacing between adjacent atoms. This
discussion is based on the randomness of the above spacing and on the crystalline poten-
tial by assuming a one-dimensional solid. Our theoretical considerations are useful to
study certain aspects of amorphous semiconductors.
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1. INTRODUCTION

Analytical approaches to the study of disordered solids by using
advanced tools of mathematical physics are really necessary since a
considerable lack of knowledge on the above subject is due to the
utilization of obscure techniques which are called by certain authors
empirical techniques. As an example of mathematical-physics based
methods for analyzing theoretically amorphous structures, we can
mention Ref. [1]. In the same way as Ref. [1], we shall comment in the
following certain aspects related to the randomness of the spacing
between adjacent atoms in a distorted lattice; in particular, considera-
tions upon crystalline potential will be made.
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2. THEORY

First of all, we recall the following well-known fact: a solid in
crystalline state presents a constant spacing between adjacent atoms;
this spacing is the period of the corresponding crystalline lattice. In
addition, it is also well-known that a given electron in the solid is
submitted to a periodic potential so that the period of this potential is
equal to the above spacing. The conception of this spacing as a random
variable implies that the solid behaves as a disordered system. Then,
for a disordered one-dimensional solid, we can write V' (x +s) # V' (x),
where V denotes potential energy, x is spatial coordinate (cartesian
coordinate), and s stands for lattice period. The parameter s may be
regarded as a random variable [1,2]. Now, by considering the mean
value theorem, we have (s can be regarded as a pseudo-period):

V(ix+s)=V(x)+ s[dix(V(x))] y )

=V(x)—sF(x+0s) (s1<s<s)0<b<])

but F(x + 6s) represents the magnitude of the force acting on a given
electron submitted to a lattice field whose corresponding potential
energy is V. On the other hand, we can do the following reasoning:
since crystallinity involves periodicity of V" with a strictly fixed period,
the magnitude of the quantity sF(x+ 6s) constitutes a measure of
disorder so that, if this magnitude is relatively small, we can claim that
the system in question presents a state relatively close to the crystalline
phase. Therefore, minimization of the above magnitude corresponds
to a quasi-crystalline state.

Another alternative picture of the situation in question should
consist of considering a first-order Taylor expansion of V(x+s),
namely:

Vix+s) = V(x) —sF(x) (s1<s<s) ()

However, the approximate formula (2) is only valid for relatively small
s-values, that is to say, for s < d where d stands for the period of the
crystalline lattice counterpart (see Ref. [1], p. 215). By virtue of this
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ref., we have:

/ ” sx(s)ds =d (3)

where x(s) is the probability density function of s as a random
variable. At this point, by taking into consideration the probability
interpretation of standard quantum mechanics, x is a random variable
o x + s is another random variable whose probability density function
should be a useful tool for examining complex situations. Finally, we
want to remark that, by taking into account expression (2), quasi-
crystalline systems correspond to a minimal F(x) so that one has
V(x+s)=V(x), as expected.

3. CONCLUDING REMARKS

In the previous brief study, we have called V the crystalline potential
(potential energy corresponding to the crystalline state); in reality, this
potential should be called potential of disordered lattice. In addition,
we wish to emphasize that randomness is a crucial concept in our con-
text so that complex situations in physics of amorphous materials can
be studied by using special tools [1, 3] which, to date, have not been
employed in the current literature. In particular, statistical concepts
and sophisticated methods of signal theory and theory of dynamical
systems should be used in this context.
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