
546   Jayabalan Ramesh et al. ETRI Journal, Volume 30, Number 4, August 2008 

Phase-locked loops (PLLs) are among the most 
important mixed-signal building blocks of modern 
communication and control circuits, where they are used 
for frequency and phase synchronization, modulation, and 
demodulation as well as frequency synthesis. The growing 
popularity of PLLs has increased the need to test these 
devices during prototyping and production. The problem 
of distinguishing and classifying the responses of analog 
integrated circuits containing catastrophic faults has 
aroused recent interest. This is because most analog and 
mixed signal circuits are tested by their functionality, 
which is both time consuming and expensive. The problem 
is made more difficult when parametric variations are 
taken into account. Hence, statistical methods and 
techniques can be employed to automate fault 
classification. As a possible solution, we use the back 
propagation neural network (BPNN) to classify the faults 
in the designed charge-pump PLL. In order to classify the 
faults, the BPNN was trained with various training 
algorithms and their performance for the test structure 
was analyzed. The proposed method of fault classification 
gave fault coverage of 99.58%. 
 

Keywords: Fault classification, back propagation neural 
network, PLL testing, charge-pump, phase frequency 
detector. 

                                                               
Manuscript received Feb. 28, 2008; revised June 21, 2008; accepted July 01, 2008. 
Jayabalan Ramesh (Phone: +919894169253, email: jramesh60@yahoo.com), Ponnusamy 

Thangapandian Vanathi (ptvani@yahoo.com), and Kandasamy Gunavathi 
(kgunavathi2000@yahoo.com) are with the ECE Department, PSG College of Technology, 
Coimbatore, Tamil Nadu, India. 

I. Introduction 

The integrated circuit (IC) manufacturing costs are strongly 
affected by the cost of test equipment, test time, and test 
procedure development. This is especially true in mixed-signal 
ICs when analog blocks are involved. Furthermore, the cost for 
the analog part often dominates the total cost of testing, while 
the analog circuitry represents only a small percentage of the 
total area. In an attempt to minimize production costs, IC 
manufacturers are now investing considerable effort in the area 
of mixed analog/digital design and testing. The designed 
charge-pump phase-locked loops (CP-PLLs) employ a phase 
frequency detector (PFD) and a charge pump instead of a 
conventional phase detector (PD) and a low-pass filter (LPF) in 
the generic architecture. The combined PFD and charge-pump 
circuit offers several advantages. 

• The capture range is only limited by the voltage-controlled 
oscillator (VCO) output frequency range. 

• The static phase error is zero if mismatches and offsets are 
negligible. 

• The PLL does not suffer from false lock. 
• The input signal and the VCO output are exactly in phase. 

All integrated circuits, fault-free or otherwise, are subject to 
parametric changes due to process variations [1]. Even though 
the circuits are designed to have some tolerance, some 
catastrophic faults can vary up to 3σ; therefore, a satisfactory 
threshold should be selected for fault classification. Since this 
threshold selection method was insufficient for fault 
classification [2], a statistical method can be selected. Linear 
discrimination analysis (LDA), a classical statistical method, 
was employed in 1993 for fault classification [2]. Limitations 
in LDA led Epstein to apply neural networks for fault 

Fault Classification in Phase-Locked Loops Using  
Back Propagation Neural Networks 

 Jayabalan Ramesh, Ponnusamy Thangapandian Vanathi, and Kandasamy Gunavathi  



ETRI Journal, Volume 30, Number 4, August 2008 Jayabalan Ramesh et al.   547 

classification [3]-[5], which gave better result when compared 
to other statistical methods. In our study presented this paper, 
the back propagation neural network (BPNN) is applied to 
fault classification in CP-PLL.  

For all the transistors, the various structural (catastrophic) 
faults were modeled and extensively simulated using Tanner 
Tools Professional. The training and testing sets were then 
obtained from a Monte Carlo simulation of the faulty and fault 
free circuit results for the fault classification using BPNN.  

II. Test Structure 

The charge-pump PLL [6] shown in Fig. 1 is used to 
evaluate the BPNN method of fault classification. 

The CP-PLL [7] consists of the following blocks. 

• PFD: It generates pulses (UP and DOWN signals) as wide 
as the phase difference between data and dclock.  

• Charge pump: It converts the logic states of the PFD into 
analog signals suitable for controlling the VCO.  

• Loop filter: It minimizes noise in the signal with the 
maximum response time. 

• VCO: It generates frequency based on input voltage from 
loop filter. 

• Divide-by-n counter: It generates dclock signal based on 
VCO output frequency which is fed back to the PFD. 

 

 

Fig. 1. Block diagram of the charge-pump PLL. 

PFD Charge 
pump  

Loop 
filter  VCO

1/N 

Data ClockUP 

DOWN 

IPFD

VVinvco 

dclock 

 

III. Phase Frequency Detector 

PLLs incorporating sequential-logic, namely, PFDs have 
been widely used in recent years [8]. Reasons for their 
popularity include extended tracking range, frequency-aided 
acquisition, and low cost. The output of the PFD depends on 
both the phase and frequency of the inputs. The phase 
frequency detector shown in Fig. 2 employs sequential logic to 
create three states to respond to the rising and falling edges of A 
(connected to data) and B (connected to dclock). The outputs 
QA and QB are called UP and DOWN, respectively. The UP 
and DOWN signals can be false simultaneously or either one 
can be true, but both can never be true simultaneously. 
Therefore, the three states allowed by a PFD are termed as UP,  

 

Fig. 2. PFD using a D-flip flop. 

D

clk

Q 

Q clk

D

A

B

QA

QB

VDD

VDD

 
 

 

Fig. 3. (a) Up signal generation and (b) down signal generation.

Data

dclock

Up

Down

(a) (b) 

 
 
DOWN and N, where N denotes neutral. The output of the 
PFD is shown in the Figs. 3 (a) and (b). 

IV. Charge Pump 

The purpose of the charge pump is to convert the logic states of 
the PFD into analog signals suitable for controlling the VCO. The 
CMOS implementation of the charge-pump circuit with a 
cascode current mirror is shown in Fig. 4. The charging and 
discharging of this circuit operates at a faster rate than the 
push/pull current source charge pump. This kind of charge pump 
is used in high-speed applications. When the UP signal is 0, the 
PMOS transistor conducts and keeps the charge pump in 
charging mode. When the DOWN signal is 1, the NMOS 
transistor conducts and keeps the charge pump in discharge mode. 

V. Voltage Controlled Oscillator 

A VCO operates as a variable length, variable delay ring 
oscillator having a current-starved inverter and an anti-high-
gain circuit for each stage as shown in Fig. 5. Broadband 
operation of this VCO can be achieved by cascading the 
different stages. The VCO uses a tuning voltage or control 
voltage, Vc, generated by the charge pump, to speed up or slow 
down the PLL’s output frequency as the PLL attempts to lock.  



548   Jayabalan Ramesh et al. ETRI Journal, Volume 30, Number 4, August 2008 

 

Fig. 4. T-spice schematic of the charge-pump circuit. 

Vdd Gnd 

Gnd Gnd 

Gnd 

Gnd

Gnd
Gnd 

Gnd 

Gnd 

Gnd 

Vdd 

Vdd 

Vdd 

Vdd 

Vdd 
Vdd

Vdd 

Vdd 

Vdd 

Vdd

Gnd 

Gnd 

Gnd 

Vdd 

up 

down 

ipump 

down 

up 

 
 

 

Fig. 5. T-spice implementation of current-starved VCO. 

out

vin 

L=2u 
W=22u 

L=2u 
W=22u 

out1 
L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

W=22u 
L=2u 

L=2u
W=22u

L=2u
W=22u

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u
W=22u

L=2u
W=22u

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

L=2u 
W=22u 

R=50 

 
 
A ring oscillator is chosen due to the ease of design and 
implementation. Compared to LC oscillators, ring oscillators 
have a wide tuning range and small area consumption, but poor 
phase-noise performance. The ring consists of 5 stages of 
inverters to yield the desired frequency of operation from    
15 MHz to 500 MHz, which is suitable for generating the clock 
signal of low to medium performance microcontrollers. The 
advantages of using a current-starved VCO are that it has a 
comparatively simpler design and leads to efficient area usage. 
As the VCO is starved of current, power efficiency is also 
improved. 

VI. Divide-by-n Counters 

The output of the VCO has to be divided before it is fed back 
to the input of the PLL. A programmable divider is used, which 
receives a reference clock signal of a predetermined frequency  

 

Fig. 6. T-spice schematic of the divide-by-2 counter. 

dclk

clk dclk

clk clk 

L=2u
W=22u

L=2u
W=22u

L=2u
W=22u

L=2u 
W=22u 

L=2u
W=22u

L=2u
W=22u

L=2u 
W=22u 

L=2u 
W=22u 

L=2u
W=22u

 
 

Table 1. PLL design specification. 

PLL design specification 

PLL type PFD using D-FF 

Lock time 0.2 µs 

Dynamic (tuning) range 81.5 MHz – 440 MHz 

Output frequency 95 MHz 

Average power consumption 2.47 mW 

Transistor count 
NMOS-31 
PMOS-32 

 

 

Fig. 7. Fault models. 

1 Ω

DSS CS SO DO 

GO GSS GDS RO 

1 Ω

10 MΩ 

10 MΩ

1 Ω

10 MΩ

1 Ω 

1 Ω10 MΩ

10 MΩ

 
 
and is structured to divide the reference clock signal by n and 
provide an output pulse signal for every n cycles of the 
reference clock signal. The divide-by-2 counter is shown 
schematically in Fig. 6. It produces one pulse at the output for 
every two cycles. 

Table 1 shows the design specifications of the PLL.   

VII. Fault Models 

Figure 7 shows the various faults models that were 
introduced for each transistor in the PLL as the following: 



ETRI Journal, Volume 30, Number 4, August 2008 Jayabalan Ramesh et al.   549 

• DSS: drain source short 
• GSS: gate source short 
• GDS: gate drain short 
• GO: gate open 
• DO: drain open 
• SO: source open 
• RO: resister open 
• CS: capacitor short 

Low resistance (1 Ω) and high resistance (10 MΩ) were 
used to model the faults. Shorts were modeled using low 
resistance, and the open circuits were modeled using high 
resistance. The faulty and fault free PLLs were designed using 
0.18 µm TSMC technology with 2.5 V supply voltage. 

VIII. Monte Carlo Analysis 

Monte Carlo analysis performs the simulation runs using 
randomly chosen parameter values. The parameter values for 
each run are chosen from probability distributions. Monte 
Carlo analysis sweeps parameter values that are chosen based 
on statistical variations. Hence the Monte Carlo simulation is 
used to measure the parametric variations of the faulty and fault 
free PLL circuits. Monte Carlo analysis was performed for the 
variations of the threshold voltage in the 0.18 µm TSMC 
model file using T-spice. Monte Carlo analysis was performed 
for the threshold voltage of all the NMOS and PMOS 
transistors with uniform distribution centered at 0.3694291 and 
0.3944719 with relative variations of 5%. A total of 20 Monte 
Carlo analyses of all the 379 faulty and fault free circuits were 
performed. The measurement results were obtained along with 
the statistical results from the analyses (namely, minimum, 
maximum, mean, average deviation, variance, and sigma). 
Then, these results were used as the data sets for the training 
and testing of the BPNN.  

IX. Back Propagation Neural Network 

The back propagation method is a technique used in training 
multilayer neural networks in a supervised manner. The back 
propagation method, also known as the error back propagation 
algorithm, is based on the error-correction learning rule. It 
consists of two passes through the different layers of the 
network: a forward pass and a backward pass. In the forward 
pass, an activity pattern is applied to the input nodes of the 
network, and its effect propagates through the network layer by 
layer. Finally, a set of outputs is produced as the actual response 
of the network. During the forward pass, the synaptic weights 
of the networks are all fixed. During the backward pass, the 
synaptic weights are all adjusted in accordance with an error- 

 

Fig. 8. Back propagation neural network. 

f1(e) 

x1

x2

x3

xr

Input 
signal 

Hidden layer

Output 
signal 

f(e) - Activation function

fn(e) 

f1(e)

fX(e)

fH(e)

y1

y2

yn

 
 
correction rule. The actual response of the network is 
subtracted from a desired response to produce an error signal. 
This error signal is then propagated backward through the 
network. The synaptic weights are adjusted to make the actual 
response of the network move closer to the desired response in 
a statistical sense. The weight adjustment is made according to 
the generalized delta rule to minimize the error. An example of 
a three layer BPNN with one hidden layer is shown in Fig. 8. 

Two commonly used neuron activation functions for the 
neuron in Fig. 8 are sigmoidal and tansig functions. Both 
functions are continuously differentiable everywhere and 
typically have the following mathematical forms: 

Log sigmoidal: 1( ) , 0
1 exp( )

f e a
ae

= >
+ −

,        (1) 

Pure linear:  f(e) = βe,    for  β > 0.               (2) 

X. Types of BPNN Training Algorithms Used for 
Fault Classification 

The back propagation neural networks are trained with nine 
different training algorithms.  

1. Variable Learning Rate BP with Momentum (traingdx) 

The learning rate parameter is used to determine how fast the 
BPNN method converges to the minimum solution. The higher 
the learning rate, the bigger the step and the faster the 
convergence. However, if the learning rate is made too high the 
algorithm will become unstable. On the other hand, if the 
learning rate is set too low, the algorithm will take a long time 
to converge. To speed up the convergence time, the variable 
learning rate gradient descent BP utilizes higher learning rate α 
when the neural network model is far from the solution and 
smaller learning rate α when the neural net is near the solution. 
The new weight vector Wk+1 is adjusted in the same way as in 
the gradient descent with momentum, but with a varying αk. 
Typically, the new weight vector Wk+1 is defined as 



550   Jayabalan Ramesh et al. ETRI Journal, Volume 30, Number 4, August 2008 

Wk+1 = Wk – α k+1 gk + µWk-1,              (3)   

      α k+1 =β α k,                    (4) 

where β is 0.7 if the new error is greater than 1.04 (old error), β  
is 1.05 if the new error is less than 1.04 (old error), µ is the 
momentum factor, and gk is the gradient. 

2. Conjugate Gradient BP (CGP) 

The basic BP algorithm adjusts the weights in the steepest 
descent direction. This is the direction in which the 
performance function decreases most rapidly. Although the 
function decreases most rapidly along the negative of the 
gradient, this does not necessarily produce the fastest 
convergence. In conjugate gradient algorithms a search is 
performed along conjugate directions, which generally 
produces faster convergence than the steepest descent 
directions. In the conjugate gradient algorithms the step size is 
adjusted at each iteration. A search is made along the conjugate 
gradient direction to determine the step size which will 
minimize the performance function along that line. There are 
four types of conjugate gradient algorithms which can be used 
for training. All of the conjugate gradient algorithms start out 
by searching in the steepest descent direction (negative of the 
gradient) on the first iteration: 

p0 = - g0,                 (5) 

where p0  is the initial search gradient, and g0 is the initial 
gradient. 

A line search is then performed to determine the optimal 
distance to move along the current search direction:   

         xk+1 = - xk + αk pk                         (6)  

where xk is the current weight vector, xk+1  is the next weight 
vector, αk is the learning rate, and pk is the current search 
direction. Then, the next search direction is determined so that 
it is conjugate to previous search directions. The general 
procedure for determining the new search direction is to 
combine the new steepest descent direction with the previous 
search direction:  

Pk = - gk + βk pk-1,              (7) 
where Pk is the current search direction, and Pk-1 is the previous 
search direction.  

The various versions of conjugate gradient are distinguished 
by the manner in which the constant βk is computed.  

A. Fletcher-Reeves (traincgf) 

For the Fletcher-Reeves (traincgf) update the procedure is  

1 1

T
k k

k T
k k

g g
g g

β
− −

= .                (8)  

This is the ratio of the norm squared of the current gradient to 
the norm squared of the previous gradient. 

B. Polak and Ribiere (traincgp) 

For Polak and Ribiere (traincgp) the constant βk is computed as 

1

1 1
.

T
k k

k T
k k

g g
g g

β −

− −

Δ
=                 (9) 

C. Powell and Beale (traincgb) 

For all conjugate gradient algorithms, the search direction 
will be periodically reset to the negative of the gradient. The 
standard reset point occurs when the number of iterations is 
equal to the number of network parameters (weights and 
biases), but there are other reset methods that can improve the 
efficiency of training. One such reset method was proposed by 
Powell and Beale (traincgb). For this technique we restart if 
there is very little orthogonality left between the current 
gradient and the previous gradient. This is tested with the 
following inequality:         

│gT
k-1 g k│ ≥ 0.2 ││ g k ││

2.            (10) 

If this condition is satisfied, the search direction is reset to the 
negative of the gradient. 

D. Scaled Conjugate Gradient Algorithm (trainscg) 

Each of the conjugate gradient algorithms that has been 
discussed so far requires a line search at each iteration. This line 
search is computationally expensive, since it requires the 
network response to all training inputs to be computed several 
times for each search. The scaled conjugate gradient algorithm 
(trainscg), developed by Moller was designed to avoid the 
time-consuming line search. 

3. Quasi-Newton BP (trainbfg) 

Newton’s method is an alternative to the conjugate gradient 
methods for fast optimization. Newton’s method often 
converges faster than conjugate gradient methods. The weight 
update for the Newton’s method is  

Wk+1 = Wk – Ak
-1 gk,              (11) 

where Ak is the Hessian matrix of the performance index at the 
current values of the weights and biases. When Ak is large, it is 
complex and time consuming to compute Wk+1. Fortunately, 
there is a type of algorithm based on the works of Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) which is based on 
Newton’s method but which does not require intensive 
calculation as it does not require calculation of second 



ETRI Journal, Volume 30, Number 4, August 2008 Jayabalan Ramesh et al.   551 

derivatives. It updates an approximate Hessian matrix at each 
iteration of the algorithm and computes the update as a 
function of gradient. This new class of method is called the 
quasi-Newton method. The new weight Wk+1 is computed as a 
function of the gradient and the current weight Wk. 

4. One-Step Secant BP (trainoss) 

Since the BFGS algorithm requires more storage and 
computation for each iteration than the conjugate gradient 
algorithms, there is need for a secant approximation with 
smaller storage and computation requirements. The one-step 
secant (OSS) method is an attempt to bridge the gap between 
the conjugate gradient algorithms and the quasi-Newton 
(secant) algorithms. This algorithm does not store the complete 
Hessian matrix; it assumes that at each iteration the previous 
Hessian was the identity matrix. This has the additional 
advantage that the new search direction can be calculated 
without computing a matrix inverse. 

5. Levenberg-Marquardt BP (trainlm) 

Like the quasi-Newton methods, the Levenberg-Marquardt 
algorithm [9] was designed to approach second-order training 
speed without having to compute the Hessian matrix. When 
the performance function has the form of a sum of squares (as 
is typical in training feedforward networks), then the Hessian 
matrix can be approximated as  

   H = JT J ,                (12) 

where H is the Hessian matrix, and J is the Jacobian matrix that 
contains first derivatives of network errors, and the gradient can 
be computed as   

   g = JT e,                (13)                             

where the Jacobian matrix contains first derivatives of the 
network errors with respect to the weights and biases, and e is a 
vector of network errors. The Jacobian matrix can be computed 
through a standard back propagation technique that is much 
less complex than computing the Hessian matrix. The 
Levenberg-Marquardt algorithm uses this approximation to the 
Hessian matrix in the following Newton-like update:   

       xk+1 =- xk - [JT J  + µI]-1JTe,          (14)  

where I is the identity matrix. 
When the scalar µ is zero, this is just Newton’s method using 

the approximate Hessian matrix. When µ is large, this becomes 
a gradient descent with a small step size. Newton’s method is 
faster and more accurate near an error minimum, so the aim is 
to shift towards Newton’s method as quickly as possible. Thus, 
µ is decreased after each successful step (reduction in 

performance function) and is increased only when a tentative 
step would increase the performance function. In this way, the 
performance function will always be reduced at each iteration 
of the algorithm. 

6. Resilient Back Propagation (trainrp) 

Multilayer networks typically use sigmoid transfer functions 
in the hidden layers. These functions are often called 
“squashing” functions, since they compress an infinite input 
range into a finite output range. Sigmoid functions are 
characterized by the fact that their slope must approach zero as 
the input increases. This causes a problem when using the 
steepest descent to train a multilayer network with sigmoid 
functions since the gradient can have a very small magnitude. 
Small changes are caused in the weights and biases, even 
though the weights and biases are far from their optimal values. 

The purpose of the resilient back propagation (rprop) training 
algorithm is to eliminate these harmful effects of the 
magnitudes of the partial derivatives. Only the sign of the 
derivative is used to determine the direction of the weight 
update. The magnitude of the derivative has no effect on the 
weight update. The size of the weight change is determined by 
a separate update value. The update value for each weight and 
bias is increased whenever the derivative of the performance 
function with respect to that weight has the same sign for two 
successive iterations. The update value is decreased whenever 
the derivative with respect to that weight changes sign from the 
previous iteration. If the derivative is zero, then the update 
value remains the same. Whenever the weights oscillate the 
weight change is reduced. If the weight continues to change in 
the same direction for several iterations, then the magnitude of 
the weight change will be increased. 

XI. Data Set 

The total transistor count of the PLL circuit is 63. Six fault 
models are introduced for each transistor. Altogether, 378 
unique faults are introduced in the circuit. In 13 transistors, the 
drain of each transistor is connected to the source of another 
transistor; hence, the open drain of one transistor is equivalent 
to the open source of the other. Thus, the faults of these 13 
transistors are neglected, and the remaining 300 transistor faults 
of the other 50 transistors are considered for analysis as shown 
in Table 2. 

Among these 300 faults, there are 50 unique faults, such as 
drain open, source open, gate open, drain source short, drain 
gate short, and gate source short. Fifty faults are randomly 
mixed to form 2 data sets. As a result, there are 6 pairs of data 
sets, one for each fault. A pair of fault free data sets is also  



552   Jayabalan Ramesh et al. ETRI Journal, Volume 30, Number 4, August 2008 

Table 2. Total transistors and faults introduced. 

Type of transistor 
Number of 
transistors 

Number of faults 
introduced 

NMOS 31 6 × 31 

PMOS 32 6 × 32 

Total 63 378 

Considered 50 300 

Table 3. BPNN parameter variations. 

Range of parameter variation 

Learning rate 0.3 to 0.8 

Hidden layer neurons 10 to 15 

Epochs for training 100 to 1,500 

 

constructed; hence, we have 7 pairs of data sets, including one 
pair for each fault and one that is fault free. The fourteen data 
sets are split into 7 test sets and 7 training sets for the BPNN. 

XII. Neural Network Parameters 

The following algorithms were used to train BPNN: trainlm, 
trainbfg, trainrp, trainscg, traincgb, tarincgf, traincgp, trainoss 
and traingdx. The performance of these training algorithms 
was compared by varying the following parameters: learning 
rate, number of neurons in hidden layer, and number of epochs. 
A high learning rate leads to rapid learning, but the weights 
oscillate. A lower learning rate leads to slower learning and, 
hence, an optimized learning rate. The stopping criteria were 
 

selected using extensive MATLAB simulation. The ranges of 
variation in the parameters are shown in Table 3. 

For learning rates between 0.3 and 0.8, BPNN gave the best 
fault classification percentage with all the training algorithms.  
When the number of neurons in the hidden layer was reduced 
to below 10, the percentage of fault coverage of the neural 
network tended to be reduced. Graphic representation of fault 
coverage when hidden layer neurons were fewer than 10 is 
shown in Fig. 9.  

XIII. Fault Coverage Using BPNN 

The BPNN was trained with all nine training algorithms and 
each gave better fault classification coverage at a specific 
learning rate, number of hidden layer neurons, and number of 
epochs. These values were derived through extensive 
MATLAB simulations, and the results are reported in Table 4.  

 

z 

Fig. 9. Consistency of BPNN based on hidden layer neurons. 

Fault 
free 

DO SO DSS GDS GSS GO 
Fault models 

0

20

40

60

80

100

120

Fa
ul

t c
ov

er
ag

e 
(%

) 

1 Neuron
2 Neuron

3 Neuron 
4 Neuron 

5 Neuron 
6 Neuron 

7 Neuron

 
 

Table 4. Fault classification of BPNN with various training algorithms. 

Fault coverage for each fault (%) 
Training  
algorithm 

Learning rate 
(α) 

Hidden layer 
neurons (H) 

Epochs for 
convergence Fault 

free DO SO DSS GDS GSS GO 
Overall fault 
coverage (%) 

trainlm 0.5 11 500 98 100 100 99 100 98.5 100 99.58 

trainrp 0.6 12 800 80 90 100 100 98.58 98 98 97.43 

trainbfg 0.7 13 1,400 80 96 85.5 83.18 100 89 100 92.28 

trainscg 0.6 15 500 100 98.10 100 95.3 100 100 58 91.89 

traincgb 0.6 15 900 68 96 96 72.64 95 95 94 91.44 

traincgf 0.3 15 600 100 97 99 100 100 79.2 61.14 89.39 

traincgp 0.8 13 700 100 98.5 100 100 84.3 97.40 68.14 91.39 

trainoss 0.3 11 1,500 98 100 100 100 100 74.08 78.1 92.03 

traingdx 0.5 15 1,500 100 100 100 100 88.30 100 59.44 91.29 

 



ETRI Journal, Volume 30, Number 4, August 2008 Jayabalan Ramesh et al.   553 

Table 5. Performance comparison of BPNN with other techniques.

Technique Fault coverage (%) 

F. Azais et al. [10] 87.7 

J.L. Rossello et al. [11] 96.5 

C.L. Hsu et al. [12] 97.2 

This work 99.58 

 

 
The results show that trainlm gives 99.58% fault coverage at 

a 0.5 learning rate, 11 hidden layer neurons, and 500 epochs. 
This is the best performance in comparison to all other training 
algorithms.  

A comparison of the fault coverage of the BPNN with that of 
other techniques is presented in Table 5. The proposed BPNN-
based fault classification technique has the highest fault 
coverage results.  

XIV. Conclusion 

In this paper, we presented a charge-pump PLL which we 
designed and simulated. Then the output was validated. PLL 
circuit fault models were introduced, and their Monte Carlo 
simulated outputs were obtained for training and testing the 
BPNN. The data localization problem is overcome by the 
BPNN by randomly picking the training data set. Various 
training algorithms were used to train the BPNN by varying the 
learning rate, the number of hidden layer neurons, and the 
number of epochs. In comparison with other training 
algorithms, trainlm exhibited the best performance, providing 
99.58% fault coverage. The results demonstrate that the BPNN 
trained with the trainlm algorithm gives best fault classification 
coverage for CP-PLL circuits.  

References 

[1] D. Grzechc, J. Ruttkowski, and T. Golonek, “Analog Fault AC 
Dictionary Creation: The Fuzzy Set Approach,” Proc. IEEE 
ISCAS, May 2006, pp. 5744-5747. 

[2] B.R. Epstein, M. Czigler, and S.R. Miller, “Fault Detection and 
Classification in Linear Integrated Circuits: An Application of 
Discrimination Analysis and Hypothesis Testing,” IEEE Trans. 
Computer-Aided Design, vol. 12, no. 1, Jan. 1993, pp. 102-113. 

[3] Z.R. Yang and M. Zwolinski, “Applying a Robust     
Heteroscedastic Probilisitic Neural Network to Analog Fault 
Detection and Classification,” IEEE Trans. Computer Aided 
Design of Integrated Circuits an Systems, vol. 19, no. 1, Jan. 2000, 
pp. 142-151. 

[4] V. Stopjakova, P. Malosek, and V. Nagy, “Neural Network-Based 
Defect Detection in Analog and Mixed IC Using Digital Signal 
Preprocessing,” J. Electrical Engineering, vol. 57, no. 5, 2006, pp. 
249-257. 

[5] D. Grzechc and J. Ruttkowski, “New Concept to Analog Fault 
Diagnosis by Creating Two Fuzzy-Neural Dictionaries Test,” 
Proc. IEEE MELECON, May 2004, pp. 115-118. 

[6] R.J. Baker, H.W. Li, and D.E. Boyce, CMOS Circuit Design, 
Layout and Simulation, 2nd ed., Prentice Hall of India Pvt. Ltd., 
2005. 

[7] F.M. Gardner, “Charge-Pump Phase-Locked Loops,” IEEE Trans. 
Communications, vol. COM-28, no. 11, Nov. 1980, pp. 1849-
1858. 

[8] P. Goteti, G. Devarayanadurg, and M. Soma, “DFT for Embedded 
Charge-Pump PLL Systems Incorporating IEEE 1149.1,” Proc. 
IEEE CICC, May 1997, pp. 210-213. 

[9] S.M.A. Burney, T.A. Jhilani, and C. Ardil, “Levenberg-Marquardt 
Algorithm for Karachi Stock Exchange Share Rates Forecasting,” 
Proc. of World Academy of Science, Engineering, and Technology, 
vol. 3, Jan. 2005, pp. 171-176. 

[10] F. Azais et al., “A Unified Digital Test Technique for PLLs: 
Catastrophic Faults Covered,” Proc. IEEE Int. Mixed Signal 
Testing Workshop, 1999, pp. 269-292. 

[11] J.L. Rossello and J.Segura, “An Analytical Charge-          
Based Compact Delay Model for Submicrometer CMOS 
Inverters,” IEEE Trans. Circuits and Systems I: Fundamental 
theory and Applications, vol. 51, no. 7, July 2004, pp. 1301-1311. 

[12] C.L. Hsu, Y. Lai, and S.W. Wang, “Built-in Self Test for Phase-
Lock Loops,” IEEE Trans. Instrumentation and Measurement, 
vol. 54, no. 3, June 2005, pp. 996-1002. 

 
 
 
 
 

Jayabalan Ramesh received the BE degree in 
electronics and communication engineering in 
1995 from Bharathiyar University, Coimbatore, 
Tamil Nadu, India. He completed his ME 
degree in communication systems in 1997 from 
National Institute of Technology, Trichy, Tamil 
Nadu, India. His research interests include 

design and testing of analog and mixed signal integrated circuits. He is 
currently working as a senior lecturer in the ECE department of PSG 
College of Technology, Coimbatore, India. He is also currently doing 
his PhD under the guidance of Dr. K. Gunavathi, professor with the 
ECE Department of PSG College of Technology, Coimbatore India. 
He is a life member of ISTE, SSI, and IAENG. He has previously 
published in one international journal and 20 national and international 
conference publications. 



554   Jayabalan Ramesh et al. ETRI Journal, Volume 30, Number 4, August 2008 

Ponnusamy Thangapandian Vanathi 
received the BE degree in electronics and 
communication engineering, the ME degree in 
computer science and engineering, and the PhD 
in 1985, 1991, and 2002, respectively, from 
PSG College of Technology, Coimbatore, 
Tamil Nadu, India. Her research interests 

include soft computing, speech signal processing and VLSI Design. 
She is currently working as an assistant professor in the ECE 
department of PSG College of Technology, Coimbatore, Tamil Nadu, 
India. She has around 18 years of teaching and research experience. 
She is a life member of ISTE. She has published in 10 national and 
international journals and 50 national and international conference 
publications. 

 
Kandasamy Gunavathi received the BE 
degree in electronics and communication 
engineering, the ME degree in computer science 
and engineering, and the PhD in 1985, 1989, 
and 1998, respectively, from PSG College of 
Technology, Coimbatore, Tamil Nadu, India. 
Her research interests include low-power VLSI 

design, design and testing of digital, analog, and mixed signal VLSI 
circuits. She is currently working as a professor in the ECE department 
of PSG College of Technology, Coimbatore, Tamil Nadu, India. She 
has around 20 years of teaching and research experience and is a life 
member of ISTE. She has published in 20 national and international 
journals and 60 national and international conference publications.  

 
 
 
 
 
 
 
 
 
 


	I. Introduction
	II. Test Structure
	III. Phase Frequency Detector
	IV. Charge Pump
	V. Voltage Controlled Oscillator
	VI. Divide-by-n Counters
	VII. Fault Models
	VIII. Monte Carlo Analysis
	IX. Back Propagation Neural Network
	X. Types of BPNN Training Algorithms Used forFault Classification
	XI. Data Set
	XII. Neural Network Parameters
	XIII. Fault Coverage Using BPNN
	XIV. Conclusion
	References

