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In this article, we introduce a new class of product codes 
based on convolutional codes, called convolutional 
product codes. The structure of product codes enables 
parallel decoding, which can significantly increase decoder 
speed in practice. The use of convolutional codes in a 
product code setting makes it possible to use the vast 
knowledge base for convolutional codes as well as their 
flexibility in fast parallel decoders. Just as in turbo codes, 
interleaving turns out to be critical for the performance of 
convolutional product codes. The practical decoding 
advantages over serially-concatenated convolutional codes 
are emphasized. 
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I. Introduction 

One of the most successful works to approach the Shannon 
limit was published in 1993 by C. Berrou, A. Glavieux, and P. 
Thitimajshima [1]. They introduced turbo codes, also known as 
parallel concatenated convolutional codes (PCCC). Turbo 
codes can achieve bit error rate (BER) levels of around 10-5 at 
code rates quite close to the corresponding capacity with 
reasonable decoding complexity. The use of soft-in soft-out 
decoding algorithms was a key to this success. In the last 
decade, similar codes such as serially-concatenated 
convolutional codes (SCCCs) [2], low-density parity check 
codes [3], and block product codes have been extensively 
studied. The studies on product codes were initiated by Elias 
[4]. Product codes enjoy a high degree of parallelization as 
opposed to many other forms of concatenated code structures, 
for example, PCCC.  

The product codes studied thus far have been constructed 
using linear block codes, such as Hamming, extended 
Hamming [5], [6], BCH [7], [8], and Reed Solomon [9] 
codes. Single parity check (SPC) product codes are studied in 
[10]. Three and more dimensional SPC product codes are 
studied in [11]. Product codes have also attracted practical 
attention lately. Digital signal processing and field-
programmable gate array implementations are studied in [12]. 
Product codes are traditionally constructed by linear block 
codes. Block codes have a trellis structure with a time varying 
property [13]. The product code we propose in this paper is 
constructed by using time-invariant convolutional codes. Its 
component codes’ trellis structure does not vary in time as in 
product codes constructed with Hamming, extended 
Hamming, BCH, and Reed Solomon block codes. Moreover, 
the number of states in the trellis structure of a block code 
may grow exponentially with the difference of codeword and 
data block lengths [13], whereas the number of states in a 
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convolutional code can be set as desired. The time invariant 
trellis structure of convolutional codes makes them more 
convenient for implementation. In addition, numerous 
practical techniques such as trellis coded modulation and 
puncturing can be simply utilized with convolutional codes as 
opposed to linear block codes. A code from the same family 
was previously studied for orthogonal frequency-division 
multiplexing in [14] but was not analyzed or further 
elaborated.  

Multi-input multi-output (MIMO) techniques are quite 
important to enhance the capacity of wireless communication 
systems. Space-time trellis codes provide both diversity and 
coding gain in MIMO channels and are widely used [15]. 
Space-time trellis codes usually have time-invariant trellis 
structures just like convolutional codes. Thus, a product code 
based on convolutional codes is more suitable for integration 
with MIMO channels and poses an alternative to block product 
codes. 

Due to these advantages of convolutional codes, we propose 
a class of product codes constructed by using convolutional 
codes, which we call convolutional product codes (CPCs). In 
this paper, we will investigate the factors that affect the 
performance of CPCs and leave the issues regarding space 
time trellis codes to other publications. 

The outline of the paper is as follows. The proposed code 
structure and the decoding algorithm for CPCs are given in 
section II. The minimum distance of these codes is studied in 
section III. In section IV, implementation advantages of CPCs 
are given. Simulation results are presented in section V. 
Concluding remarks are given in section VI. 

II. CPC Encoder and Decoder 

1. CPC Encoder 

A regular product code is constructed by placing the 
information bits/symbols into a matrix. The rows and columns 
are encoded separately using linear block codes [5]-[8]. This 
type of a product encoder is shown in Fig. 1. It is seen from the 
figure that the data and parity bits are grouped separately. 

In our case, we use convolutional codes instead of linear 
block codes to encode rows and columns. This is illustrated in 
Fig. 2. When compared to Fig. 1, it is obvious that data and 
parity bits are mixed uniformly. 

Encoding is performed by using a matrix that determines 
how each encoder works. The data to be sent is put into the 
matrix. Each row of the matrix is encoded using a 
convolutional code. We use the same recursive systematic 
convolutional code to encode each row, although different 
convolutional codes can be used for this purpose. Once each  
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Fig. 1. Regular product code encoding procedure, where a block 
code is used to encode rows and columns.  

 
 

Fig. 2. CPC encoding procedure without an interleaver. 
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row is encoded, the matrix is sent, if desired, to an interleaver. 
Our data matrix dimension is k×k, and the encoded data matrix 
dimension is n×n, that is, our code is an (n×n, k×k) code. The 
interleaved matrix is coded column-wise. In our simulation we 
used the rate 1/2 recursive systematic convolutional code with 
the matrix generator (1, 5/7)octal to encode each row and column. 
Hence, the overall code rate is 1/4. The general encoding 
procedure, which includes any type of interleaver, is illustrated 
in Fig. 3. 
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Fig. 3. Convolutional product code encoder with any type of
interleaver (d denotes data bits and p denotes parity bits). 
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2. CPC Decoder 

Convolutional product coded data is multiplexed to a single 
stream and binary phase shift key (BPSK) modulated. The 
BPSK-modulated signal is passed through an additive white 
Gaussian noise channel with double-sided noise power spectral 
density N0⁄2, that is, the noise variance is .2Nσ 0

2 = We 
used the log-MAP soft decoding algorithm [16], [17] to 
iteratively decode the convolutional product code. Since 
columns were encoded last, each column is independently 
decoded one by one. The extrinsic information obtained from the 
columns is passed to the row decoder after being de-interleaved. 
Then, row decoding proceeds; rows are decoded one by one, and 
interleaved extrinsic information is passed to the column decoder. 
The CPC decoding procedure is depicted in Fig. 4. This 
procedure is repeated for a sufficient number of times. The 
decoding structure employed in this study is the same as that of 
serially-concatenated codes in Fig. 5 [17]. For frames of equal 
length, an SCCC decoder uses two log-MAP decoders and 
performs quite well at low rates. CPC decoders can utilize  
 

 

Fig. 4. Decoding operation of the convolutional product code.
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Fig. 5. SCCC encoding operation. 
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many log-MAP decoders in-parallel, thus showing smaller 
decoding delays. Therefore, we will compare the proposed 
CPC structure to that of SCCC. 

3. Puncturing 

Puncturing is a widely used tool to increase the code rate of 
convolutional codes [18]. The puncturing operation increases 
the rate of a code, but decreases the free distance. This results in 
a worse error rate performance compared to a non-punctured 
case. We used the puncturing matrix  
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to puncture the convolutional component codes.  
We studied two cases. In the first case, puncturing is applied 

only to the column encoders, resulting in a code rate of 2/3 
each. The overall code rate becomes (1/2)×(2/3)=1/3. When 
trellis termination is used for rows and columns, a 
convolutional code with a slightly smaller overall code rate 

)3/1(≤ is produced. In the other case, we apply puncturing to 
each row and column encoder, resulting in an increased code 
rate of approximately (2/3)×(2/3)=4/9. Simulation results for 
punctured convolutional product codes (PCPCs) will be 
presented in section V. 

III. CPC Minimum Distance and its Asymptotic 
Performance 

The Hamming weight of a binary codeword is defined as 
the number of ‘1’s available in the codeword [13]. The 
minimum distance of a linear code is the minimum Hamming 
weight of all the codewords. The minimum distance plays an 
important role in the code performance. As it gets larger, code 
performance improves, especially at high signal-to-noise ratio 
(SNR) values [13]. We assume that dfree is the free distance of 
the component convolutional codes used in CPCs with trellis 
termination. We will investigate the minimum distance of the 
CPCs according to the usage of the interleavers. 

1. No Interleaving 

After the first stage of the CPC encoding operation (row 
encoding), it is obvious that one of the rows of the row-  
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Fig. 6. If the column elements are not mixed, 2
freed  is preserved.
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encoded matrix should contain at least dfree number of ‘1’s. This 
means that there are dfree columns containing at least a single ‘1’ 
in the row-encoded matrix. When columns are encoded, there 
exists at least dfree number of columns each containing at least 
dfree ‘1’s. Hence, in total there are at least 2

freed  ‘1’s in the 
coded matrix [6]. This is the dmin distance of the CPC whose 
component convolutional codes have a trellis termination 
constraint. In Figs. 6 and 7, this concept is explained for (1, 
5/7)octal component convolutional codes whose free distance is 
5. In summary, if no interleaver is used, the CPC minimum 
distance is 2

freed . 

2. Column S-Random Interleaver 

Both to preserve the 2
freed  minimum distance of the CPC, 

and to benefit from the interleaving gain, after row encoding 
we used S-random interleavers for each column, that is, each 
column is interleaved but different column elements are not 
mixed. In this way, we guarantee that dfree number of columns 
contains a single ‘1’ before column encoding operation. We 
call this type of interleaving column S-random interleaving to 
distinguish it from regular S-random interleaving. A helical 
interleaver [19] also does not mix the different column 
elements. A helical interleaver and a combination of helical and 
column S-random interleavers will also be considered. 

3. Full S-Random Interleaver 

If an S-random interleaver is used for all the elements of a 
matrix after row encoding, the number of columns that contain  

 

Fig. 7. 2
freed  is not preserved if an S-random interleaver is used

(‘x’ stands for a single or a group of 0’s). 

Encode rows

Encode columns 

Row data bits X 1 X 1 X X X 1 X 1 X X 1 X X X 

X 1 X X X X X X X X X X X X X X 

X 
X 
X 
X 
X 
1 
1 
1 
X 
1 
1 
1 
1 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

An S-random interleaver

X 1 X X X X X X X X X X X X X X

X 
1 
1 

1 
1 
X 
X 

X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

X 
X 
X 
X 

X
X
X

X
X
X
X

 
 
a single ‘1’ is not necessarily equal to dfree=5. As a result, the CPC 
minimum distance is no longer necessarily equal to 2

freed . In fact, 
after an interleaving operation, all the ‘1’s may appear in a single 
column. This means that the CPC minimum distance is lower 
bounded by dfree. We call this type of interleaving full S-random 
interleaving. In Fig. 7, the effect of the full S-random interleaver 
is illustrated. It is seen from Fig. 7 that when the row-encoded 
matrix is S-random interleaved, all the ‘1’s appearing in a row 
may go to a single column. This verifies that the CPC minimum 
distance is lower bounded by dfree.  

4. Punctured CPCs 

The puncturing operation decreases the free distance of 
convolutional codes. In our case, we puncture the (1, 5/7)octal 
component convolutional code that has dfree=5, that is, an 
input sequence ‘0111’ produces minimum Hamming weight 
codeword ‘00111011’. When the puncturing matrix is applied, 
its free distance decreases to dfree=3, that is, deleting every 
second parity bit in a periodic manner, ‘001x101x’ is obtained 
from the minimum Hamming weight codeword. Hence, the 
CPCs constructed using punctured component convolutional 
codes have a smaller minimum distance. In fact,  
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the minimum distance is equal to 92
free =d  if no interleaving 

operation is performed or a column S-random interleaver is 
used. 

5. Asymptotic Performance 

If row and column convolutional codes are trellis terminated, 
the row and column convolutional codes can be considered as 
block codes. Asymptotic performance studies made for block 
product codes are also valid for a convolutional product code. 
The BER probability of the CPCs can be approximated using 
the formula, 
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where dfree is the free distance of the convolutional code used to 
construct the convolutional product code, 
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free, d cw  is the average 
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The BER approximation in (1) is valid if no interleaver is 
used during the CPC encoding operation. If an interleaver is 
used, it does not hold anymore.  

IV. Practical Implementation Advantages 

The implementation advantage of CPC will be discussed 
herein with the parameters used in this study. Trellis 
termination will be neglected in calculation and will not alter 
the results significantly. In SCCC, for a given transmit data 
vector of length L, two log-MAP decoders are needed. The first 
decoder has a complexity of order O(2L)1) and a time delay of 
O(2L). The second decoder has a shorter input, thus it has a 
complexity of O(L) and a time delay of O(L). In total, the 
complexity is of O(3L) and the time delay is of O(3L). In CPC, 
columns are decoded first. The use of separate log-MAP 
decoders for each row and column makes parallel processing 
operations possible. Each column decoder has a complexity 
                                                               

1) The meaning of O(L) here is different from its conventional usage. By O(L) we mean 
that the computation load is proportional to L, i.e., computation amount is approx. kxL where  k 
is the number of parameters to be computed in a single stage of the code trellis. 

of O( L ) and time delay of O( L ). Since these decoders 
are run in-parallel, the total column decoding complexity is of 
O(2L) but the time delay is of O( L ). Similarly, row 
decoding has a total complexity of O(L) and time delay of 
O( L ). Hence, although both complexities are the same, 
time delays differ very much and bring about an O( L )-
time increase in decoding rate. Hence, the main advantage of 
CPCs lies in their suitability for a parallel decoding procedure. 
Although there are some proposed methods for the parallel 
decoding of SCCCs and PCCCs, these methods usually 
propose extra algorithms to solve problems met in parallel 
processing. Such algorithms not only bring extra complexity 
to the decoding operation [20]-[21], but also may suffer from 
performance loss. This situation is totally remedied with the 
proposed CPCs. 

V. Simulation Results 

1. Interleaving Effects 

A. No Interleaver  
In this case, no interleaving operation is performed after row 

encoding. Trellis termination bits are added both to rows and 
columns. The minimum distance of the CPC is 

.252
freemin == dd Trellis termination bits are necessary to 

guarantee 2
freemin dd = ; otherwise dmin is not equal to 2

freed  
anymore. The performance graph of this code is shown in Fig. 
8. It can be seen from the graph that the performance of this 
CPC is not good for low SNR values, although its minimum 
distance is large. As is well known, the minimum distance 
dominates the performance of the code at high SNR values. 

B. Full S-Random Interleaver  
After a row-encoding operation, an S-random interleaver (S 

= 18) is used. We also simulated a serially-concatenated 
convolutional code to compare against CPC due to the 
similarity of the code structure and good performance at low 
rates. The performance graph is seen in Fig. 8. As seen from 
the performance curve, the performance is very good 
compared to the cases where interleavers other than S-random 
are used. Due to the S-random interleaver used after row 
encoding, the minimum distance of the CPC is not necessarily 
equal to 2

freed . CPC with a full S-random interleaver shows the 
best performance at low rates due to the large interleaver gain. 

C. Column S-Random Interleaver  
To obtain both a better performance than that of the no 

interleaver case and to preserve that 2
freemin dd =  of CPC, we 

applied an S-random interleaver (S = 3) to each column 
separately. We call such interleaving column S-random  
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Fig. 8. SCC and CPC performance graph for different interleavers
(iteration number = 12, frame length = 1024).  

C1: No interleaver is used (rate ≈ 1/4) 
C2: Theoretical bound (rate ≈ 1/4) 
C3: Helical interleaver is used (rate ≈ 1/4) 
C4: Each column is S-random interleaved (column S-random) (rate ≈ 1/4)
C5: Helical + column S-random interleaver is used (rate ≈ 1/4) 
C6: Full S-random interleaver is used (rate ≈ 1/4) 
C7: SCCC with S-random interleaver (rate ≈ 1/4) 
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interleaving. Different column elements are not mixed. From 
Fig. 8, it can be seen that the performance is better compared to 
the CPC in which no interleaver is used. Its performance is 
worse than the CPC with which a full S-random interleaver is 
used after row encoding. The usage of the helical interleaver 
also guarantees that the minimum distance of CPC equals 

2
freed . We also investigated the case in which a helical 

interleaver is followed by a column S-random interleaver. It is 
seen that such an interleaver results in a slightly better 
performance than the one where only a column S-random 
interleaver is used during the encoding procedure. 

2. Trellis Termination Effects 

We simulated three trellis termination cases where trellis 
termination bits are added to the rows only (CPC RT), to both 
rows and columns (CPC TT), and neither to rows nor to 
columns (CPC No TT). Although the addition of trellis 
termination bits decreases the code rate, they are critical for 
good performance of the convolutional product code as seen in 
Fig. 9. The addition of trellis termination bits in a turbo or 
serially-concatenated code shows negligible improvement of 
the code performance [22]. Without trellis termination, the 
performance of the CPC degrades drastically. The performance 
graphs are seen in Fig. 9. When only rows are trellis 

 

Fig. 9. CPC and SCCC performance graph (frame length = 1024, 
iteration number = 12). 
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Fig. 10. Punctured CPC and punctured SCCC performance 
graph. CPC rows and columns are trellis terminated. 
(frame length = 1024, iteration number = 12). 

Cp1: SCCC with S-random interleaver (rate ≈ 1/3) 
Cp2: CPC with Full S-random interleaver (rate ≈ 1/3) 
Cp3: CPC with Full S-random interleaver (rate ≈ 4/9) 
Cp4: Each column is S-random interleaved (column S-random) (rate ≈ 4/9)
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terminated, a convolutional product code has better 
performance at very low Eb/N0 levels. However, the BER 
slope decreases at higher Eb/N0 levels when compared to the 
case where both rows and columns are trellis terminated. We 
see that CPC RT is better than the SCCC and CPC TT at low 
Eb/N0 regions. Although it is quite close to BER 10-7, SCCC 
seems to have an error curve of higher slope compared to 
CPC TT at higher Eb/N0 values. 
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3. Puncturing Effects 

Puncturing is first applied only to rows, resulting in a rate 2/3 
CPC. From Fig. 10, it is seen that the performance of the CPC 
with a full S-random interleaver is good after being punctured. 
When the puncturing process is applied to both rows and 
columns, it results in a CPC rate of approximately 4/9. From 
Fig. 10, it is seen that the performance becomes very poor for 
CPC with a full S-random interleaver. Recall that dmin is not 
necessarily lower bounded by 2

freed  when an S-random 
interleaver is used. Thus, the particular interleaver we used 
resulted in a low dmin. When 2

freemin dd ≥  is ensured by 
column S-random interleaving, performance is enhanced 
significantly. 

VI. Conclusion 

In this article, we studied a new class of product codes based 
on convolutional codes. This type of product code has 
component codes with a time invariant trellis structure, as 
opposed to product codes constructed with linear block codes 
(Hamming, BCH, Reed Solomon, and so on). Hence, CPC 
may be more favorable for implementation than linear block 
product codes. When compared to serially-concatenated 
convolutional codes, it exhibits comparable BER levels which 
are of practical interest.  

We investigated the effects of different interleavers on the 
performance of CPCs. It was seen that CPCs are outperformed 
by other codes unless good interleavers are used. We proposed 
interleaving methods to preserve the greatest minimum 
distance of CPCs. It is seen that the performance of a CPC is 
best at low rates when a full S-random interleaver is used. 
Column S-random interleavers are much better for punctured 
CPCs.  

Currently, we are investigating the effects of various 
interleavers and the incorporation of trellis coded modulation in 
row and column encoding. Since CPCs employ matrices in 
encoding, it can be easily extended to multi-carrier modulation 
where the vertical dimension can correspond to the sub-carriers. 
The approach presented here can be successfully extended to 
space-time trellis coding. Thus, our future studies will also 
include a joint structure for CPCs and MIMO space-time 
frequency codes. 
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