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This paper proposes an improved vascular pattern 
extraction algorithm for person verification applications. 
The proposed direction-based vascular pattern extraction 
(DBVPE) algorithm is based on the directional information 
of vascular patterns. It applies two different filters to the 
input images: row vascular pattern extraction filter 
(RVPEF) for effective extraction of the abscissa vascular 
patterns and column vascular pattern extraction filter 
(CVPEF) for effective extraction of the ordinate vascular 
patterns. We use the combined output of both filters to 
obtain the final hand vascular patterns. Unlike the 
conventional hand vascular pattern extraction algorithm, 
the directional extraction approach prevents loss of the 
vascular pattern connectivity. To validate the DBVPE 
algorithm, we used a prototype system with a DSP 
processor. The prototype system shows approximately a 
three-times better false acceptance rate (FAR) than the 
conventional single filter algorithm. 
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I. INTRODUCTION 

Biometrics is a technology that verifies or identifies 
persons using their physiological or behavioral characteristics. 
As our society is moving at light speed into the information 
age, the demand for biometric technology is growing at a 
much faster rate. 

There are several modalities for biometric person 
verification: fingerprint systems, retina/iris systems [1], [2], 
hand geometry systems, hand vascular systems, etc.  Each of 
these systems has merits and demerits. For example, 
fingerprint technology has an advantage in its implementation 
size and uniqueness of biometric features [3], [4], but it has 
severe problems in usability [5]. Usability is defined as the 
percentage of an unspecified population that is capable of using 
a technology. Because of the lack of usability, it is difficult to 
apply fingerprint technology to work places such as factories, 
construction sites, and places with inferior environments. Hand 
geometry technology [6] shows excellent performance in the 
usability measure, but it suffers from a relatively high false 
acceptance rate (FAR) measure. In spite of its disadvantage, it 
occupies the second largest market share in the US biometrics 
market, mainly because of its good usability. 

Hand vascular technology is excellent in the usability 
measure and has many advantages because it uses biometric 
features inside the human body rather than on the surface, and 
this results in a very stable verification performance during 
long periods of time. 

The problem with conventional hand vascular technology 
[7], [8], however, is that the vascular pattern is extracted 
without considering the directional characteristics of the 
vascular patterns. As a result, there is some loss of 
connectivity of vascular patterns and verification 
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performance degradation in terms of its FAR. The impact of 
this problem is more severe with subjects who have relatively 
thin vascular patterns or a contracted vascular pattern due to 
various conditions, such as exposure to cold. This paper 
specifically focuses on minimizing loss of the vascular 
pattern connectivity. 

In order to reduce the impact of the loss of vascular pattern 
connectivity, we propose a new algorithm, called the 
direction-based vascular pattern extraction (DBVPE) 
algorithm. It applies two different preprocessing filters to the 
input images: row vascular pattern extraction filter (RVPEF) 
for effective extraction of the abscissa vascular patterns and 
column vascular pattern extraction filter (CVPEF) for 
effective extraction of the ordinate vascular patterns. We 
combine the output of both the filters to obtain the final hand 
vascular patterns. Our investigation demonstrated that the 
directional extraction approach substantially reduced loss of 
vascular pattern connectivity compared to the conventional 
hand vascular pattern extraction algorithm. The main purpose 
of the RVPEF is to effectively extract the abscissa vascular 
patterns while preserving pattern connectivity and that of the 
CVPEF is to effectively extract the ordinate vascular patterns 
while preserving pattern connectivity. 

The proposed DBVPE algorithm preserves connectivity 
information by minimizing loss of both the abscissa and 
ordinate vascular pattern information. Using DBVPE in 
constructing our algorithm for hand vascular pattern person 
verification, we observed substantial success in resolving 
critical problems of the conventional hand vascular pattern 
extraction algorithm. 

To test and validate the DBVPE algorithm, we devised a 
prototype system, the hand vascular pattern recognition system 
(HVPRS), to implement the DBVPE algorithm. To effectively 
implement the hardware, we designed the filters to have filter 
coefficients to the power of two, which enabled 
implementation with fixed-point operators only. In this paper, 
we describe the DBVPE algorithm and the HVPRS in detail 
and present the results of the performance evaluation of 
DBVPE. 

To demonstrate the performance improvement of our 
algorithm over the conventional single filter algorithm, which 
does not utilize directional information, we first analyzed the 
conventional algorithm as well as the DBVPE algorithm; this 
is described in section II.  In section III, we then present the 
implementation details of the DBVPE algorithm and the 
HVPRS. Section IV contains the results of the performance 
evaluation and the experimental results. Finally, in section V, 
we conclude this paper with a presentation of the future 
direction of the research. 

II. CONVENTIONAL HAND VASCULAR 
PATTERN EXTRACTION ALGORITHM 

We first summarize some problems of the conventional 
vascular pattern extraction algorithm proposed by Hong et al. 
and Im et al. [8]-[10] and then compare it with the proposed 
DBVPE. 

We found that the hand vascular pattern image processed by 
the conventional algorithm shows some loss of information in 
vascular pattern connectivity, mainly because the algorithm 
does not allow for the fact that the vascular pattern of a person 
includes directional information and the vascular thickness of a 
person may vary for some reasons, such as a blood pressure 
change or a variation in temperature. Thus, the algorithm will 
show performance degradation if the subject is exposed to cold 
weather or suffers an abnormal blood pressure change. The 
main reason of the performance degradation of the 
conventional single filter approach is that it does not consider 
directional information of the hand vascular patterns. 

For implementing the algorithm, we designed each of the 
filter coefficients [9], [10] with a 7-tap canonical signed digit 
(CSD) [11], [12] code for fixed-point operation. 

The filter coefficient design of the proposed DBVPE 
algorithm, however, is based on numbers in the form of the 
power of two, which reduces the calculation complexity and 
greatly improves algorithm performance. Figure 1 shows the 
flow diagram of the filtering process for the conventional 
algorithm starting from the original raw image taken by a 
standard charge coupled device (CCD) camera. As shown in 
the flow diagram, the algorithms do not allow for the located 
vascular pattern direction. 
 

 

Fig. 1. Processing flow diagram of the conventional algorithm.
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1. Noise Removal Filter 

The noise removal filter of the conventional algorithm 
consists of a Gaussian low-pass filter and a smoothing filter. 
The Gaussian low-pass filter removes speckle noise in the 
image. The smoothing filter removes thermal and burst noise. 
The Gaussian low-pass filter and smoothing filter consists of an 
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11×11 kernel-mask and each of the filter coefficients is made 
up by a 7-tap CSD code, so that the implemented hardware 
requires fixed-point operations with seven barrel-shifters and 
six adders. 

The filtering process of the noise removal filter of the 
conventional algorithm is implemented in the spatial domain, 
that is, it is implemented by convolution masking. The gray 
levels assigned to each and every pixel of the filtered images 
are the weighted sum obtained when the center of the filter 
mask is located on the corresponding pixel of the input images. 
Noise removal filters of the conventional algorithm [9], [10] 
can be expressed as in (1) and (2). 
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where z(xc, yc), M, and w(x,y) are the center pixel of the filter 
mask, the vector size of the kernel mask, and the conventional 
preprocessing filter coefficient, respectively; Stap(x,y) is one of  
{–1, 0, 1}, and Ktap(x,y) is any integer number. 

2. Emphasizing Filter for Hand Vascular Patterns 

After the noise removal filter is applied, the emphasizing 
filter for hand vascular patterns is applied to emphasize the 
hand vascular pattern in the noise-removed images. The 
conventional emphasizing filter, in fact, takes the form of a 
band-pass filter as shown in Fig. 2. 

As the figure shows, the pass band gain of the conventional 
filter is not uniform and the gain drop is not sharp enough 
around the low frequency stop band. We found that these filter 
characteristics cause information loss when the vascular pattern 
 

 

Fig. 2. The characteristics of the conventional emphasizing 
filter (circular symmetric). 
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is extracted mainly because the conventional filter is not 
optimized for directional information. Some of the edge 
information of thin vascular patterns, which resides in the high 
frequency band, is also lost. As a result, the pattern vectors that 
contain the connectivity information of the abscissa vascular 
patterns and the ordinate vascular patterns are partially lost, 
causing degradation of the performance of the conventional 
hand vascular pattern recognition system. 

III. PROPOSED HAND VASCULAR PATTERN 
EXTRACTION ALGORITHM 

As already mentioned, the extracted vascular patterns using 
the conventional algorithm showed substantial loss of pattern 
connectivity. In order to resolve this problem, the proposed 
DBVPE algorithm uses the RVPEF and CVPEF and combines 
the output of both filters to construct the final hand vascular 
pattern. The RVPEF and CVPEF effectively extract the 
abscissa components and ordinate components of vascular 
patterns, respectively. Figure 3 presents a processing flow 
diagram of the proposed DBVPE algorithm. 
 

 

Fig. 3. Processing flow diagram of the proposed 
DBVPE algorithm. 
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1. Noise Removal Filter 

The noise removal filter of the proposed algorithm consists 
of a Gaussian low-pass filter and a smoothing filter, which are 
identical to those of the conventional filter. In order to reduce 
the calculation complexity further, however, we designed the 
filter coefficients of the noise removal filters of the DBVPE 
algorithm with numbers in the form of the power of two. 
With this design, the noise removal filter can be processed by 
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Fig. 4. (a) Histogram of the partially separated ROI image, 
(b) histogram of processing results for the noise 
removal filter. 
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fixed-point operation. The original image can include 
thermal and burst noise (Fig. 4(a)). Figure 4(b) shows the 
noise-removed image in the processing results of the noise 
removal filter. 

As the conventional noise removal filter is expressed in (1) 
and (2), the proposed filter is expressed in (3) and (4). 
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where z(xc, yc), M, w(x,y), and K(x,y) are the center pixels of the 
filter mask, the vector size of the kernel mask, the noise 
removal filter coefficient of the DBVPE algorithm, and any 
integer, respectively. As given in (3), the noise removal filter 
coefficients of the DBVPE algorithm are expressed as numbers 
in the form of the power of two, which makes it possible to 
perform the filtering process using only fixed-point operations. 

2. Emphasizing Filter for Hand Vascular Patterns 

After the noise removal filter is applied, the emphasizing 
filter for hand vascular patterns is applied to emphasize the 
hand vascular pattern in the noise-removed images. The 
proposed emphasizing filter of the DBVPE algorithm consists 
of two different filters, the RVPEF and the CVPEF. Basically, 
the RVPEF and CVPEF are designed to obtain better 
performance in preserving connectivity information along 
horizontal-direction vascular patterns and vertical-direction 
vascular patterns, respectively, than the conventional hand 
vascular pattern extraction algorithm. 

The RVPEF has an 11×17 kernel with horizontally oriented 
characteristics (Fig. 5), and the CVPEF has the same size kernel 
 

 

Fig. 5. The characteristics of the RVPEF. 
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Fig. 6. The characteristics of the CVPEF. 
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Fig. 7. The coverage areas of the RVPEF and the CVPEF. 
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but with vertically oriented characteristics (Fig. 6). Compared 
to the conventional hand vascular pattern extraction algorithm, 
these filters more effectively extract vascular patterns by 
preserving pattern connectivity information. The coverage 
areas of the RVPEF and CVPEF are shown in Fig. 7. 

In order to construct the final vascular pattern, we apply an 
OR operation to the output of the RVPEF and CVPEF. We 
observed that combining the RVPEF and CVPEF resulted in 
extracted vascular patterns that follow the true patterns more 
closely. 

The filters of the proposed RVPEF and CVPEF can be 
expressed as in (5) and (6). 
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where z(c), M, N, and w(i) are the center pixels of the filter 
mask, the abscissa vector size of the mask, the ordinate vector 
size of the mask, and the filter coefficient of the proposed 
emphasizing filter, respectively. S(x,y) is one of {–1, 1} and 

 

K(x,y) is any integer number. As shown in the equations, the 
coefficients of the RVPEF and CVPEF are designed with 
numbers in the form of the power of two, which makes it 
possible to perform the filtering process using only fixed-point 
operations. Table 1 presents an example of the proposed 
emphasizing filter coefficients. Since we designed the 
coefficients in a separable way [13], the filter coefficients are 
presented in the form of a 1-D array. 

Figure 8 presents a block diagram of the prototype hand 
vascular recognition system built around the proposed DBVPE 
algorithm. In the block diagram, the video decoder unit 
decodes the video signal from a CCD camera. The size of the 
image input to the digital signal processor (DSP) is 320×240 
pixels. The DSP processor is the main block where the 
proposed DBVPE algorithm is implemented with a Gaussian 
low-pass filter, a smoothing filter, an emphasizing filter, and the 
threshold process. After applying the DBVPE filter, a median 
filter [10] removes the noise caused by hair, skin curvatures, 
and fatty substances under the skin. 

A normalization and data base process is used to store each 
user’s template vascular data in the memory and is required for 
the user enrollment process. The final hand vascular pattern is 
available after this process. 

Figure 9 is a photographic picture of the prototype HVPRS 
system. The system comprises a user interface block for 
registering users and indicating the verification result, a 
microprocessor to match the input pattern and template pattern, 
a DSP processor for extracting the hand vascular pattern from 
the input image, and a flash memory for template data storage. 

IV. PERFORMANCE EVALUATION 

Before presenting the quantitative evaluation results, we 
describe a brief qualitative experimental result.  We processed 
test images using both the conventional and proposed 
algorithm. Figure 10(a) shows the raw image of the partially 
separated region of interest (ROI) image, and Figs. 10(b) and 
 

Table 1. Filter coefficients for the proposed emphasizing filter. 

1 2 3 4 5 6 7 8 9 10 11 Emphasizing filter 
coefficient 

(11×1 kernel mask) –20 –20 21 22 24 25 24 22 21 –20 –20 

1 2 3 4 5 6 7 8 9 10 11 

–20 –20 –20 –20 –20 21 23 24 25 24 23 

12 13 14 15 16 17 

Emphasizing filter 
coefficient 

(17×1 kernel mask) 
21 –20 –20 –20 –20 –20 
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Fig. 8. The block diagram of the prototype HVPRS.  
 

 

Fig. 9. The realized prototype system. 
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(c) show the hand vascular pattern extracted by the 
conventional system. Figure 10(d) shows the pattern extracted 
by the proposed RVPEF, and Fig. 10(e) shows the pattern 
extracted by the proposed CVPEF. Figure 10(f) shows the 
final pattern extracted by the proposed DBVPE algorithm. 

In Fig. 10(b), “R” indicates the location where the 
connectivity of a horizontal vascular component is lost by the 
conventional algorithm, and in Fig. 10(c), “C” shows an 
example of connectivity loss in the vertical direction. Figure 
10(d) demonstrates that the proposed RVPEF preserves the 
horizontal connectivity information by minimizing loss of the 
vascular pattern in the horizontal direction, and the CVPEF 
preserves the vertical direction connectivity (Fig. 10(e)). Finally, 
Fig. 10(f) shows an example of the DBVPE output, in which 
the connectivity information is well preserved. 

For a quantitative evaluation of the DBVPE algorithm along 
with the realized prototype system, we collected a set of hand 

 

Fig. 10. (a) The raw image of the partially separated ROI image,
(b) partial loss of horizontal vascular pattern connectivity
of the conventional algorithm, (c) partial loss of vertical
vascular pattern connectivity of the conventional 
algorithm, (d) processing result of RVPEF, (e) processing
result of CVPEF, (f) final result of the DBVPE algorithm.
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images of 10,000 randomly selected people and processed the 
test set using both the DBVPE and the conventional algorithm.  
Usually, the accuracy of biometric systems is represented by 
the false acceptance rate (FAR). Thus, we obtained the FAR 
based on the FAR computation method proposed by Jain et al. 
[14]. Figure 11 is a plot that compares the FAR of both 
algorithms. In the figure, the error scale is logarithmic. The 
abscissa of the plot is the threshold level, which is the 
parameter that determines the verification success (match) or 
failure. By analyzing the plot, we concluded that the accuracy 
performance of the proposed algorithm was substantially 
improved over that of the conventional algorithm. 

Generally, the FAR and false rejection rate (FRR) [15] have 
an inverse relation, that is, as the decision threshold increases, 
the FAR decreases, and at the same time, the FRR increases. 
Utilizing the DBVPE algorithm, when we adjusted the 
threshold level so that an experienced user would feel that the 
FRR level was acceptable, we observed the system FAR was 
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about 0.0001%. With the same parameter set, we observed the 
FAR of the conventional algorithm was worse than 0.01%. 
 

 

Fig. 11. A plot to compare FAR performance of the vascular 
pattern recognition system utilizing the conventional
algorithm and the proposed DBVPE. 
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V. CONCLUSION 

In this paper, we proposed an algorithm called DBVPE, 
which effectively extracts the vascular pattern from input hand 
images. In addition, we implemented a prototype hand vascular 
pattern verification system with the proposed algorithm. We 
quantitatively evaluated the effectiveness of the proposed 
algorithm using this prototype system with both the 
conventional and DBVPE algorithms. 

According to the evaluation results, we concluded that the 
DBVPE algorithm outperforms the conventional vascular 
pattern extraction algorithm as judged by FAR metrics. We 
believe that the improvement was achieved by using the 
directional information of the vascular pattern to enhance the 
input images. 

In addition, we optimized the filtering algorithm for the 
DBVPE algorithm for efficient calculation. For example, each 
of the filter coefficients was designed in the form of the power 
of two, so that a low-cost fixed-point processor could be utilized. 

The next step in our research will be the implementation of a 
complete person verification system using hand vascular 
patterns. In order to accomplish this goal, we will continue to 
work on the development of a more effective image acquisition 
sensor that can provide users with comfort and convenience. 
The person verification algorithm should also be enhanced to 
prevent performance degradation caused by external 
environments, such as inferior illumination and contamination. 
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