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Sensor networks play an important role in making the 
dream of ubiquitous computing a reality. With a variety of 
applications, sensor networks have the potential to 
influence everyone’s life in the near future. However, there 
are a number of issues in deployment and exploitation of 
these networks that must be dealt with for sensor network 
applications to realize such potential. Localization of the 
sensor nodes, which is the subject of this paper, is one of 
the basic problems that must be solved for sensor 
networks to be effectively used. This paper proposes a 
probabilistic support vector machine (SVM)-based 
method to gain a fairly accurate localization of sensor 
nodes. As opposed to many existing methods, our method 
assumes almost no extra equipment on the sensor nodes. 
Our experiments demonstrate that the probabilistic SVM 
method (PSVM) provides a significant improvement over 
existing localization methods, particularly in sparse 
networks and rough environments. In addition, a post 
processing step for PSVM, called attractive/repulsive 
potential field localization, is proposed, which provides 
even more improvement on the accuracy of the sensor 
node locations. 
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I. Introduction 

Recent advances in technology and especially electronics, 
have allowed sensor nodes to become cheaper, smaller, and 
thus, more applicable. In fact, sensor networks have made the 
concept of pervasive computing become more realistic. There 
are many applications for wireless sensor networks (WSNs). 
Some examples of the use of deployed sensor networks are 
wild animal behavior observation, glacier monitoring, ocean 
water monitoring, rescue of avalanche victims, tracking 
military vehicles, sniper localization and many more, as 
mentioned in [1]. 

However, for the WSNs to be sufficiently useful, there is a 
vital need for the nodes to be localized. Suppose that in a forest 
fire detection application, a sensor node reports of a 
temperature increase in its temperature sensor. Unless we know 
where the report is coming from, the information is almost 
useless. There are similar issues in many other applications. 

In WSNs, the problem of localization is the ability to 
determine a node’s relative or absolute position [2]. While 
designing a localization procedure for the WSNs, there are 
some challenges to face. First of all, a localization algorithm 
has to be energy-aware. That is, we prefer localization 
procedures that impose less communication as well as less 
computation. On the other hand, as we need a single sensor 
node to be really cheap, a localization algorithm has to be low 
in costs. That is, we prefer algorithms which require fewer 
types of equipments on the sensor nodes. 

The first idea that comes to mind when talking about 
localization is using GPS on each node. However, the problem 
with the GPS is that it needs an extra piece of equipment on the 
sensor node, which is an expensive one. Furthermore, a GPS 
device on a sensor node imposes space issues, which is another 
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challenge in WSNs. 
Considerable efforts have been made in the field of 

localization in WSNs. Proposed methods can be categorized 
mainly into two groups: range-based and range-free 
localization algorithms. Range-based algorithms (that is, one-
hop approaches) are those which use range measurement 
equipment. The methods used for measuring range in these 
devices is usually a received signal strength indicator (RSSI), 
time of arrival (ToA), time difference of arrival (TDoA), or 
angle of arrival (AoA)/direction of arrival (DoA) [2]. Each 
node then uses a method like triangulation to localize itself. 
Range-free algorithms, in contrast, do not hold any assumption 
of existence of any range measurement devices on sensor 
nodes. Therefore, range-free techniques, although more 
complicated, are better choices if they achieve an acceptable 
accuracy. 

In this paper, support vector machines (SVMs) will be used 
to develop a range-free localization algorithm. Previously, [3] 
and [4] proposed to use SVMs for the localization of the sensor 
nodes. However, in this study, we will try to improve the 
accuracy of localization by means of probabilistic SVMs. As it 
will be observed in the following sections, a probabilistic SVM 
is more powerful than the simple SVM in this application. 
Furthermore, the optional modified mass spring optimization 
(MMSO) phase [4] will be replaced with the innovative 
attractive/repulsive potential field localization (ARPoFiL) 
method so that more accurate results can be achieved. 

The rest of this paper is organized as follows. In section II, 
SVM localization will be explained and probabilistic SVM 
for the localization in lieu of SVM will be proposed. In 
section III, the innovative approach for further modification 
of nodes’ positions will be introduced. Section IV briefly 
reviews the experimental results. Finally, in section V, the 
study will be concluded and suggestions will be made for 
future research. 

II. Support Vector Machine Localization 

A common problem in machine learning is classifying data 
in a predefined feature space. To be more precise, assume a 
feature space of k dimensions and some samples like (Xi, Yi) are 
at hand, where Xi and Yi are the feature vector and class label of 
the i-th learning sample, respectively. Using this learning set, a 
model is to be developed by which, given a new unlabeled 
sample (x) from the same feature space, the class that the 
sample belongs to can be determined. One of the empirically 
best solutions to the classification problem is SVM. SVMs 
were first introduced by Cortes and Vapnik [5] with the main 
idea to find the equation of a hyper-plane that divides the 
feature space such that the margin of the hyper-plane to each 

class is maximal. For samples that are not linearly separable, 
kernel functions which map samples to a higher dimensional 
space are used. Consequently, the classifier becomes nonlinear 
and thus, more powerful. 

We now briefly review how to obtain SVM function. For 
details, refer to [5]. It is assumed that a two-class problem with 
labels 1 and −1 and k training samples exist. The class label of 
a new sample X is obtained by 
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In (1), SV is the set of support vectors. Support vectors of 
each class are training samples that are closest to the samples of 
the other class in the feature space. The feature vector and class 
label for the i-th support vector are xi and yi, respectively. K is a 
kernel function. A linear kernel is actually the inner product of 
its parameters in a higher dimensional space. Also, αis and b* 
are parameters that can be obtained by solving (2) using 
quadratic programming techniques and (3), respectively. 
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Generally, SVMs have the nice property of being robust 
against noise. They are also powerful in generalization, based 
on training sets. In the remainder of this section, the method of 
[6], [7], which uses SVMs to localize nodes in a WSN, will be 
reviewed briefly and probabilistic SVM will be discussed. 

The main procedure of localization using SVMs as is 
mentioned in [6], [7] is as follows. Having a wireless sensor 
network consisting of N nodes, S1, S2, …, SN, out of which first 
k nodes are beacon nodes, deployed in a 2D area [0, D]2, first, 
beacon nodes start by broadcasting “Hello” messages across 
the network. Then, as each beacon node receives other beacon 
nodes’ “Hello” messages, it can determine its hop-count. Next, 
each beacon node constitutes a vector of hop-counts to other 
beacon nodes, ordered by beacon node IDs. Each beacon node 
then sends this vector to the base station, as well as its position 
(which is assumed to be known). Then, the base station is all 
set up to start the training phase. 

Actually, each hop-count vector gathered at the base station 
is a training sample with each hop-count being a feature and 
the location corresponding to each vector being a class. So, the 
base station starts the training phase with k samples of k 
dimensions. But as mentioned before, the SVM is used to 
classify the samples into two classes, while the value of 
location through dimensions, x and y, are continuous. 
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To overcome this problem, the authors proposed to consider 
M−1 classes for each dimension, where M=2m. Then, for 
instance in x dimension, a sample belongs to the i-th class if 
x≥iD/M. This way, a binary tree can be built for each 
dimension such that each tree node is an x dimension class. The 
classes will be assigned to the tree nodes such that if the tree is 
traversed like left child → parent → right child, the ordered list 
of the classes will be obtained: cx1, cx2, …, cxM-1. A test sample 
can be classified starting with the root node of the tree. If the 
test sample belongs to the class, it will be traversed to the right 
child, else, to the left child. The rest can be done in a divide and 
conquer manner. 

Note that SVM decisions for a test sample are crisp. That is, 
each time the SVM decides whether a test sample belongs to a 
class or not, it never comes back to that decision. If the decision 
made was wrong, there will be an amount of error in the 
localization, especially when this wrong decision is made at 
one of the very top nodes of the tree. If the way SVM decides 
could be altered such that more smooth decisions could be 
made, the error could be reduced. This can be done by making 
the SVM define a degree of certainty in its decisions. 

The idea of probabilistic SVMs was put forth first in [8], [9]. 
Returning to the definition of SVM, a sign function to convert 
the output of the SVM function, f(X, α*, b*), from a real number 
to classes 1 or −1 was used. Definitely, f is the equation of the 
hyper-plane dividing two classes in the feature space. So it can 
be said that the more a test sample is away from the hyper-
plane, the more certain our decision becomes. 

The idea behind the probabilistic SVM is to use some 
function in lieu of sign function to convert the output of the 
SVM function from an unbounded real number to a real 
number bounded between 0 and 1. Sigmoid function (that is, 
logistic function) has this property. The ordinary sigmoid 
function is given by 

1( ) .
1 xP x
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The advantage of the sigmoid function is that while the input 
approaches ∞, the output of sigmoid function approaches 1, 
and while the input approaches −∞, the output of sigmoid 
function approaches 0. 

Properties of sigmoid function especially fit our demands for 
smoothing SVM decisions. If the output of the SVM function 
is passed to a sigmoid function, the output of the sigmoid 
function will therefore show the certainty of the SVM decision 
that the test sample belongs to class 1. Using this fact, all leaf 
nodes of the tree can be traversed and the location of a sensor 
node based on a weighted sum can be estimated. The modified 
recursive localization algorithm through x dimension using 
probabilistic SVM is as follows. 

 
Algorithm. X-dimension localization (S, CurrentRoot): 
Estimate the X coordinates of sensor S: 
1. c = certainty of SVM prediction that S in class cxCurrentRoot.
2. If (cxCurrentRoot is leaf node) 

-Return x’(S) = (1–c) × (CurrentRoot – 1/2) × D/M  
+ c × (CurrentRoot + 1/2) D/M.  

3. Else 
- Left-child location = X-dimension localization  

(S, left-child of currentRoot). 
- Right-child location = X-dimension localization 

 (S, right-child of currentRoot). 
- Return x’(S) = (1–c) × Left-child location  

+ c × Right-child location.   
Probabilistic SVM can be further strengthened by defining 

variables A and B in the sigmoid function as 
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An iterative procedure, which is based on maximum 
likelihood estimation, to find the optimum values for A and B 
has been proposed in [9], [10]. However, during experimental 
testing, we noticed that using an artificial neural network 
(ANN) for this purpose would generate more accurate values 
for A and B in a shorter time. In other words, it converges more 
rapidly. ANNs are one of the most reliable techniques used 
when it comes to a problem of optimization. The general 
procedure is as follows. 

Having a set of n training samples labeled {x1,…, xn}, with 
target outputs labeled {y1,…,yn}, where yi∈{1, −1} and 
i=1,…,n, the network is initialized with random values (usually 
0) for the parameters to be optimized (here A and B). These 
parameters are considered as the weights of the network inputs. 
Each network input is simply an element of the input vector. 
Next, inputs are multiplied by their corresponding weights, 
being summed up in the destination perceptron, generating a 
weighted sum of the inputs. The activation function for the 
perceptron is selected such that its output is the target function 
for the optimization. 

Using the above procedure, the output is calculated for each 
training sample as system output. Then according to the margin 
between system output and target output, that is, error, the 
weights are tuned such that the margin gets smaller. This is 
done using “gradient descent” rule which tries to lower error by 
altering weights, moving along the steepest descent of the error. 
To be more precise, the partial derivative of error against all 
weights is set to 0, and the optimal value for each weight is 
obtained. A factor, 0<µ<1, called “learning rate” usually 
impacts the amount of weight tuning during each iteration. 

In our case, we used a simple single-perceptron neural 
network architecture which is depicted in Fig. 1. We also used 
weights W1 and W2 in place of parameters A and B and the  
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Fig. 1. ANN architecture for finding parameters of probabilistic
SVM, A and B. 

W2(=B) 

1 

f(X) 
W1(=A) 

1 2

1
( )1

P W f X We
=

++

 
 
sigmoid function was used for the perceptron’s activation 
function. By applying f(X) and the constant integer 1 as the 
inputs to the network, the final system output P is calculated 
as is shown in the figure. Note that the system output is 
analogous to the probabilistic SVM’s sigmoid function 
except that the parameters A and B are replaced by weights 
W1 and W2. The sigmoid function has the nice property that  
P′(f(X))=P(f(X))(1− P(f(X)). The expected output for a training 
sample is 1 (a probability of 100%) when it belongs to class 1, 
and is 0 (a probability of 0%) when it belongs to class −1. The 
gradient descent rule used for altering weights after calculating 
system output for each sample is  
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where W1 and W2 are the weights to be learned (or A and B, 
respectively), µ is the learning rate (=0.9 in our case), and Os 
and Ot are system output and target output, respectively. 

Using the training samples for the SVM, this neural network 
was trained during the training phase of the network and the 
optimized parameters A and B were obtained. Results showed 
that with the use of A and B obtained by the ANN approach, 
the final P[f(X)] for training samples belonging to class 1 was 
nearly 1 (for example, 99.98%) and for training samples 
belonging to class −1 was nearly 0 (for example, 0.01%) which 
means that almost the optimum A and B were in hand. In 
comparison, although the maximum likelihood method 
converges in each iteration, it finally returns parameters A and 
B which in practice, leads to less accurate results (for example,  
0.8 to 0.9 and 0.1 to 0.2 for samples belonging to class 1 and 
−1, respectively). Therefore, we preferred to use ANN instead 
of the maximum likelihood approach. 

III. Improving Accuracy: ARPoFiL Method 

After the localization phase in each node, there is still room 
for improving the location estimates. For this purpose, each 
node sends its estimated position as well as its neighbor nodes’ 
IDs to the base station. Then, the base station can gently 

modify sensor locations such that in the estimated locations 
model, neighborhood information still matches. 

For this purpose, [11] has proposed the use of mass spring 
optimization (MSO) phase in the base station. The main idea 
behind MSO is that each node is considered a mass and each 
link to its neighbors is considered a spring. So, the node has to 
be stopped at a place where the resultant force of the springs is 
equal to zero. The energy of the system to be minimized is the 
sum of the energies in all nodes. So, the minimization of the 
nodes’ energies is the goal, which is given by 

2
est trueneighbor

( ) [ ( , ) ( , )] .
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i i j i jS
E S dist S S dist S S= −∑  (7) 

In (7), distest(Si, Sj) and disttrue(Si, Sj) are the estimated distance 
and true distance between nodes Si and Sj, respectively. The 
resultant force on each node is then the vector sum of the force 
vectors of its neighbors which is given by 

est true( , ) [ ( , ) ( , )] ( , ),i j i j i j i jf S S dist S S dist S S u S S= − ×  (8) 

where the vector u(Si, Sj) is the unit vector from node Si to Sj. 
Therefore, if a node’s estimated distance to its neighbor is more 
than the true distance, a positive force towards that neighbor is 
impressed. The resultant force on node Si which is the vector 
sum of the force vectors of neighbors is given by 

 
neighbor

( ) ( , ).
j

i i jS
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Using the definitions above, a number of iterations are 
performed on all of the nodes. In each iteration and on each 
node, the energy and the resultant force of the node are 
calculated according to (7) and (9), respectively. Then the node 
is moved gently towards the resultant force vector by αiF(Si). αi 
is recommended to be set to 1/2mi where mi is the number of 
neighbors of the node Si [11]. If the energy in this configuration 
is lower than the one in the previous configuration, the new 
position for the node is accepted. 

To modify this approach, the authors of [6] proposed to 
replace disttrue with r which is the transmission range of any 
node, assuming all the nodes have the same transmission range. 
MMSO works fine and reduces the amount of error of SVM as 
shown in experimental results of [6], as well as our 
experiments (section V). However, we are going to use another 
fact about the nodes as well. MMSO successfully uses 
neighborhood information of the nodes. We are proposing to 
additionally use non-neighborhood information. In other words, 
not only does a node have to be in the transmission range of its 
neighbors, it has to be outside the transmission range of its non-
neighbors. 

Consider the problem of navigation in the robots. The 
problem is that a robot is placed somewhere in a field with 
obstacles, aiming to reach a goal point without hitting the 
obstacles. A method called attractive/repulsive potential field 
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has been proposed for this problem [12], [13]. The idea of this 
solution is simply to consider the robot and obstacles as 
positive potential fields and the goal point as a negative 
potential field. The robot is attracted by the goal and repulsed 
by the obstacles. The more the robot is near an obstacle, the 
more force repulses it from that obstacle. We used this idea for 
our sensor localization problem. In fact, ARPoFiL stands for 
attractive/repulsive potential field localization. 

To implement this, the equations of the MMSO are modified 
to use non-neighborhood information as well as neighborhood 
information. Note that energy in (7) is a measure of how 
accurate the current location of a node is. To modify it, an 
expression should be added such that if a node is in the 
neighborhood of one of its real non-neighbors, the energy 
increases. The energy turned out to be somehow the amount of 
error. So (7) was modified in a way that the energy of a node is 
the sum of the energy for neighbors located outside the 
transmission range, as well as non-neighbors located inside the 
transmission range of the node itself. The modified energy of 
node Si is 

est

est

2
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Equation (8) does not necessarily have to be changed. Since 
the force of a non-neighbor node located inside the 
transmission range of the node will be negative, it will cause 
the node to be repulsed from that non-neighbor node. Equation 
(9) will also be modified such that the resultant force on a node 
will be the vector sum of the force caused by neighbors located 
outside the transmission range (attraction) and non-neighbors 
located inside the transmission range of the node (repulsion):  
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In many respects, the idea of ARPoFiL is similar to that of 
robot navigation. If you consider a node as a robot, then non-
neighbor nodes which are inside the transmission range of that 
node are obstacles (generating repulsive potential field), and 
neighbor nodes outside that node’s transmission range are goal 
points (generating attractive potential field). In the next section, 
the performance of our method versus current SVM and 
MMSO method will be experimentally compared. 

IV. Experimental Results and Simulation Study 

To further show that our proposed method outperforms the 
current method, results were double checked by simulating 
both methods in dense and sparse networks. We simulated 

WSN on java platform using the Lib-SVM package for SVM. 
Note that authors in [6], [7] used RBF kernel for SVM because 
of its empirical effectiveness. The linear kernel was tried for 
SVM and as will be seen, works better than the RBF kernel. 
The results of the simulation study show this in comparison to 
the results in [6], [7]. 

The dense network was a 100 m × 100 m field with 1,000 
sensor nodes, while a 50 m × 50 m network with 100 sensor 
nodes represented the sparse network in our simulation. The 
performance of both approaches in different populations of 
beacon nodes was also checked at 5%, 10%, 15%, 20%, and 
25%. Furthermore, the transmission range is shown to be 
effective in the amount of error [6], [7]. So both 7 m and 10 m 
transmission ranges for the nodes were tested.  

One of the challenges in real environments while deploying 
sensor networks are coverage holes, which cause most 
localization algorithms to suffer from inaccuracy. The proposed 
algorithm and the existing one were tested to compare their 
ability in modeling the coverage holes. Two configurations for 
the network with circle-shaped coverage holes were assumed:  
one with a coverage hole at the center of the field and radius 
D/6 and one with 5 coverage holes. One was at the center, the 
same as the previous case, and 4 at corners of the field with 
radius D/12 and a margin of D/5 to the nearest edges of the 
field. A similar configuration is assumed in [6]. 

Because the number of SVs and classification accuracy do 
not differ in SVM and probabilistic SVM, they will be omitted 
here. The total number of SVs in [6] is not very high, which is 
also true in our study. The small number of support vectors 
shows that there will be a small amount of computations 
needed at the base station as well as a small amount of 
information for the learnt model being transferred. On the other 
hand, classification accuracy as is shown in [6] increases with 
the beacon population. Parameter M, which is the number of 
classes in each dimension, was set to 128 for the dense network, 
and half the value, that is, 64, for the sparse network. These 
values were directly obtained from what the authors proposed 
in [6]. 

Mean location error, or the average displacement of the 
nodes from their true location, is shown in Table 1, in the dense 
network and 0 coverage holes under various configurations and 
different approaches. Also, Tables 2 and 3 show the location 
errors with 1 and 5 coverage holes in the dense network, 
respectively. As a general rule, when beacon population 
increases, the average location error reduces as was expected. 

The other important point is that both of the methods 
perform better in longer transmission ranges. This is because 
SVM generally works better in dense networks.  

Figures 2, 3, and 4 show the average location error for all of 
the methods in a dense network under different beacon  
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Table 1. Average location error (min/avg./max) for dense network with 0 coverage holes in different configurations. 

Average location error Beacon population 

Parameter settings 5% 10% 15% 20% 25% 

LSVM 0.125/4.813/26.294 0.095/3.132/15.414 0.087/2.674/13.422 0.081/2.31/11.507 0.056/2.234/10.255

P-SVM 0.127/4.657/25.497 0.102/3.116/14.974 0.079/2.663/13.253 0.069/2.3/11.478 0.066/2.234/10.255

LSVM-MMSO 0.075/3.054/14.52 0.05/2.132/10.915 0.056/1.88/10.862 0.057/1.701/8.738 0.061/1.65/8.362 
r = 7 m 

PSVM-ARPoFiL 0.05/2.712/15.572 0.065/1.859/9.151 0.062/1.632/9.499 0.038/1.453/7.858 0.039/1.403/6.274

LSVM 0.16/4.62/22.469 0.071/3.171/15.332 0.085/2.481/10.969 0.078/2.269/9.305 0.072/2.087/9.214

PSVM 0.174/4.445/20.855 0.081/3.128/15.231 0.083/2.463/10.908 0.071/2.262/8.98 0.069/2.091/9.125

LSVM-MMSO 0.057/2.72/13.978 0.047/1.979/11.275 0.049/1.641/8.002 0.041/1.603/7.466 0.04/1.51/7.261 
r = 10 m 

PSVM-ARPoFiL 0.076/2.34/9.678 0.048/1.593/7.883 0.037/1.295/5.41 0.056/1.218/5.163 0.038/1.148/4.647

(m)

Table 2. Average location error (min/avg./max) for dense network with 1 coverage hole in different configurations. 

Average location error Beacon population 

Parameter settings 5% 10% 15% 20% 25% 

LSVM 0.131/4.619/19.17 0.095/3.512/15.586 0.07/2.868/12.78 0.053/2.464/9.453 0.077/2.302/9.815 
P-SVM 0.109/4.47/18.619 0.094/3.481/15.211 0.068/2.86/12.615 0.053/2.453/9.874 0.079/2.301/9.839

LSVM-MMSO 0.04/3.061/13.424 0.064/2.41/11.295 0.052/2.016/9.62 0.05/1.768/7.7 0.063/1.712/8.794
r = 7 m 

P-SVM-ARPoFiL 0.082/2.586/10.127 0.077/2.032/9.692 0.059/1.688/9.035 0.046/1.471/6.027 0.052/1.418/6.829

LSVM 0.104/4.932/23.03 0.086/3.291/14.646 0.094/2.654/9.864 0.047/2.433/9.439 0.068/2.22/8.864 
P-SVM 0.14/4.758/21.467 0.093/3.261/13.983 0.109/2.641/9.722 0.044/2.425/9.491 0.068/2.218/8.776

LSVM-MMSO 0.045/2.848/13.066 0.054/2.093/9.964 0.061/1.769/7.412 0.034/1.662/7.677 0.048/1.59/7.248 
r = 10 m 

P-SVM-ARPoFiL 0.053/2.299/10.034 0.051/1.581/6.153 0.045/1.306/4.821 0.041/1.234/4.662 0.039/1.17/4.689 

(m)

Table 3. Average location error (min/avg./max) for dense network with 5 coverage holes in different configurations. 

Average location error Beacon population 

Parameter settings 5% 10% 15% 20% 25% 

LSVM 0.123/5.064/23.169 0.084/3.544/16.317 0.088/2.914/12.499 0.07/2.567/10.596 0.059/2.407/10.159

P-SVM 0.096/4.907/21.913 0.084/3.524/16.269 0.087/2.904/12.525 0.068/2.566/10.64 0.059/2.403/9.596

LSVM-MMSO 0.062/3.338/16.602 0.087/2.47/11.131 0.063/2.068/10.353 0.054/1.859/8.69 0.054/1.791/8.386
r = 7 m 

P-SVM-ARPoFiL 0.059/2.935/14.797 0.059/2.06/9.419 0.041/1.698/8.515 0.048/1.507/7.905 0.047/1.454/7.13 
LSVM 0.118/5.277/25.706 0.117/3.345/13.378 0.082/2.829/10.77 0.092/2.484/9.666 0.072/2.301/8.732 
P-SVM 0.141/5.079/23.739 0.127/3.321/13.242 0.062/2.831/10.731 0.078/2.488/9.707 0.071/2.302/8.624

LSVM-MMSO 0.089/3.36/18.116 0.055/2.196/9.523 0.049/1.936/7.337 0.046/1.782/7.569 0.049/1.71/7.022 
r = 10 m 

P-SVM-ARPoFiL 0.076/2.739/14.603 0.051/1.694/7.146 0.055/1.445/5.546 0.044/1.292/5.01 0.056/1.247/5.268

 

(m)

 
populations and transmission ranges with 0, 1, and 5 coverage 
holes, respectively. According to the figures, it is obvious that 
PSVM-ARPoFiL completely outperforms SVM-MMSO. 
However, SVM and probabilistic SVM are almost the same. 
We will see that PSVM works more accurately in sparse 
networks. 

Note that when a coverage hole appears, the existing method 
encounters incremental rise in error, while the proposed 
method experiences almost no changes in error. This matter 
however, when 5 coverage holes are added, influences both 
approaches. Nevertheless, the proposed approach suffers from 
a smaller amount of error. 
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Fig. 2. Average location error for dense network with 0 coverage holes: (a) r = 7 m and (b) r = 10 m. 
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Fig. 3. Average location error for dense network with 1 coverage hole: (a) r = 7 m and (b) r = 10 m. 
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Fig. 4. Average location error for dense network with 5 coverage holes: (a) r = 7 m and (b) r = 10 m. 
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From the discussion above, it can be said that the proposed 

method works better in rough environments where there exist 
coverage holes. Actually, the method successfully models the 
coverage holes in the learning phase. This matter is of a major  
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Table 4. Average location error (min/avg./max) for sparse network with 0 coverage holes in different configurations. 

Average location error Beacon population 

Parameter settings 5% 10% 15% 20% 25% 

LSVM 1.112/13.671/38.175 0.928/9.452/33.118 0.552/6.308/22.634 0.512/6.022/21.632 0.535/5.089/22.076

P-SVM 0.656/12.309/36.109 0.658/8.566/31.483 0.509/5.654/20.041 0.421/5.398/19.138 0.476/4.701/20.914

LSVM-MMSO 0.871/12.227/36.445 0.561/8.11/27.9 0.398/5.224/19.978 0.355/5.039/19.024 0.35/3.908/13.1 
r = 7 m 

P-SVM-ARPoFiL 0.675/10.375/32.315 0.377/6.952/28.971 0.398/4.394/20.978 0.308/3.989/18.434 0.246/3.103/13.043

LSVM 1.093/11.802/33.445 0.49/7.002/20.976 0.423/6.036/20.103 0.444/5.566/20.107 0.551/4.518/13.82

P-SVM 0.683/10.508/29.907 0.603/5.768/18.606 0.334/5.418/18.212 0.342/4.922/18.013 0.465/4.19/12.418

LSVM-MMSO 0.838/9.7/28.853 0.348/5.359/18.19 0.212/4.869/18.513 0.256/4.214/15.392 0.354/3.552/11.244
r = 10 m 

P-SVM-ARPoFiL 0.483/6.922/23.711 0.255/3.239/12.181 0.199/3.059/13.292 0.194/2.772/13.145 0.238/2.306/7.74 

(m)

Table 5. Average location error (min/avg./max) for sparse network with 1 coverage hole in different configurations. 

Average location error Beacon population 

Parameter settings 5% 10% 15% 20% 25% 

LSVM 0.881/13.707/40.163 0.659/10.603/30.513 0.717/6.724/21.466 0.507/5.857/24.937 0.498/5.78/21.867

P-SVM 0.84/12.501/36.032 0.44/9.766/29.234 0.428/6.09/20.93 0.414/5.303/23.455 0.318/5.536/21.089

LSVM-MMSO 0.754/11.921/35.211 0.479/9.493/29.427 0.468/5.488/18.304 0.238/4.814/21.009 0.501/4.757/19.554
r = 7 m 

P-SVM-ARPoFiL 0.779/11.047/36.525 0.416/8.632/29.305 0.284/4.702/20.405 0.248/3.976/21.968 0.296/3.924/19.208

LSVM 0.64/11.609/31.09 0.748/7.679/22.682 0.708/6.213/21.382 0.451/5.189/18.785 0.531/4.706/15.514

P-SVM 0.61/10.276/27.905 0.523/6.221/19.402 0.467/5.143/18.93 0.524/4.626/16.661 0.469/4.327/14.82

LSVM-MMSO 0.582/9.393/24.455 0.523/5.875/19.025 0.397/4.807/17.376 0.364/4.154/14.805 0.41/3.683/12.885
r = 10 m 

P-SVM-ARPoFiL 0.655/6.97/24.432 0.329/3.66/13.355 0.299/2.907/12.212 0.222/2.834/13.87 0.281/2.423/11.453

(m)

Table 6. Average location error (min/avg./max) for sparse network with 5 coverage holes in different configurations. 

Average location error Beacon population 

Parameter settings 5% 10% 15% 20% 25% 

LSVM 1.402/14.963/35.887 0.674/9.377/29.186 0.534/7.013/26.749 0.56/6.178/23.084 0.367/5.787/27.44

P-SVM 1.205/13.543/33.28 0.564/8.258/25.736 0.576/6.424/25.758 0.523/5.695/22.529 0.273/5.476/27.052

LSVM-MMSO 0.952/13.409/34.648 0.557/8.236/28.251 0.467/5.945/21.836 0.468/5.248/20.443 0.294/4.706/22.876
r = 7 m 

P-SVM-ARPoFiL 0.714/11.912/34.373 0.436/6.775/26.193 0.437/5.205/23.146 0.263/4.686/21.262 0.3/4.322/23.852 
LSVM 0.908/12.33/32.296 0.78/7.74/22.805 0.677/6.265/20.492 0.447/5.158/18.225 0.375/4.53/14.798

P-SVM 0.799/10.7/29.77 0.564/6.449/20.24 0.489/5.237/18.527 0.361/4.525/16.626 0.388/4.272/15.121

LSVM-MMSO 0.696/9.842/27.209 0.349/5.744/18.692 0.502/4.72/16.198 0.335/3.929/14.319 0.335/3.489/12.231
r = 10 m 

P-SVM-ARPoFiL 0.682/8.165/27.386 0.339/3.894/14.83 0.329/3.105/13.04 0.268/2.588/11.613 0.24/2.478/10.08 

 

(m)

 
importance to us because sensor networks are mostly deployed 
in rough areas that cause coverage holes to appear in the 
architecture of the network. 

On the other hand, Tables 4, 5, and 6 show the location error 
for the sparse network with 0, 1, and 5 coverage holes, 
respectively. Note that the total error in comparison with the 

dense network is increased. 
As previously mentioned, this increase is due to the fact that 

SVM generally works better in dense networks. We may 
consider this as a draw-back of the SVM based method. 
Furthermore, when the network is dense, more neighbors are 
available, and that means more neighborhood and non-  
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Fig. 5. Average location error for sparse network with 0 coverage holes: (a) r = 7 m and (b) r = 10 m. 
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Fig. 6. Average location error for sparse network with 1 coverage hole: (a) r = 7 m and (b) r = 10 m. 
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Fig. 7. Average location error for sparse network with 5 coverage holes: (a) r = 7 m and (b) r = 10 m 
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neighborhood information, which is why both MMSO and 
ARPoFiL perform better in dense networks. 

Figures 5, 6, and 7 show the location error for the sparse  
network under different beacon populations and different 



ETRI Journal, Volume 33, Number 6, December 2011 Reza Samadian and Seyed Majid Noorhosseini   933 

transmission ranges for all of the methods for 0, 1, and 5 
coverage holes, respectively. Here, the point is that PSVM 
works much better than SVM, and in some cases, it is 
comparable to SVM-MMSO (r = 7 m, 5% beacon). 

For the dense network and from Figs. 3 to 5, it can be said 
that increasing the beacon node population results in reduction 
in the mean location error. However, this error reduction is 
significant, up to a beacon population of 10% to 15%. 

As the beacon nodes are more expensive than normal sensor 
nodes and impose more restrictions, a small beacon population 
in a localization algorithm is preferred. However, a trade-off 
exists between the beacon population and the amount of error. 
So it seems that a beacon population of 10% to 15% is 
adequate both in error and cost for a dense network. 

On the other hand, for all of the sparse networks except the 
case when there are no coverage holes and r = 10 m, the above 
statement is true. In the case of no coverage holes and r = 10 m, 
it seems the adequate beacon population is about 10%. 

V. Conclusion  

We have shown that probabilistic SVM works more 
accurately than the ordinary SVM in the problem of 
localization in sensor networks. Furthermore, the initiated 
method of ARPoFiL modifies the location of the sensors with 
more accurate results than MMSO. Both algorithms work in a 
centralized manner. 

One can argue that although the proposed approach works 
more accurately than the existing one, it has more 
computational costs. For example, take the SVM phase. In 
LSVM, each node localizes itself using a binary tree and with 
an order of log(M). However, in probabilistic SVM, each node 
has to go through all nodes of the tree, using all models learnt 
to localize itself. As a solution, the procedure of localization 
can be modified so that this computational cost incurs on the 
base station. Instead of sensor nodes sending their 
neighborhood information to the base station after the 
localization phase, they can send this information as well as 
their hop-counts to beacon nodes, before the localization phase. 
Then, the base station can do the math itself. This way, there is 
no need for the base station to broadcast the learnt models. 

Another issue that impacts the computational cost is that the 
ARPoFiL method modifies each node’s location based on 
more nodes (non-neighbors as well as neighbors) in 
comparison to MMSO. However, that should not be a real 
concern because these computations, as said before, are done at 
the base station, which we assume has an unlimited power 
source and is powerful enough. 

The proposed method may be improved by changing the 
learning mechanism. An ANN instead of an SVM may 

improve the localization. Furthermore, classes can be defined 
in other ways. Currently, each dimension has its own class 
definitions, while the feature vector used, hop-counts to beacon 
nodes, is based on both directions. The localization may be 
improved by defining classes in a way that considers an area, 
for instance, coin-shaped classes, as [14], [15] defined. 
However, to cover the whole sensor field, many of these 
classes are needed, and this leads to more computational costs 
in the learning phase. Also, classes can be defined such that the 
sensor field is divided into four similar squares each time. 
However, this way, SVM needs to work with 4 classes, which 
has its own difficulties. We plan to cope with this in the future. 

From this study, it can be concluded that our method is more 
suitable for localization than the existing one in all networks, 
especially sparse ones and those deployed in rough 
environments leading to coverage holes. Not only was the 
localization improved with our proposed method, our results 
for LSVM in comparison to results in [6] and [7], show that it 
was also improved with the use of linear kernels instead of 
RBF kernel for the SVM.  

Generally, the SVM-based method is suitable when 
restrictions on the costs and the equipments needed to deploy 
the sensor network exist. In fact, the SVM-based method, and 
especially our proposed method, makes use of a small amount 
of information to localize nodes, and this is done successfully 
and with the minimal amount of error. 
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