
924 Reza Samadian and Seyed Majid Noorhosseini © 2011 ETRI Journal, Volume 33, Number 6, December 2011

Sensor networks play an important role in making the
dream of ubiquitous computing a reality. With a variety of
applications, sensor networks have the potential to
influence everyone’s life in the near future. However, there
are a number of issues in deployment and exploitation of
these networks that must be dealt with for sensor network
applications to realize such potential. Localization of the
sensor nodes, which is the subject of this paper, is one of
the basic problems that must be solved for sensor
networks to be effectively used. This paper proposes a
probabilistic support vector machine (SVM)-based
method to gain a fairly accurate localization of sensor
nodes. As opposed to many existing methods, our method
assumes almost no extra equipment on the sensor nodes.
Our experiments demonstrate that the probabilistic SVM
method (PSVM) provides a significant improvement over
existing localization methods, particularly in sparse
networks and rough environments. In addition, a post
processing step for PSVM, called attractive/repulsive
potential field localization, is proposed, which provides
even more improvement on the accuracy of the sensor
node locations.

Keywords: Wireless sensor networks, support vector
machine, localization, probabilistic SVM, machine
learning, neural networks.

Manuscript received Nov. 17, 2010; revised May 13, 2011; accepted May 20, 2011.
This work is supported by Iran Telecommunication Research Center (ITRC).
Reza Samadian (phone: +98 21 64542740, email: pe.samadian@gmail.com) and Seyed

Majid Noorhosseini (email: majidnh@aut.ac.ir) are with the Department of Computer and
Information Technology, Amirkabir University, Tehran, Iran.

http://dx.doi.org/10.4218/etrij.11.0110.0692

I. Introduction

Recent advances in technology and especially electronics,
have allowed sensor nodes to become cheaper, smaller, and
thus, more applicable. In fact, sensor networks have made the
concept of pervasive computing become more realistic. There
are many applications for wireless sensor networks (WSNs).
Some examples of the use of deployed sensor networks are
wild animal behavior observation, glacier monitoring, ocean
water monitoring, rescue of avalanche victims, tracking
military vehicles, sniper localization and many more, as
mentioned in [1].

However, for the WSNs to be sufficiently useful, there is a
vital need for the nodes to be localized. Suppose that in a forest
fire detection application, a sensor node reports of a
temperature increase in its temperature sensor. Unless we know
where the report is coming from, the information is almost
useless. There are similar issues in many other applications.

In WSNs, the problem of localization is the ability to
determine a node’s relative or absolute position [2]. While
designing a localization procedure for the WSNs, there are
some challenges to face. First of all, a localization algorithm
has to be energy-aware. That is, we prefer localization
procedures that impose less communication as well as less
computation. On the other hand, as we need a single sensor
node to be really cheap, a localization algorithm has to be low
in costs. That is, we prefer algorithms which require fewer
types of equipments on the sensor nodes.

The first idea that comes to mind when talking about
localization is using GPS on each node. However, the problem
with the GPS is that it needs an extra piece of equipment on the
sensor node, which is an expensive one. Furthermore, a GPS
device on a sensor node imposes space issues, which is another

Probabilistic Support Vector Machine Localization in
Wireless Sensor Networks

Reza Samadian and Seyed Majid Noorhosseini

ETRI Journal, Volume 33, Number 6, December 2011 Reza Samadian and Seyed Majid Noorhosseini 925

challenge in WSNs.
Considerable efforts have been made in the field of

localization in WSNs. Proposed methods can be categorized
mainly into two groups: range-based and range-free
localization algorithms. Range-based algorithms (that is, one-
hop approaches) are those which use range measurement
equipment. The methods used for measuring range in these
devices is usually a received signal strength indicator (RSSI),
time of arrival (ToA), time difference of arrival (TDoA), or
angle of arrival (AoA)/direction of arrival (DoA) [2]. Each
node then uses a method like triangulation to localize itself.
Range-free algorithms, in contrast, do not hold any assumption
of existence of any range measurement devices on sensor
nodes. Therefore, range-free techniques, although more
complicated, are better choices if they achieve an acceptable
accuracy.

In this paper, support vector machines (SVMs) will be used
to develop a range-free localization algorithm. Previously, [3]
and [4] proposed to use SVMs for the localization of the sensor
nodes. However, in this study, we will try to improve the
accuracy of localization by means of probabilistic SVMs. As it
will be observed in the following sections, a probabilistic SVM
is more powerful than the simple SVM in this application.
Furthermore, the optional modified mass spring optimization
(MMSO) phase [4] will be replaced with the innovative
attractive/repulsive potential field localization (ARPoFiL)
method so that more accurate results can be achieved.

The rest of this paper is organized as follows. In section II,
SVM localization will be explained and probabilistic SVM
for the localization in lieu of SVM will be proposed. In
section III, the innovative approach for further modification
of nodes’ positions will be introduced. Section IV briefly
reviews the experimental results. Finally, in section V, the
study will be concluded and suggestions will be made for
future research.

II. Support Vector Machine Localization

A common problem in machine learning is classifying data
in a predefined feature space. To be more precise, assume a
feature space of k dimensions and some samples like (Xi, Yi) are
at hand, where Xi and Yi are the feature vector and class label of
the i-th learning sample, respectively. Using this learning set, a
model is to be developed by which, given a new unlabeled
sample (x) from the same feature space, the class that the
sample belongs to can be determined. One of the empirically
best solutions to the classification problem is SVM. SVMs
were first introduced by Cortes and Vapnik [5] with the main
idea to find the equation of a hyper-plane that divides the
feature space such that the margin of the hyper-plane to each

class is maximal. For samples that are not linearly separable,
kernel functions which map samples to a higher dimensional
space are used. Consequently, the classifier becomes nonlinear
and thus, more powerful.

We now briefly review how to obtain SVM function. For
details, refer to [5]. It is assumed that a two-class problem with
labels 1 and −1 and k training samples exist. The class label of
a new sample X is obtained by

[(, *, *)] [(* *)]

[((,) *)].T
i SV i i i

sign f X b sign w X b

sign y K x X b

α

α∈

= +

= ∑ +

(1)

In (1), SV is the set of support vectors. Support vectors of
each class are training samples that are closest to the samples of
the other class in the feature space. The feature vector and class
label for the i-th support vector are xi and yi, respectively. K is a
kernel function. A linear kernel is actually the inner product of
its parameters in a higher dimensional space. Also, αis and b*
are parameters that can be obtained by solving (2) using
quadratic programming techniques and (3), respectively.

1 1 1

1

Maximize ()
1 (,),
2

subject to 0, 0 ,

k k k T
i i j i j i ji i j

k
i i ii

W

y y K x x

y C

α

α α α

α α

= = =

=

= −

= ≤ ≤

∑ ∑ ∑
∑

 (2)

((,) *) 1, 0 .T
i i i ii SV

y y K x X b i kα
∈

+ = ≤ ≤∑ (3)

Generally, SVMs have the nice property of being robust
against noise. They are also powerful in generalization, based
on training sets. In the remainder of this section, the method of
[6], [7], which uses SVMs to localize nodes in a WSN, will be
reviewed briefly and probabilistic SVM will be discussed.

The main procedure of localization using SVMs as is
mentioned in [6], [7] is as follows. Having a wireless sensor
network consisting of N nodes, S1, S2, …, SN, out of which first
k nodes are beacon nodes, deployed in a 2D area [0, D]2, first,
beacon nodes start by broadcasting “Hello” messages across
the network. Then, as each beacon node receives other beacon
nodes’ “Hello” messages, it can determine its hop-count. Next,
each beacon node constitutes a vector of hop-counts to other
beacon nodes, ordered by beacon node IDs. Each beacon node
then sends this vector to the base station, as well as its position
(which is assumed to be known). Then, the base station is all
set up to start the training phase.

Actually, each hop-count vector gathered at the base station
is a training sample with each hop-count being a feature and
the location corresponding to each vector being a class. So, the
base station starts the training phase with k samples of k
dimensions. But as mentioned before, the SVM is used to
classify the samples into two classes, while the value of
location through dimensions, x and y, are continuous.

926 Reza Samadian and Seyed Majid Noorhosseini ETRI Journal, Volume 33, Number 6, December 2011

To overcome this problem, the authors proposed to consider
M−1 classes for each dimension, where M=2m. Then, for
instance in x dimension, a sample belongs to the i-th class if
x≥iD/M. This way, a binary tree can be built for each
dimension such that each tree node is an x dimension class. The
classes will be assigned to the tree nodes such that if the tree is
traversed like left child → parent → right child, the ordered list
of the classes will be obtained: cx1, cx2, …, cxM-1. A test sample
can be classified starting with the root node of the tree. If the
test sample belongs to the class, it will be traversed to the right
child, else, to the left child. The rest can be done in a divide and
conquer manner.

Note that SVM decisions for a test sample are crisp. That is,
each time the SVM decides whether a test sample belongs to a
class or not, it never comes back to that decision. If the decision
made was wrong, there will be an amount of error in the
localization, especially when this wrong decision is made at
one of the very top nodes of the tree. If the way SVM decides
could be altered such that more smooth decisions could be
made, the error could be reduced. This can be done by making
the SVM define a degree of certainty in its decisions.

The idea of probabilistic SVMs was put forth first in [8], [9].
Returning to the definition of SVM, a sign function to convert
the output of the SVM function, f(X, α*, b*), from a real number
to classes 1 or −1 was used. Definitely, f is the equation of the
hyper-plane dividing two classes in the feature space. So it can
be said that the more a test sample is away from the hyper-
plane, the more certain our decision becomes.

The idea behind the probabilistic SVM is to use some
function in lieu of sign function to convert the output of the
SVM function from an unbounded real number to a real
number bounded between 0 and 1. Sigmoid function (that is,
logistic function) has this property. The ordinary sigmoid
function is given by

1() .
1 xP x

e−
=

+
 (4)

The advantage of the sigmoid function is that while the input
approaches ∞, the output of sigmoid function approaches 1,
and while the input approaches −∞, the output of sigmoid
function approaches 0.

Properties of sigmoid function especially fit our demands for
smoothing SVM decisions. If the output of the SVM function
is passed to a sigmoid function, the output of the sigmoid
function will therefore show the certainty of the SVM decision
that the test sample belongs to class 1. Using this fact, all leaf
nodes of the tree can be traversed and the location of a sensor
node based on a weighted sum can be estimated. The modified
recursive localization algorithm through x dimension using
probabilistic SVM is as follows.

Algorithm. X-dimension localization (S, CurrentRoot):
Estimate the X coordinates of sensor S:
1. c = certainty of SVM prediction that S in class cxCurrentRoot.
2. If (cxCurrentRoot is leaf node)

-Return x’(S) = (1–c) × (CurrentRoot – 1/2) × D/M
+ c × (CurrentRoot + 1/2) D/M.

3. Else
- Left-child location = X-dimension localization

(S, left-child of currentRoot).
- Right-child location = X-dimension localization

 (S, right-child of currentRoot).
- Return x’(S) = (1–c) × Left-child location

+ c × Right-child location.
Probabilistic SVM can be further strengthened by defining

variables A and B in the sigmoid function as

()
1[()] .

1 Af X BP f X
e +

=
+

 (5)

An iterative procedure, which is based on maximum
likelihood estimation, to find the optimum values for A and B
has been proposed in [9], [10]. However, during experimental
testing, we noticed that using an artificial neural network
(ANN) for this purpose would generate more accurate values
for A and B in a shorter time. In other words, it converges more
rapidly. ANNs are one of the most reliable techniques used
when it comes to a problem of optimization. The general
procedure is as follows.

Having a set of n training samples labeled {x1,…, xn}, with
target outputs labeled {y1,…,yn}, where yi∈{1, −1} and
i=1,…,n, the network is initialized with random values (usually
0) for the parameters to be optimized (here A and B). These
parameters are considered as the weights of the network inputs.
Each network input is simply an element of the input vector.
Next, inputs are multiplied by their corresponding weights,
being summed up in the destination perceptron, generating a
weighted sum of the inputs. The activation function for the
perceptron is selected such that its output is the target function
for the optimization.

Using the above procedure, the output is calculated for each
training sample as system output. Then according to the margin
between system output and target output, that is, error, the
weights are tuned such that the margin gets smaller. This is
done using “gradient descent” rule which tries to lower error by
altering weights, moving along the steepest descent of the error.
To be more precise, the partial derivative of error against all
weights is set to 0, and the optimal value for each weight is
obtained. A factor, 0<µ<1, called “learning rate” usually
impacts the amount of weight tuning during each iteration.

In our case, we used a simple single-perceptron neural
network architecture which is depicted in Fig. 1. We also used
weights W1 and W2 in place of parameters A and B and the

ETRI Journal, Volume 33, Number 6, December 2011 Reza Samadian and Seyed Majid Noorhosseini 927

Fig. 1. ANN architecture for finding parameters of probabilistic
SVM, A and B.

W2(=B)

1

f(X)
W1(=A)

1 2

1
()1

P W f X We
=

++

sigmoid function was used for the perceptron’s activation
function. By applying f(X) and the constant integer 1 as the
inputs to the network, the final system output P is calculated
as is shown in the figure. Note that the system output is
analogous to the probabilistic SVM’s sigmoid function
except that the parameters A and B are replaced by weights
W1 and W2. The sigmoid function has the nice property that
P′(f(X))=P(f(X))(1− P(f(X)). The expected output for a training
sample is 1 (a probability of 100%) when it belongs to class 1,
and is 0 (a probability of 0%) when it belongs to class −1. The
gradient descent rule used for altering weights after calculating
system output for each sample is

1 1 s s s t

2 2 s s s t

(1)() (),
(1)(),

W W O O O O f X
W W O O O O

μ
μ

= + − −⎧
⎨ = + − −⎩

 (6)

where W1 and W2 are the weights to be learned (or A and B,
respectively), µ is the learning rate (=0.9 in our case), and Os
and Ot are system output and target output, respectively.

Using the training samples for the SVM, this neural network
was trained during the training phase of the network and the
optimized parameters A and B were obtained. Results showed
that with the use of A and B obtained by the ANN approach,
the final P[f(X)] for training samples belonging to class 1 was
nearly 1 (for example, 99.98%) and for training samples
belonging to class −1 was nearly 0 (for example, 0.01%) which
means that almost the optimum A and B were in hand. In
comparison, although the maximum likelihood method
converges in each iteration, it finally returns parameters A and
B which in practice, leads to less accurate results (for example,
0.8 to 0.9 and 0.1 to 0.2 for samples belonging to class 1 and
−1, respectively). Therefore, we preferred to use ANN instead
of the maximum likelihood approach.

III. Improving Accuracy: ARPoFiL Method

After the localization phase in each node, there is still room
for improving the location estimates. For this purpose, each
node sends its estimated position as well as its neighbor nodes’
IDs to the base station. Then, the base station can gently

modify sensor locations such that in the estimated locations
model, neighborhood information still matches.

For this purpose, [11] has proposed the use of mass spring
optimization (MSO) phase in the base station. The main idea
behind MSO is that each node is considered a mass and each
link to its neighbors is considered a spring. So, the node has to
be stopped at a place where the resultant force of the springs is
equal to zero. The energy of the system to be minimized is the
sum of the energies in all nodes. So, the minimization of the
nodes’ energies is the goal, which is given by

2
est trueneighbor

() [(,) (,)] .
j

i i j i jS
E S dist S S dist S S= −∑ (7)

In (7), distest(Si, Sj) and disttrue(Si, Sj) are the estimated distance
and true distance between nodes Si and Sj, respectively. The
resultant force on each node is then the vector sum of the force
vectors of its neighbors which is given by

est true(,) [(,) (,)] (,),i j i j i j i jf S S dist S S dist S S u S S= − × (8)

where the vector u(Si, Sj) is the unit vector from node Si to Sj.
Therefore, if a node’s estimated distance to its neighbor is more
than the true distance, a positive force towards that neighbor is
impressed. The resultant force on node Si which is the vector
sum of the force vectors of neighbors is given by

neighbor

() (,).
j

i i jS
F S f S S= ∑ (9)

Using the definitions above, a number of iterations are
performed on all of the nodes. In each iteration and on each
node, the energy and the resultant force of the node are
calculated according to (7) and (9), respectively. Then the node
is moved gently towards the resultant force vector by αiF(Si). αi
is recommended to be set to 1/2mi where mi is the number of
neighbors of the node Si [11]. If the energy in this configuration
is lower than the one in the previous configuration, the new
position for the node is accepted.

To modify this approach, the authors of [6] proposed to
replace disttrue with r which is the transmission range of any
node, assuming all the nodes have the same transmission range.
MMSO works fine and reduces the amount of error of SVM as
shown in experimental results of [6], as well as our
experiments (section V). However, we are going to use another
fact about the nodes as well. MMSO successfully uses
neighborhood information of the nodes. We are proposing to
additionally use non-neighborhood information. In other words,
not only does a node have to be in the transmission range of its
neighbors, it has to be outside the transmission range of its non-
neighbors.

Consider the problem of navigation in the robots. The
problem is that a robot is placed somewhere in a field with
obstacles, aiming to reach a goal point without hitting the
obstacles. A method called attractive/repulsive potential field

928 Reza Samadian and Seyed Majid Noorhosseini ETRI Journal, Volume 33, Number 6, December 2011

has been proposed for this problem [12], [13]. The idea of this
solution is simply to consider the robot and obstacles as
positive potential fields and the goal point as a negative
potential field. The robot is attracted by the goal and repulsed
by the obstacles. The more the robot is near an obstacle, the
more force repulses it from that obstacle. We used this idea for
our sensor localization problem. In fact, ARPoFiL stands for
attractive/repulsive potential field localization.

To implement this, the equations of the MMSO are modified
to use non-neighborhood information as well as neighborhood
information. Note that energy in (7) is a measure of how
accurate the current location of a node is. To modify it, an
expression should be added such that if a node is in the
neighborhood of one of its real non-neighbors, the energy
increases. The energy turned out to be somehow the amount of
error. So (7) was modified in a way that the energy of a node is
the sum of the energy for neighbors located outside the
transmission range, as well as non-neighbors located inside the
transmission range of the node itself. The modified energy of
node Si is

est

est

2
estneighbor : (,)

2
estnon-neighbor : (,)

() [(,)]

[(,)] .

j i j

k i k

i i jS dist S S r

i kS dist S S r

E S dist S S r

dist S S r

>

<

= −

+ −

∑
∑ (10)

Equation (8) does not necessarily have to be changed. Since
the force of a non-neighbor node located inside the
transmission range of the node will be negative, it will cause
the node to be repulsed from that non-neighbor node. Equation
(9) will also be modified such that the resultant force on a node
will be the vector sum of the force caused by neighbors located
outside the transmission range (attraction) and non-neighbors
located inside the transmission range of the node (repulsion):

est

est

non-neighbor : (,)

neighbor : (,)

() (,)

(,).
k i k

j i j

i i kS dist S S r

i jS dist S S r

F S f S S

f S S

<

>

=

+

∑
∑

 (11)

In many respects, the idea of ARPoFiL is similar to that of
robot navigation. If you consider a node as a robot, then non-
neighbor nodes which are inside the transmission range of that
node are obstacles (generating repulsive potential field), and
neighbor nodes outside that node’s transmission range are goal
points (generating attractive potential field). In the next section,
the performance of our method versus current SVM and
MMSO method will be experimentally compared.

IV. Experimental Results and Simulation Study

To further show that our proposed method outperforms the
current method, results were double checked by simulating
both methods in dense and sparse networks. We simulated

WSN on java platform using the Lib-SVM package for SVM.
Note that authors in [6], [7] used RBF kernel for SVM because
of its empirical effectiveness. The linear kernel was tried for
SVM and as will be seen, works better than the RBF kernel.
The results of the simulation study show this in comparison to
the results in [6], [7].

The dense network was a 100 m × 100 m field with 1,000
sensor nodes, while a 50 m × 50 m network with 100 sensor
nodes represented the sparse network in our simulation. The
performance of both approaches in different populations of
beacon nodes was also checked at 5%, 10%, 15%, 20%, and
25%. Furthermore, the transmission range is shown to be
effective in the amount of error [6], [7]. So both 7 m and 10 m
transmission ranges for the nodes were tested.

One of the challenges in real environments while deploying
sensor networks are coverage holes, which cause most
localization algorithms to suffer from inaccuracy. The proposed
algorithm and the existing one were tested to compare their
ability in modeling the coverage holes. Two configurations for
the network with circle-shaped coverage holes were assumed:
one with a coverage hole at the center of the field and radius
D/6 and one with 5 coverage holes. One was at the center, the
same as the previous case, and 4 at corners of the field with
radius D/12 and a margin of D/5 to the nearest edges of the
field. A similar configuration is assumed in [6].

Because the number of SVs and classification accuracy do
not differ in SVM and probabilistic SVM, they will be omitted
here. The total number of SVs in [6] is not very high, which is
also true in our study. The small number of support vectors
shows that there will be a small amount of computations
needed at the base station as well as a small amount of
information for the learnt model being transferred. On the other
hand, classification accuracy as is shown in [6] increases with
the beacon population. Parameter M, which is the number of
classes in each dimension, was set to 128 for the dense network,
and half the value, that is, 64, for the sparse network. These
values were directly obtained from what the authors proposed
in [6].

Mean location error, or the average displacement of the
nodes from their true location, is shown in Table 1, in the dense
network and 0 coverage holes under various configurations and
different approaches. Also, Tables 2 and 3 show the location
errors with 1 and 5 coverage holes in the dense network,
respectively. As a general rule, when beacon population
increases, the average location error reduces as was expected.

The other important point is that both of the methods
perform better in longer transmission ranges. This is because
SVM generally works better in dense networks.

Figures 2, 3, and 4 show the average location error for all of
the methods in a dense network under different beacon

ETRI Journal, Volume 33, Number 6, December 2011 Reza Samadian and Seyed Majid Noorhosseini 929

Table 1. Average location error (min/avg./max) for dense network with 0 coverage holes in different configurations.

Average location error Beacon population

Parameter settings 5% 10% 15% 20% 25%

LSVM 0.125/4.813/26.294 0.095/3.132/15.414 0.087/2.674/13.422 0.081/2.31/11.507 0.056/2.234/10.255

P-SVM 0.127/4.657/25.497 0.102/3.116/14.974 0.079/2.663/13.253 0.069/2.3/11.478 0.066/2.234/10.255

LSVM-MMSO 0.075/3.054/14.52 0.05/2.132/10.915 0.056/1.88/10.862 0.057/1.701/8.738 0.061/1.65/8.362
r = 7 m

PSVM-ARPoFiL 0.05/2.712/15.572 0.065/1.859/9.151 0.062/1.632/9.499 0.038/1.453/7.858 0.039/1.403/6.274

LSVM 0.16/4.62/22.469 0.071/3.171/15.332 0.085/2.481/10.969 0.078/2.269/9.305 0.072/2.087/9.214

PSVM 0.174/4.445/20.855 0.081/3.128/15.231 0.083/2.463/10.908 0.071/2.262/8.98 0.069/2.091/9.125

LSVM-MMSO 0.057/2.72/13.978 0.047/1.979/11.275 0.049/1.641/8.002 0.041/1.603/7.466 0.04/1.51/7.261
r = 10 m

PSVM-ARPoFiL 0.076/2.34/9.678 0.048/1.593/7.883 0.037/1.295/5.41 0.056/1.218/5.163 0.038/1.148/4.647

(m)

Table 2. Average location error (min/avg./max) for dense network with 1 coverage hole in different configurations.

Average location error Beacon population

Parameter settings 5% 10% 15% 20% 25%

LSVM 0.131/4.619/19.17 0.095/3.512/15.586 0.07/2.868/12.78 0.053/2.464/9.453 0.077/2.302/9.815
P-SVM 0.109/4.47/18.619 0.094/3.481/15.211 0.068/2.86/12.615 0.053/2.453/9.874 0.079/2.301/9.839

LSVM-MMSO 0.04/3.061/13.424 0.064/2.41/11.295 0.052/2.016/9.62 0.05/1.768/7.7 0.063/1.712/8.794
r = 7 m

P-SVM-ARPoFiL 0.082/2.586/10.127 0.077/2.032/9.692 0.059/1.688/9.035 0.046/1.471/6.027 0.052/1.418/6.829

LSVM 0.104/4.932/23.03 0.086/3.291/14.646 0.094/2.654/9.864 0.047/2.433/9.439 0.068/2.22/8.864
P-SVM 0.14/4.758/21.467 0.093/3.261/13.983 0.109/2.641/9.722 0.044/2.425/9.491 0.068/2.218/8.776

LSVM-MMSO 0.045/2.848/13.066 0.054/2.093/9.964 0.061/1.769/7.412 0.034/1.662/7.677 0.048/1.59/7.248
r = 10 m

P-SVM-ARPoFiL 0.053/2.299/10.034 0.051/1.581/6.153 0.045/1.306/4.821 0.041/1.234/4.662 0.039/1.17/4.689

(m)

Table 3. Average location error (min/avg./max) for dense network with 5 coverage holes in different configurations.

Average location error Beacon population

Parameter settings 5% 10% 15% 20% 25%

LSVM 0.123/5.064/23.169 0.084/3.544/16.317 0.088/2.914/12.499 0.07/2.567/10.596 0.059/2.407/10.159

P-SVM 0.096/4.907/21.913 0.084/3.524/16.269 0.087/2.904/12.525 0.068/2.566/10.64 0.059/2.403/9.596

LSVM-MMSO 0.062/3.338/16.602 0.087/2.47/11.131 0.063/2.068/10.353 0.054/1.859/8.69 0.054/1.791/8.386
r = 7 m

P-SVM-ARPoFiL 0.059/2.935/14.797 0.059/2.06/9.419 0.041/1.698/8.515 0.048/1.507/7.905 0.047/1.454/7.13
LSVM 0.118/5.277/25.706 0.117/3.345/13.378 0.082/2.829/10.77 0.092/2.484/9.666 0.072/2.301/8.732
P-SVM 0.141/5.079/23.739 0.127/3.321/13.242 0.062/2.831/10.731 0.078/2.488/9.707 0.071/2.302/8.624

LSVM-MMSO 0.089/3.36/18.116 0.055/2.196/9.523 0.049/1.936/7.337 0.046/1.782/7.569 0.049/1.71/7.022
r = 10 m

P-SVM-ARPoFiL 0.076/2.739/14.603 0.051/1.694/7.146 0.055/1.445/5.546 0.044/1.292/5.01 0.056/1.247/5.268

(m)

populations and transmission ranges with 0, 1, and 5 coverage
holes, respectively. According to the figures, it is obvious that
PSVM-ARPoFiL completely outperforms SVM-MMSO.
However, SVM and probabilistic SVM are almost the same.
We will see that PSVM works more accurately in sparse
networks.

Note that when a coverage hole appears, the existing method
encounters incremental rise in error, while the proposed
method experiences almost no changes in error. This matter
however, when 5 coverage holes are added, influences both
approaches. Nevertheless, the proposed approach suffers from
a smaller amount of error.

930 Reza Samadian and Seyed Majid Noorhosseini ETRI Journal, Volume 33, Number 6, December 2011

Fig. 2. Average location error for dense network with 0 coverage holes: (a) r = 7 m and (b) r = 10 m.

5 10 15 20 25

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)
100m×100m, 1,000 sensors

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

5 10 15 20 25

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

100m×100m, 1,000 sensors

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

(a) (b)

Fig. 3. Average location error for dense network with 1 coverage hole: (a) r = 7 m and (b) r = 10 m.

5 10 15 20 25

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

100m×100m, 1,000 sensors

5 10 15 20 25

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

100m×100m, 1,000 sensors

(a) (b)

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

Fig. 4. Average location error for dense network with 5 coverage holes: (a) r = 7 m and (b) r = 10 m.

5 10 15 20 25

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

100m×100m, 1,000 sensors

5 10 15 20 25
Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

100m×100m, 1,000 sensors

(a) (b)

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

5.5
LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

From the discussion above, it can be said that the proposed

method works better in rough environments where there exist
coverage holes. Actually, the method successfully models the
coverage holes in the learning phase. This matter is of a major

ETRI Journal, Volume 33, Number 6, December 2011 Reza Samadian and Seyed Majid Noorhosseini 931

Table 4. Average location error (min/avg./max) for sparse network with 0 coverage holes in different configurations.

Average location error Beacon population

Parameter settings 5% 10% 15% 20% 25%

LSVM 1.112/13.671/38.175 0.928/9.452/33.118 0.552/6.308/22.634 0.512/6.022/21.632 0.535/5.089/22.076

P-SVM 0.656/12.309/36.109 0.658/8.566/31.483 0.509/5.654/20.041 0.421/5.398/19.138 0.476/4.701/20.914

LSVM-MMSO 0.871/12.227/36.445 0.561/8.11/27.9 0.398/5.224/19.978 0.355/5.039/19.024 0.35/3.908/13.1
r = 7 m

P-SVM-ARPoFiL 0.675/10.375/32.315 0.377/6.952/28.971 0.398/4.394/20.978 0.308/3.989/18.434 0.246/3.103/13.043

LSVM 1.093/11.802/33.445 0.49/7.002/20.976 0.423/6.036/20.103 0.444/5.566/20.107 0.551/4.518/13.82

P-SVM 0.683/10.508/29.907 0.603/5.768/18.606 0.334/5.418/18.212 0.342/4.922/18.013 0.465/4.19/12.418

LSVM-MMSO 0.838/9.7/28.853 0.348/5.359/18.19 0.212/4.869/18.513 0.256/4.214/15.392 0.354/3.552/11.244
r = 10 m

P-SVM-ARPoFiL 0.483/6.922/23.711 0.255/3.239/12.181 0.199/3.059/13.292 0.194/2.772/13.145 0.238/2.306/7.74

(m)

Table 5. Average location error (min/avg./max) for sparse network with 1 coverage hole in different configurations.

Average location error Beacon population

Parameter settings 5% 10% 15% 20% 25%

LSVM 0.881/13.707/40.163 0.659/10.603/30.513 0.717/6.724/21.466 0.507/5.857/24.937 0.498/5.78/21.867

P-SVM 0.84/12.501/36.032 0.44/9.766/29.234 0.428/6.09/20.93 0.414/5.303/23.455 0.318/5.536/21.089

LSVM-MMSO 0.754/11.921/35.211 0.479/9.493/29.427 0.468/5.488/18.304 0.238/4.814/21.009 0.501/4.757/19.554
r = 7 m

P-SVM-ARPoFiL 0.779/11.047/36.525 0.416/8.632/29.305 0.284/4.702/20.405 0.248/3.976/21.968 0.296/3.924/19.208

LSVM 0.64/11.609/31.09 0.748/7.679/22.682 0.708/6.213/21.382 0.451/5.189/18.785 0.531/4.706/15.514

P-SVM 0.61/10.276/27.905 0.523/6.221/19.402 0.467/5.143/18.93 0.524/4.626/16.661 0.469/4.327/14.82

LSVM-MMSO 0.582/9.393/24.455 0.523/5.875/19.025 0.397/4.807/17.376 0.364/4.154/14.805 0.41/3.683/12.885
r = 10 m

P-SVM-ARPoFiL 0.655/6.97/24.432 0.329/3.66/13.355 0.299/2.907/12.212 0.222/2.834/13.87 0.281/2.423/11.453

(m)

Table 6. Average location error (min/avg./max) for sparse network with 5 coverage holes in different configurations.

Average location error Beacon population

Parameter settings 5% 10% 15% 20% 25%

LSVM 1.402/14.963/35.887 0.674/9.377/29.186 0.534/7.013/26.749 0.56/6.178/23.084 0.367/5.787/27.44

P-SVM 1.205/13.543/33.28 0.564/8.258/25.736 0.576/6.424/25.758 0.523/5.695/22.529 0.273/5.476/27.052

LSVM-MMSO 0.952/13.409/34.648 0.557/8.236/28.251 0.467/5.945/21.836 0.468/5.248/20.443 0.294/4.706/22.876
r = 7 m

P-SVM-ARPoFiL 0.714/11.912/34.373 0.436/6.775/26.193 0.437/5.205/23.146 0.263/4.686/21.262 0.3/4.322/23.852
LSVM 0.908/12.33/32.296 0.78/7.74/22.805 0.677/6.265/20.492 0.447/5.158/18.225 0.375/4.53/14.798

P-SVM 0.799/10.7/29.77 0.564/6.449/20.24 0.489/5.237/18.527 0.361/4.525/16.626 0.388/4.272/15.121

LSVM-MMSO 0.696/9.842/27.209 0.349/5.744/18.692 0.502/4.72/16.198 0.335/3.929/14.319 0.335/3.489/12.231
r = 10 m

P-SVM-ARPoFiL 0.682/8.165/27.386 0.339/3.894/14.83 0.329/3.105/13.04 0.268/2.588/11.613 0.24/2.478/10.08

(m)

importance to us because sensor networks are mostly deployed
in rough areas that cause coverage holes to appear in the
architecture of the network.

On the other hand, Tables 4, 5, and 6 show the location error
for the sparse network with 0, 1, and 5 coverage holes,
respectively. Note that the total error in comparison with the

dense network is increased.
As previously mentioned, this increase is due to the fact that

SVM generally works better in dense networks. We may
consider this as a draw-back of the SVM based method.
Furthermore, when the network is dense, more neighbors are
available, and that means more neighborhood and non-

932 Reza Samadian and Seyed Majid Noorhosseini ETRI Journal, Volume 33, Number 6, December 2011

Fig. 5. Average location error for sparse network with 0 coverage holes: (a) r = 7 m and (b) r = 10 m.

5 10 15 20 25

12

10

8

6

4

2

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)
50m×50m, 100 sensors

5 10 15 20 25
Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

50m×50m, 100 sensors

(a) (b)

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

14

11

10

9

8

7

6

5

3

2

12

4

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

Fig. 6. Average location error for sparse network with 1 coverage hole: (a) r = 7 m and (b) r = 10 m.

5 10 15 20 25

12

10

8

6

4

2

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

50m×50m, 100 sensors

5 10 15 20 25
Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

50m×50m, 100 sensors

(a) (b)

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

14

11

10

9

8

7

6

5

3

2

12

4

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

Fig. 7. Average location error for sparse network with 5 coverage holes: (a) r = 7 m and (b) r = 10 m

5 10 15 20 25

14

12

10

8

6

4

Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

50m×50m, 100 sensors

5 10 15 20 25
Beacon population (%)

Lo
ca

liz
at

io
n

er
ro

r (
m

)

50m×50m, 100 sensors

(a) (b)

LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

16
LSVM
P-SVM
LSVM-MMSO
P-SVM-ARPoFiL

12

10

8

6

4

2

14

neighborhood information, which is why both MMSO and
ARPoFiL perform better in dense networks.

Figures 5, 6, and 7 show the location error for the sparse
network under different beacon populations and different

ETRI Journal, Volume 33, Number 6, December 2011 Reza Samadian and Seyed Majid Noorhosseini 933

transmission ranges for all of the methods for 0, 1, and 5
coverage holes, respectively. Here, the point is that PSVM
works much better than SVM, and in some cases, it is
comparable to SVM-MMSO (r = 7 m, 5% beacon).

For the dense network and from Figs. 3 to 5, it can be said
that increasing the beacon node population results in reduction
in the mean location error. However, this error reduction is
significant, up to a beacon population of 10% to 15%.

As the beacon nodes are more expensive than normal sensor
nodes and impose more restrictions, a small beacon population
in a localization algorithm is preferred. However, a trade-off
exists between the beacon population and the amount of error.
So it seems that a beacon population of 10% to 15% is
adequate both in error and cost for a dense network.

On the other hand, for all of the sparse networks except the
case when there are no coverage holes and r = 10 m, the above
statement is true. In the case of no coverage holes and r = 10 m,
it seems the adequate beacon population is about 10%.

V. Conclusion

We have shown that probabilistic SVM works more
accurately than the ordinary SVM in the problem of
localization in sensor networks. Furthermore, the initiated
method of ARPoFiL modifies the location of the sensors with
more accurate results than MMSO. Both algorithms work in a
centralized manner.

One can argue that although the proposed approach works
more accurately than the existing one, it has more
computational costs. For example, take the SVM phase. In
LSVM, each node localizes itself using a binary tree and with
an order of log(M). However, in probabilistic SVM, each node
has to go through all nodes of the tree, using all models learnt
to localize itself. As a solution, the procedure of localization
can be modified so that this computational cost incurs on the
base station. Instead of sensor nodes sending their
neighborhood information to the base station after the
localization phase, they can send this information as well as
their hop-counts to beacon nodes, before the localization phase.
Then, the base station can do the math itself. This way, there is
no need for the base station to broadcast the learnt models.

Another issue that impacts the computational cost is that the
ARPoFiL method modifies each node’s location based on
more nodes (non-neighbors as well as neighbors) in
comparison to MMSO. However, that should not be a real
concern because these computations, as said before, are done at
the base station, which we assume has an unlimited power
source and is powerful enough.

The proposed method may be improved by changing the
learning mechanism. An ANN instead of an SVM may

improve the localization. Furthermore, classes can be defined
in other ways. Currently, each dimension has its own class
definitions, while the feature vector used, hop-counts to beacon
nodes, is based on both directions. The localization may be
improved by defining classes in a way that considers an area,
for instance, coin-shaped classes, as [14], [15] defined.
However, to cover the whole sensor field, many of these
classes are needed, and this leads to more computational costs
in the learning phase. Also, classes can be defined such that the
sensor field is divided into four similar squares each time.
However, this way, SVM needs to work with 4 classes, which
has its own difficulties. We plan to cope with this in the future.

From this study, it can be concluded that our method is more
suitable for localization than the existing one in all networks,
especially sparse ones and those deployed in rough
environments leading to coverage holes. Not only was the
localization improved with our proposed method, our results
for LSVM in comparison to results in [6] and [7], show that it
was also improved with the use of linear kernels instead of
RBF kernel for the SVM.

Generally, the SVM-based method is suitable when
restrictions on the costs and the equipments needed to deploy
the sensor network exist. In fact, the SVM-based method, and
especially our proposed method, makes use of a small amount
of information to localize nodes, and this is done successfully
and with the minimal amount of error.

References

[1] K. Roemer and F. Mattern, “The Design Space of Wireless Sensor
Networks,” IEEE Wireless Commun., vol. 11, no. 6, Dec. 2004,
pp. 54-61.

[2] L.M. Pestana Leao de Brito and L.M. Rodríguez Peralta, “An
Analysis of Localization Problems and Solutions in Wireless
Sensor Networks,” Polytechnical Studies Rev., vol. 6, no. 9, 2008.

[3] V. Ramadurai and M.L. Sichitiu, “Localization in Wireless Sensor
Networks: A Probabilistic Approach,” Proc. Int. Conf. Wireless
Netw., Las Vegas, NV, June 2003, pp. 275-281.

[4] A.A. Kannan, G. Mao, and B. Vucetic, “Simulated Annealing
Based Wireless Sensor Network Localization,” J. Comput., vol. 1,
no. 2, 2006, pp. 15-22.

[5] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach.
Learning, vol. 20, no. 3, Sept. 1995, pp. 273-297.

[6] D.A. Tran and T. Nguyen, “Localization in Wireless Sensor
Networks Based on Support Vector Machines,” IEEE Trans.
Parallel Distributed Syst., vol. 19, no. 7, July 2008, pp. 981-994.

[7] D.A. Tran and T. Nguyen, “Support Vector Classification
Strategies for Localization in Sensor Networks,” Proc. IEEE Int.
Conf. Commun. Electron., 2006.

[8] A. Madevska-Bogdanova, D. Nikolik, and L.M.G. Curfs,

934 Reza Samadian and Seyed Majid Noorhosseini ETRI Journal, Volume 33, Number 6, December 2011

“Probabilistic SVM Outputs for Pattern Recognition Using
Analytical Geometry,” Neurocomput., vol. 62, Dec. 2004, pp.
293-303.

[9] J.C. Platt, “Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods,” Advances in
Large Margin Classifiers, A.J. Smola et al., Eds., MIT Press,
1999, pp. 61-74.

[10] H. Lin, C. Lin, and R.C. Weng, “A Note on Platt’s Probabilistic
Outputs for Support Vector Machines,” Mach. Learning, vol. 68,
no. 3, Oct. 2007, pp. 267-276.

[11] N.B. Priyantha et al., “Anchor-Free Distributed Localization in
Sensor Networks,” Proc. 1st Int. Conf. Embedded Netw. Sensor
Syst. LA, CA, 2003, pp. 340-341.

[12] Y. Koren and J. Borenstein, “Potential Field Methods and Their
Inherent Limitations for Mobile Robot Navigation,” IEEE Int.
Conf. Robot. Autom., vol. 2, Sacramento, CA, 1991, pp. 1398-
1404.

[13] G. Luh and W. Liu, “Dynamic Mobile Robot Navigation Using
Potential Field Based Immune Network,”10th World Multi-Conf.
Syst., Cybern., Inf., vol. 2, July 2006, pp. 246-251.

[14] X. Nguyen, M.I. Jordan, and B. Sinopoli, “A Kernel-Based
Learning Approach to Ad Hoc Sensor Network Localization,”
ACM Trans. Sensor Netw., vol. 1, no. 1, Aug. 2005, pp. 134-152.

[15] D.A. Tran, X. Nguyen, and T. Nguyen, “Learning Techniques for
Localization in Wireless Sensor Networks,” Localization
Algorithms and Strategies for Wireless Sensor Networks:
Monitoring and Surveillance Techniques for Target Tracking,
2008.

Reza Samadian received his BSc in software
engineering from Qazvin Azad University, Iran,
in 2007. In 2010, he received his MSc in
artificial intelligence from Amirkabir University
of Technology, Iran. He has been working as a
researcher in the Real Time Intelligent Systems
Laboratory, at the Department of Computer

Engineering and IT, Amirkabir University of Technology. His fields of
interests include machine learning, evolutionary computing, and
pattern recognition.

Seyed Majid Noorhosseini received his BSc
and MSc from Amirkabir University of
Technology, Iran, in 1986 and 1989,
respectively. He received his PhD from McGill
University in Montreal, Canada, in 1994. He
was a senior scientist at Nortel Networks, in
Canada and the U.S during 1996 to 2005,

working in different areas of network management. He holds US
patent 6707795 in alarm correlation methods and systems. He is now
with the Department of Computer Engineering and Information
Technology at Amirkabir University of Technology. He is also serving
as the deputy researcher at Iran Telecommunication Research Center
(ITRC).

	I. Introduction
	II. Support Vector Machine Localization
	III. Improving Accuracy: ARPoFiL Method
	IV. Experimental Results and Simulation Study
	V. Conclusion
	References

