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Abstract

Background: The present studies evaluated the effects of cryoprotectants, the vitrification procedure and time in
the warming solution containing sucrose on cleavage and embryo development of immature (GV stage) bovine
cumulus-oocyte complexes (COCs).

Methods: Two experiments were conducted. In Experiment 1, COCs (n = 420) were randomly assigned to four
groups: 1) Control group: no treatment; 2) VS1 group: COCs were exposed to vitrification solution 1 (VS1)
containing 7.5% ethylene glycol [EG] + 7.5% dimethyl sulfoxide [DMSO] + 20% calf serum [CS] in TCM-199 at 37 C
for 5 min; 3) VS1 + VS2 group: COCs were exposed to VS1 for 5 min followed by VS2 (15% EG+ 15% DMSO+ 17.1%
sucrose + 20% CS) at 37 C for 45–60 sec; and 4) Vitrified group: COCs were exposed to VS1 and VS2, loaded on
cryotops, vitrified in liquid nitrogen and then warmed in TCM-199 + 17.1% sucrose + 20% CS at 37 C for 1 min.
In Experiment 2, COCs (n = 581) were assigned to the same groups, but those in VS1, VS1 + VS2 and Vitrified groups
were sub-divided and exposed to the warming solution for either 1 or 5 min. After treatment and/or warming,
all COCs in both experiments underwent in vitro maturation, in vitro fertilization and in vitro culture.

Results: Cleavage and blastocyst rates did not differ among Control, VS1 and VS1 + VS2 groups in either
experiment. In Experiment 2, there was no effect of time in the warming solution.
However, both cleavage and blastocyst rates were lower (P< 0.001) in the Vitrified group than in the Control,
VS1 and VS1 + VS2 groups (40.9 and 1.6% vs 92.2 and 34.4%, 79.4 and 25.2%, and 80.2 and 20.8%, respectively
in Experiment 1, and 25.0 and 1.7% vs 75.3 and 27.2%, 67.9 and 19.5%, and 62.7 and 22.5%, respectively
in Experiment 2).

Conclusions: The permeating cryoprotectants (EG and DMSO) present in VS1 and VS2 solutions and the time in
the warming solution containing sucrose had no adverse effects on cleavage and blastocyst rates of immature
bovine COCs. However, cleavage rate and early embryo development were reduced following the vitrification
and warming.
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Background
Development of a reliable method for the cryopreserva-
tion of oocytes is important for assisted reproduction in
human fertility clinics [1] and for conservation of female
animal genetic resources [2-4]. Oocyte cryopreservation
has been performed in several mammalian species; how-
ever, success rates have been low due to oocytes’ unique
structure and sensitivity to cooling [5]. Slow freezing
and vitrification are two common methods of cryo-
preservation for mammalian oocytes and embryos. In
conventional, slow (controlled) freezing, cells dehydrate
because of increased salt concentrations in the extracel-
lular compartment resulting in a reduced likelihood of
intracellular ice formation, but this results in increased
intracellular salt concentrations referred to as the “solu-
tion effect” which can also cause cell damage [6]. Alter-
nately, vitrification exposes cells to relatively high
concentrations of cryoprotectants and ultra-rapid cool-
ing [7]. Vitrification is used to avoid chilling injury and
ice crystal formation in the cryopreservation of tissue,
embryos and oocytes [8-10]. Although vitrification does
not require a sophisticated and expensive programmable
cell freezer, and is a fairly quick procedure, it requires
skill and experience.
Vitrification involves ultra-rapid cooling and results in

glass formation due to high viscosity of the cryoprotec-
tants in intra- and extra-cellular compartments [11,12].
Although mouse oocytes have been vitrified successfully
[13], vitrification of bovine oocytes is challenging due to
their complex structure and sensitivity to chilling [14].
Previously, we examined the effect of vitrification of
bovine oocytes on nuclear maturation, cleavage and
blastocyst development [15] and found that vitrified
oocytes had reduced embryo developmental compe-
tence, as indicated by low blastocyst production rates
(<5%) compared to non-vitrified controls (31%).
One of the biophysical factors causing cellular disrup-

tion during cryopreservation is intracellular ice formation.
However, vitrification reduces or eliminates intracellular
ice formation by using highly viscous cryoprotectant solu-
tions at relatively high concentrations [12,16]. Ethylene
glycol, propylene glycol, glycerol and dimethyl sulfoxide
[17] are used as permeating cryoprotectants for oocyte
vitrification. Despite the critical importance of cryopro-
tectants for avoiding ice crystal formation in oocytes, the
high concentration of cryoprotectants required for vitrifi-
cation may be toxic and may cause osmotic injury to
the cells, leading to reduced developmental competence
[11,18]. To investigate the reduced developmental com-
petence of oocytes following vitrification, it is important
to examine the individual components of the vitrification
system. Therefore, we proposed to determine the role
of high concentrations of cryoprotectants present in
vitrification solutions on cleavage rate of vitrified bovine
oocytes and subsequent embryo development.
Warming time is a function of the temperature of the

warming solution, and the sample volume and thickness
which affects heat transfer. During the warming process,
the oocytes are brought to the same temperature as the
warming solution at an extremely high rate. The expos-
ure to the warming solution is essential not only for
warming, but also for removing cryoprotectants and
rehydrating the oocytes [19]. Oocyte swelling during
warming is an important determining factor for survival
as volume fluctuations affect the plasma membrane in-
tegrity and organization of the cytoskeleton [20]. When
exposed to an isotonic solution directly, water diffuses
into the cell more rapidly than the cryoprotectants flow
out and osmotic swelling can occur beyond the volume
limits of the oocyte, resulting in membrane damage [21].
Thus, the warming solution normally contains a nonper-
meating cryoprotectant such as sucrose [22,23]. If the
time in the warming solution is insufficient, cryopro-
tectants may not be completely removed; however,
the appropriate time interval for vitrified oocytes in
the warming solution is still unclear. With this back-
ground, we hypothesized that 1) the high concentra-
tions of cryoprotectants used in vitrification procedures
would have toxic effects on bovine cumulus-oocyte com-
plexes (COCs), resulting in low cleavage and embryonic
developmental rates, and 2) exposing vitrified COCs to
the warming solution containing sucrose for a longer
interval would improve cleavage and blastocyst pro-
duction rates by permitting the complete removal of
intracellular cryoprotectants. Therefore, the present
studies aimed to investigate the effects of the exposure
of bovine COCs to vitrification solutions, the vitrifica-
tion procedure, and time in the warming solution on
cleavage and subsequent embryo development following
in vitro fertilization.
Methods
This study was approved by the Animal Care Com-
mittee and Animal Research Ethics Board, University of
Saskatchewan, Saskatoon, Canada.
Chemicals and supplies
Dulbecco’s phosphate buffered saline (DPBS), newborn calf
serum (CS), TCM-199 and MEM non-essential amino acids
were purchased from Invitrogen Inc. (Burlington, ON,
Canada). Lutropin-V (LH) and Folltropin-V (FSH) were
supplied by Bioniche Animal Health Inc. (Belleville, ON,
Canada). Unless otherwise stated, all other chemicals and
reagents were purchased from Sigma-Aldrich (Oakville,
ON, Canada).
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Collection and initial processing of COCs
Bovine ovaries were collected from a slaughterhouse and
transported to the laboratory at approximately 25°C
within 8 h. Ovaries were washed in 0.15 M NaCl and
extra-ovarian tissues were removed. The immature COCs
at the germinal vesicle (GV) stage were aspirated from
follicles (3–8 mm in diameter) using an 18-gauge needle
attached to a 5 ml syringe containing approximately
1.0 ml of DPBS supplemented with 5% CS (v/v). The aspi-
rated follicular fluid was pooled in 50 ml conical tubes
and allowed to settle. The COCs were located under a
stereomicroscope at 10x magnification, washed 3 times
in DPBS+5% CS and those with more than three layers
of compacted cumulus cells and uniform cytoplasm
(Grade 1) were selected for further processing.

Vitrification and warming procedures
The COCs (GV stage) were vitrified by first equilibrating
in vitrification solution 1 [VS1; TCM-199 + 7.5% ethyl-
ene glycol (EG; v/v) + 7.5% dimethyl sulfoxide (DMSO;
v/v) + 20% CS] for 5 min at 37 C. After equilibration,
COCs were transferred through three 20 μl-drops of vitri-
fication solution 2 [VS2; TCM-199+ 15% EG (v/v) + 15%
DMSO (v/v) + 20% CS (v/v) + 17.1% sucrose (w/v)] at
37 C for 45–60 sec [10,24]. Five COCs were loaded on
each cryotop (Kitazato Supply Co., Fujinomiya, Japan)
under a stereomicroscope with minimum surrounding
medium and immediately plunged into liquid nitrogen
[9]. The COCs were warmed by immersing the cryotop in
2 ml of the warming solution [TCM-199+ 20% CS (v/v)
and 17.1% sucrose (w/v)] in a 35 mm petri dish at 37°C
for 1 min. The COCs were then washed 3 times in DPBS
supplemented with 5% CS (v/v) at 37°C.

In vitro maturation, fertilization and culture
In vitro maturation, fertilization and culture procedures
were conducted as previously described [15]. Briefly, the
immature COCs (GV stage) were washed 3 times in
maturation medium [TCM-199 supplemented with 5%
CS, 5 μg/ml LH, 0.5 μg/ml FSH and 0.05 μg/ml gentami-
cin]. For in vitro maturation (IVM), groups of 20 COCs
were placed in 100 μl droplets of maturation medium,
under mineral oil and incubated for 22 h at 38.5°C, 5%
CO2 in air and saturated humidity. For in vitro fertilization
(IVF), semen from three fertile bulls (2 straws/bull) was
thawed at 37 C for 1 min, pooled and washed through
Percoll gradient (45% and 90%) [25]. After washing,
spermatozoa were added to Brackett-Oliphant (BO)
fertilization medium [26] to a final concentration 3 x 106

sperm/ml. Following IVM, groups of 20 mature COCs
were washed 3 times in BO supplemented with 10%
bovine serum albumin (BSA, w/v) and added to 100 μl
droplets of spermatozoa in BO, under mineral oil. A par-
thenogenetic control group of COCs (metaphase II stage)
was incubated with no sperm. After 18 h of co-incubation
with spermatozoa at 38.5°C, 5% CO2 in air and saturated
humidity, cumulus cells and sperm attached to oocytes
were mechanically removed via pipetting. The presump-
tive zygotes were washed 3 times through in vitro culture
(IVC) medium consisting of CR1aa [5% CS, 2% BME
essential amino acids (v/v), 1% MEM nonessential amino
acids (v/v), 1% L-glutamic acid (v/v), 0.3% BSA and
0.05 μg/ml gentamicin sulfate]. Then, 20–25 zygotes
were transferred into 100 μl IVC droplets under mineral
oil and incubated at 38.5°C under 5% CO2, 90% N2, 5%
O2 and saturated humidity. After 48 h in culture, the
cleavage (2–8 cells) rate was recorded, and embryo cul-
ture was continued in the same droplets. Subsequently,
the blastocyst (containing inner cell mass, trophoblast
and blastocoel) rate was determined on Days 7, 8 and 9
(Day 0 = day of IVF). Both cleavage and blastocyst rates
were based on the total number of COCs (GV-Grade 1)
used in each treatment.
Experiment 1: Effects of cryoprotectants and vitrification
on cleavage and embryo development
The immature COCs (GV stage) were assigned ran-
domly to the following four groups: 1) Control group -
COCs were held in DPBS supplemented with 5% CS;
2) VS1 group - COCs were exposed to VS1 for 5 min
and then placed in DPBS supplemented with 5% CS;
3) VS1 +VS2 group - COCs were exposed to VS1 for
5 min followed by VS2 for 45–60 sec, and then placed
in DPBS supplemented with 5% CS; 4) Vitrified group -
COCs were exposed to VS1 for 5 min, VS2 for 45–
60 sec, vitrified in liquid nitrogen using the cryotop
method, warmed at 37°C in the warming solution con-
taining 17.1% sucrose (w/v) for 1 min and transferred in
DPBS supplemented with 5% CS. After treatments, all
COCs underwent IVM, IVF and IVC as described above.
Cleavage and blastocyst rates were used as evaluation
parameters. This experiment was replicated five times
on different dates.
Experiment 2: Effects of cryoprotectants, vitrification
procedure, and time in the warming solution on cleavage
and embryo development
As in Experiment 1, COCs were randomly assigned
to Control, VS1, VS1 +VS2 and Vitrified groups; how-
ever, the COCs in VS1, VS1 +VS2 and Vitrified groups
were sub-divided and exposed to the warming solu-
tion containing 17.1% sucrose (w/v) for either 1 or
5 min, followed by DPBS supplemented with 5% CS.
All COCs then underwent IVM, IVF and IVC. Cleavage
and blastocyst rates were used as evaluation param-
eters. This experiment was replicated five times on dif-
ferent dates.



Table 2 Effects of cryoprotectant exposure, vitrification
and time in the warming solution on cleavage of bovine
oocytes and subsequent embryo development
(Experiment 2)

Group GV
oocytes (n)

Cleavage
rate n (%)

Blastocyst rate
n (% of total)

Control (non-exposed) 81 61 (75.3%)a 22 (27.2%)a

VS1

1 min warming interval 82 60 (73.2%)a 16 (19.5%)a
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Statistical analysis
Data were analyzed using Proc Glimmix in SASW Enter-
prise Guide 4.2 [27]. Analyses were performed using
randomized complete block design modeling binary dis-
tribution (for yes/no response variables) for cleavage and
blastocyst rates. The effects of Control, VS1, VS1 +VS2
and Vitrification were examined for cleavage and blasto-
cyst rates in Experiment 1. In Experiment 2, analyses
were performed using 4 x 2 factorial randomized
complete block design. Replicate number (1 to 5), treat-
ment (1 = control, 2 =VS1, 3 =VS1 +VS2, 4 = vitrified),
warming time (1 = 1 min warming time, 2 = 5 min
warming time) and binomial response (1 = cleavage or
blastocyst, 2 = no cleavage or no blastocyst development)
were recorded for each oocyte. Syntax of the SAS pro-
gram was: Proc glimmix method = quad; class replicate
treatment warming_time; model cleavage (event = "1") =
treatment|warming_time / dist = bin link = logit; random
intercept/ subject = replicate; run. If the P-value for
treatment, warming_time or their interaction term from
Type III sum of squares was < 0.05, then “lsmeans treat-
ment warming_time treatment*warming_time/ diff lines
ilink or adjust = tukey” was added to the syntax for sep-
aration of group means.

Results
Experiment 1: Effects of cryoprotectants and vitrification
on cleavage and embryo development
Data on the effects of exposure to vitrification solutions
and vitrification on oocyte cleavage and embryo develop-
ment are presented in Table 1. The cleavage rate of
oocytes in the Control (not exposed to cryoprotectants
or cooling; 92.2%), VS1 (79.4%) and VS1 +VS2 (80.2%)
groups did not differ, but all were higher than in the Vit-
rified group (40.9%; P< 0.001). Similarly, the blastocyst
rate (% of total number of oocytes that were vitrified) in
the Control (34.4%), VS1 (25.2%) and VS1 +VS2 (20.8%)
groups did not differ, but all were higher (P< 0.001) than
the Vitrified group (1.6%).
Table 1 Effects of cryoprotectant exposure and
vitrification on cleavage of bovine oocytes and
subsequent embryo development (Experiment 1)

Group GV
oocytes (n)

Cleavage
rate n (%)

Blastocyst rate
n (% of total)

Control (non-exposed) 90 83 (92.2%)a 31 (34.4%)a

VS1 107 85 (79.4%)a 27 (25.2%)a

VS1 + VS2 96 77 (80.2%)a 20 (20.8%)a

Vitrified 127 52 (40.9%)b 2 (1.6%)b

P-value

Cryoprotectant exposure 0.847 0.456

Values with different superscripts (a,b) in the same column differ (P < 0.05).
VS1: Vitrification solution 1.
VS2: Vitrification solution 2.
Experiment 2: Effects of cryoprotectants, vitrification
procedure, and time in the warming solution on cleavage
and embryo development
Data on the effects of cryoprotectant exposure, vitrifica-
tion and time in the warming solution on cleavage and
blastocyst rates are presented in Table 2. Within treat-
ment group, there was no effect of time in the warming
solution on cleavage or subsequent embryo develop-
ment. When data from the Vitrified group were analyzed
separately for the effect of time in the warming solution
(after excluding all other groups), there was also no
effect on cleavage rate or blastocyst rate. Both cleav-
age and blastocyst rates (% of total number of oocytes
that were vitrified) in the Vitrified group (25.0 and
1.7%, respectively) were lower (P< 0.001) than in non-
vitrified Control (75.3 and 27.2%, respectively), VS1
(67.9 and 19.5%, respectively) or VS1 +VS2 (62.7 and
22.5%, respectively) groups which did not differ from
one another.
No cleavage or blastocyst development was observed

in the parthenogenetic control group in either Experi-
ment 1 or 2.
Discussion
In order to achieve intracellular vitrification, there
are three main requirements i.e., high concentrations
of permeating cryoprotectants, ultra-rapid cooling and
low sample volume. Alteration in any one of these
5 min warming interval 77 48 (62.3%)a 15 (19.5%)a

VS1 + VS2

1 min warming interval 87 52 (59.8%)a 16 (18.4%)a

5 min warming interval 82 54 (65.9%)a 22 (26.8%)a

Vitrified

1 min warming interval 74 22 (29.7%)b 1 (1.4%)b

5 min warming interval 98 21 (21.4%)b 2 (2.0%)b

P-value

Cryoprotectant exposure 0.202 0.205

Warming time 0.241 0.689

Cryoprotectant exposure * warming time 0.381 0.687

Values with different superscripts (a,b) in the same column differ (P < 0.05).
VS1: Vitrification solution 1.
VS2: Vitrification solution 2.
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components can affect the success of the vitrification
process. High concentrations of cryoprotectants are used
to increase the viscosity of intra- and extra-cellular solu-
tions, which increases the glass transition temperature
[28]. Ethylene glycol (EG) and DMSO are commonly
used cryoprotectants in vitrification, but they are consid-
ered toxic due to their cell permeating nature and the
high concentrations needed to induce vitrification [29].
Ultra-rapid cooling allows the addition of permeating
cryoprotectants at lower concentrations reducing tox-
icity to the cells [30]. Decreasing the sample volume
during the vitrification procedure increases the cooling
rate which improves heat transfer [29].
In the present study, the most profound and consistent

observation was that the high concentrations of cryopro-
tectants used (15% EG and DMSO) had no adverse
effect on cleavage and blastocyst production rates. Simi-
larly, exposure of vitrified oocytes to the warming solu-
tion containing sucrose for 5 min did not affect cleavage
and blastocyst production, as compared to 1 min, re-
gardless of group. On the contrary, vitrification of the
GV stage oocytes affected cleavage rates and blastocyst
rates profoundly following in vitro maturation and
fertilization. In both experiments, the cleavage rates
were significantly reduced in the Vitrified group and
blastocyst rates were not only significantly reduced, but
were exceptionally low. Although these experiments
were not designed to determine the necessity of sucrose
in the warming solution, it is difficult to imagine that
the absence of sucrose in the warming solution could
be anything but detrimental. Thus, we concluded that
our vitrification procedure was deficient in one or more
ways for the cryopreservation of germinal vesicle stage
bovine oocytes.
In the current studies, cleavage and blastocyst produc-

tion rates in the VS1 +VS2 group did not differ from
that in the Control group (Table 1). This suggests that
the 45–60 sec exposure time was not sufficient for per-
meating these cryoprotectants to penetrate inside the
bovine oocytes [31], or if penetrated, DMSO and EG had
no toxic effects on bovine oocytes. Although there is still
considerable debate, published literature tends to con-
firm the likelihood that these cryoprotectants are not
highly toxic. DMSO alone [32] or in combination with
other cryoprotectants [33] has been used successfully for
oocyte vitrification, and in at least one study [34], the
exclusion of DMSO from vitrification solution resulted
in lower survival rates of oocytes. However, it has also
been reported that DMSO (used alone or in combin-
ation with EG) resulted in reduced developmental com-
petence of oocytes [11,18]. In other studies, DMSO-free
vitrification systems e.g., glycerol and propanediol
[35,36], or ethylene glycol and sucrose [37-39], have pro-
vided promising results with oocytes [34].
An ultra-rapid cooling rate is generally considered
as one of the requirements for successful vitrification.
Recently, ultra-rapid warming has been reported to be
more important than concentrations of cryoprotectants
or cooling rate [40]. The optimal warming time for vitri-
fied bovine oocytes is still unknown. However, exposing
oocytes to the warming solution for 5 min as opposed to
1 min in Experiment 2 appeared to have no obvious
benefit on subsequent embryo development. Therefore,
1 min appears to be a sufficient time in the warming so-
lution. It is also noteworthy that exposure to the warm-
ing solution containing sucrose for either 1 or 5 min did
not have any adverse effect in nonvitrified oocytes in the
VS1 and VS1 +VS2 groups.
Osmotic stress resulting from exposure to high con-

centrations of cryoprotectants in vitrification solutions
could cause oocytes to undergo dramatic volume
changes during warming. In this regard, one of the most
important factors affecting cell survival during dilution
is excessive cell swelling. Water moves through the
cell membrane more rapidly than cryoprotectants, and
because of the high concentration of cryoprotectants
remaining in the cell, swelling occurs. Oocytes have bio-
logical limits in their tolerance to the osmotic stress asso-
ciated with high concentrations of cryoprotectants [23].
Volume fluctuations can affect the integrity of the plasma
membrane as well as the cytoskeletal organization of
oocytes [20]. During this process, oocytes are rehydrated
while cryoprotectants and water are exchanged due to
their gradients across the cell membrane [19]. For this
reason, sucrose is commonly used in warming solution to
counterbalance the osmotic shock during conventional
freezing [22] and vitrification [23]. Although these experi-
ments were not designed to determine the benefits of
sucrose in the warming solution, there was no evidence
for any adverse effects.
Bovine oocytes at different nuclear stages (germ-

inal vesicle, metaphase I and metaphase II) have been
cryopreserved successfully, using both slow freezing
or vitrification methods. Mature oocytes have meiotic
spindles that are extremely sensitive to cryoprotectant
additives and cooling rates which result in tubulin depo-
lymerization [11,41,42]. Therefore, immature oocytes
(GV stage) enclosed in cumulus cells (COCs) were used
in the current study. The role of cumulus cells during
oocyte cryopreservation is still not clear. Cumulus cells
provide a rigid structure to oocytes and thus protect
them against osmotic shock during cryopreservation
[43]. It has been reported that the survival, cleavage
and blastocyst production rates of bovine oocytes
were higher when vitrified with enclosed cumulus cells
than partially denuded COCs [10], as cumulus cells
support the oocyte during in vitro maturation and
fertilization [44].
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Cryopreservation of oocytes has been reported to
result in several ultrastructural and morphological
alterations including damage to the cell membrane and
ooplasm, and abnormal distribution of chromosomes,
microtubules and actin microfilaments [45-47]. Add-
itionally, damage to gap junction integrity can result in
disruption of the communication between cumulus
cells and oocytes [11,48]. These morphological changes
have been linked to a failure in fertilization and embryo
development [48,49]. Consequently, the disruptions in
protein synthesis, and the failure of cumulus cell expan-
sion and further meiotic development may also be
responsible for the failure of cleavage and subsequent
embryo development following vitrification [50].
In a recent study, only 23% of vitrified COCs (GV

stage) reached the MII stage following IVM as compared
to 84% in nonvitrified control COCs [51]. In another
study using similar vitrification conditions (15% EG and
DMSO in VS2, 45–60 sec exposure time and cryotop as
a loading device), cleavage and blastocyst production
rates were somewhat higher than in the present study,
but still low [10]. It is noteworthy that in the present
study, cleavage and blastocyst rates were based on the
original number of oocytes (COCs) that were vitrified.
Thus, data have been presented and interpreted very
conservatively. Based on these results and published
literature, we must conclude that the optimum vitrifi-
cation procedure for GV stage oocytes has yet not
been developed.
Conclusions
The brief exposure (45–60 sec) of immature (GV stage)
bovine COCs to vitrification solutions (15% of each EG
and DMSO) did not adversely affect their subsequent
cleavage and embryo development. There was no appar-
ent cytotoxic effect and there was no evidence that
osmotic stress was responsible for the low blastocyst
production rates following vitrification. Furthermore,
5 min exposure to the warming solution had no added
benefits over 1 min, with regards to cleavage and blasto-
cyst production rates. Collectively, data provide evidence
suggesting that the vitrification procedure was respon-
sible for the reduced cleavage and embryo development
rates following vitrification and warming.
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