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Abstract. Initialization techniques for seasonal-to-decadal skill can only be expected in coincidence with model up-
climate predictions fall into two main categories; namely grades.
full-field initialization (FFI) and anomaly initialization (Al). We have compared FFI and Al in experiments in which ei-
In the FFI case the initial model state is replaced by the besther the full system or the atmosphere and ocean were inde-
possible available estimate of the real state. By doing so thgpendently initialized. In the former case FFI shows better and
initial error is efficiently reduced but, due to the unavoidable longer-lasting improvements, with skillful predictions until
presence of model deficiencies, once the model is let free tononth 30. In the initialization of single compartments, the
run a prediction, its trajectory drifts away from the observa- best performance is obtained when the stabler component of
tions no matter how small the initial error is. This problem is the model (the ocean) is initialized, but with FFI it is possi-
partly overcome with Al where the aim is to forecast future ble to have some predictive skill even when the most unstable
anomalies by assimilating observed anomalies on an estimateompartment (the extratropical atmosphere) is observed.
of the model climate. Two advanced formulations, least-square initialization
The large variety of experimental setups, models and ob{LSI) and exploring parameter uncertainty (EPU), are intro-
servational networks adopted worldwide make it difficult duced. Using LSI the initialization makes use of model statis-
to draw firm conclusions on the respective advantages antics to propagate information from observation locations to
drawbacks of FFI and Al, or to identify distinctive lines for the entire model domain. Numerical results show that LSI
improvement. The lack of a unified mathematical frameworkimproves the performance of FFI in all the situations when
adds an additional difficulty toward the design of adequateonly a portion of the system’s state is observed. EPU is an
initialization strategies that fit the desired forecast horizon,online drift correction method in which the drift caused by
observational network and model at hand. the parametric error is estimated using a short-time evolution
Here we compare FFI and Al using a low-order climate law and is then removed during the forecast run. Its imple-
model of nine ordinary differential equations and use the no-mentation in conjunction with FFI allows us to improve the
tation and concepts of data assimilation theory to highlightprediction skill within the first forecast year.
their error scaling properties. This analysis suggests better Finally, the application of these results in the context of
performances using FFI when a good observational networkealistic climate models is discussed.
is available and reveals the direct relation of its skill with
the observational accuracy. The skill of Al appears, however,
mostly related to the model quality and clear increases of
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1 Introduction ence of model deficiencies, once the model is let free to run a
prediction, its trajectory drifts away from the observations no
State estimation theory in geosciences is commonly referreanatter how small the initial error is (e.gStockdale 1997).
to as data assimilation (DA)D@ley, 1991). This term en-  This problem is partly overcome with the Al where the aim is
compasses the entire sequence of operations that, startirig forecast future anomalies by assimilating observed climate
from the observations of a system, and possibly from addi-anomalies on an estimate of the model mean climate. In this
tional statistical or dynamical information (i.e., the model), way, the initial model state is kept on (or closer to) its own
provides the best possible estimate of its stdalfay, attractor (e.g.Smith et al, 2007). The large variety of exper-
2003. This estimate, the analysis, is then used for diagnosimental setups, models and observational networks adopted
tic purposes or as initial condition for predictions with envi- in the studies to date makes it difficult to draw firm conclu-
ronmental numerical models. Another notable application ofsions on the respective advantages and drawbacks of FFl and
DA, having paramount importance in climate science, is inAl, let alone identifying distinctive lines for improvement.
the production of reanalyses, multiyear global state-of-the-The lack of a unified mathematical framework adds an addi-
art gridded representations of the atmosphere/ocean genetional difficulty toward the design of adequate initialization
ated by the same model and the same DA metlizek(et  strategies that fit the desired forecast horizon, observational
al., 2011). The ultimate goal of DA is to give a dynamically network and model at hand.
consistent reconstruction of all the elements of the climate Comprehensive comparisons between FFI and Al us-
system. By improving the initial condition, through a better ing state-of-the-art coupled climate models for seasonal-
use of the observations and model, DA has dramatically conto-multiyear time horizons, have recently appearbthd-
tributed to enhance the forecast skill in weather and oceamusson et al.2012 Smith et al, 2013 Hazeleger et al.
prediction in the last decades, and is nowadays regarded witB013. These studies represent a first attempt to analyze
attention from the seasonal-to-decadal (s2d) community intheir impact using exactly the same observational and model
terested in improving the initialization procedures. setup and are therefore of central importance in guiding
At the basis of this growing interest there is the hope thatfuture development of initialized climate prediction sys-
optimizing the simultaneous use of model and observationatems. Overall, these results have indicated that initializa-
information at the initialization step will help to improve tion systematically improves over a climatology at seasonal
the prediction skill in all those circumstances, and for thosetimescale, with a slight, but clear, better skill for FM&g-
time horizons, when a nonnegligible portion of the forecastnusson et al.2012 Smith et al, 2013. The picture is far
uncertainty is explained by the internal climate variability. less clear on multiyear horizons. Some advantage of Al
It is known that this component accounts for a significantwas reported inSmith et al. (2013 at global scales us-
amount of the total prediction uncertainty at global scale foring the MetOffice decadal prediction system, while using
up to a decade in the future (and even longer at regionathe EC-Earth v2.3 atmosphere—land—ocean—sea ice model,
scales), and tends to monotonically decay afterward, domiHazeleger et a[2013 have found a somewhat better skill
nated by the uncertainty associated with the model and théor FFI in areas such as the North Atlantic. This behavior is
projected scenarioSinith et al, 2007 Hawkins and Sut- thought to be related to the difficulties of generating physi-
ton, 2009. Seasonal to decadal predictions, in contrast tocally consistent initial sea-ice and ocean conditions.
continental-scale projections of climate change, are initial- The present study aims to contribute to the current debate
ized using observations of the current climate state. Skillfulon which initialization algorithm, and under which condi-
(initialized) seasonal forecasts are nowadays run in severalons, is the most suitable for seasonal-to-decadal prediction.
operational climate services worldwide; a recent review onWe propose using the notation and concepts of data assimi-
the development and current status of the seasonal forecadttion theory to outline a unified formalism from which FFI
ing practice can be found iDoblas-Reyes et a{20133. Us- and Al can be derived. This furthermore allows for identify-
ing global climate models and simulated observations, seving specific features such as the initialization method sensi-
eral studies have identified and assessed the benefits of infivity to model and observational accuracy. FFI and Al are
tializing decadal predictions (see elggtif et al., 2006 Dun- studied in a range of different observational and model er-
stone and Smith201Q and references therein) and set the ror scenarios, helping to clarify under which conditions one
basis for the design of decadal prediction practice using reaapproach outperforms the other. Two advanced formulations
observations (see e.@mith et al, 2007 Keenlyside et aJ.  are then introduced and discussed. The first, named least-
2008 van Oldenborgh et gl2012 Hazeleger et 12013. square initialization (LSI), is aimed to improve the fit to the
Current initialization techniques for seasonal-to-decadalobservations allowing for their informational content, usually
climate predictions fall into two main categories; namely restricted to the observational space in standard FFI or Al, to
full-field initialization (FFI) and anomaly initialization (Al).  be propagated to the entire model domain. LSI uses a least-
In FFI the initial model state is replaced by the best possi-square initialization update to merge observation with the
ble available estimate of the real state. By doing so the initialmodel, and the required (unknown) model error covariance is
error is efficiently reduced but, due to the unavoidable pres-estimated using the covariance of the model anomalies. The
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estimation and reduction of the drift associated with para-(Nicolis, 2003. Note furthermore that the model is assumed
metric model error is the objective of the second novel for-to describe all scales of motion: model error coming from
mulation proposed in this study: the exploring parameter un-unresolved scales, a common drawback in geophysical mod-
certainty (EPU) method provides an online correction of theeling, is not considered in this formulation.
drift on the basis of a linear and short-time approximation of ~Observationsy? = y°(#;), are assumed to be available at
its evolution. EPU works during the forecast run and as suchequally spaced times =iz, i =0,1,...; in real applica-
can be used in combination with any initialization scheme,tions, the vector of observations has a much smaller dimen-
either FFI or Al. sion than the model state vector, so tiatk I with O be-

The numerical analysis in this work is carried out using ing the dimension ofy?, i.e., the number of observations
a prototype of climate dynamics simple enough to reduceavailable at each observation time. Moreover, unless speci-
computational cost and allow for robust statistical inferencesfied otherwise, these observations are affected by some error
These conditions are not easily met when dealing with realistepresented as a white Gaussian noéSewith zero mean
tic models and observational scenarios. In this study we aimand standard deviation®, so thate® e N (0, °), with A/
at gaining additional insight on FFI and Al, to advise and standing for the Gaussian distribution and
support the big ongoing research effort in the development na o
of initialized decadal prediction with state-of-the-art climate Y= H(x r) TE ®)
models. Moreover, the capabilities of the proposed LSI and} being the observation operator mapping from nature to the
EPU methods are better understood using a more controllablghservation phase space. Note finally that in this formulation
experimental setup before thinking of a possible implemen-the observational errog?, accounts for both the instrumental
tation in a more realistic context. and the representativity error connected with the specifica-

The paper is organized as follows. In Sect. 2 the generation of the operato?{ (Cohn 1997 Janjt and Cohn2006).

problem is posed and the basic assumptions are described.

Section 3 describes FFI and Al using the data assimilation

formalism, while LSI and EPU are presented in Sect. 4. The3  Initialization methods

low-order climate model is described in Sect. 5 and the re- o i

sults are given in Sect. 6. Final Conclusions are drawn inThe |n|t|al!zat|on procedures _start typically frpm a model

Sect. 7. state obtained after a long spin-up run. By using terms and
concepts borrowed from a data assimilation context (see e.g.,
Kalnay, 2003), the model state at the end of the transient

2 Posing the problem spin-up (the control) can be interpreted dmakgroundield,
embedding all information about the real system (nature)

Let us write the prognostic climate model under the form of prior to the assimilation of the observation; it will be here-

an autonomous dynamical system: after indicated asP. Similarly, the initial condition obtained
at the end of the initialization procedure is interpreted as the
rri F(x,}) (1)  analysisfield, and indicated as? in the following. Here,

ith di being the stat d ; ; ¢ di the additional assumption of a linear observation operator is
with x an €ing Ine stale and parameter veclors ot diMen-, e thjs implies that the observation operator is given un-
sions/ and P, respectively. The parameters can also have 8er the form of theD x 7 matrix. H

time dependence, such as is the case of the impact of solar
activity or the anthropogenic greenhouse gases, which hag 1  Full-field initialization (FFI)
been dropped here to simplify the notation.

The model {) is used to describe the unknown Earth’s cli- This approach consists of substituting the model state with
mate system evolution; we will call our target, the real world the available observations at the initialization times. Using
state, “nature”. We suppose that nature can be formally exihe data assimilation notation FFI can be formally written as
pressed under the form of a system similar to motglguch

as xasz—i-HT[yo—be] @)
nat
d);t =F(x" A" + G (x”at, A2 (2) with HT being the transpose of the linearized observation op-

erator; note that in this case the entries of the mdiriare

with x" and A" peing the unknown nature state and pa- equal to one in correspondence with the observed variables
rameters. In this formulation, the model and the nature areand grid points, and zero elsewhere. By left multiplying both
assumed to span the same phase space, of dimehsi@a  sides of Eq. 4) by H, we retrieve the usual FFI formula in
consequence, model error can only originate from parametwhich the control is replaced by the observations at observa-
ric uncertaintydA = A —A"&, and from the presence of the tional locations, and left unchanged elsewhere.

extra term,G, accounting for all processes not properly de-  Alternatively to the direct replacement of the observed val-
scribed by the model, withG| « |F| in some proper norm ues, FFI can also be implemented using a nudging approach.
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Nudgingis an empirical data assimilation technique, consist-Al equation can then be written as
ing of adding a term to the prognostic equations that, act-
ing like an extra-coupling term, nudges the model trajectoryx® = x® +HT [ypso— be]
toward a consistent representation of the unknown system’s b TToo — o b
evolution intended to be estimated (Hoke and Anthes, 1976). =X +H [y —y°+Hx —Hx ] : (7)
The coupling strength is expressed as a relaxation timescale ] ) _ )
and is usually chosen on the basis of the properties of thd "€ observation operatét is defined as in Eq4) and, as
variable to be nudged: it has to be small enough to avoid dy-8Pove, by left multiplying both sides of EqZ)(by H, we see
namical shocks but large enough for the correction to counlihat at observational !ocatlons, the background is replaced by
teract actively the error growth. Advanced formulations of the pseudo-observations and left unchanged elsewhere.
the nudging approach have been proposed receftlyo{ix To get the expression for anomaly nud_gmg, AN, we can
and Blum 2008, and the use of the nudging procedure using proceed as for Eq.5§ and after introducing the pseudo-
unstable modes of the dynamics has been also explored usirRPservations we have
simple chaotic system¥éng et al, 20086. dx

The FFN can be written as follows: o - FE+ HN [yﬁﬁﬁg— Hx] =Fx.2)

N +HTN[ 0 30 +Hf—Hx] r<dmt (8

;E =F () +HIN 38— Hx| 1= ) Pnudg™ ¥ nudg ©

! Similar to FFN, the initial conditiony?, is obtained by inte-
with N being the diagonad x O nudging matrix, with the di- grating Eq. §) up to/"™. AN has been used .'Sm'th etal
mension equal to that of the observation vector and measure 0079 and_Smﬂh et al.(_2013 to nudge oceanic variables of

in units of time"1. The matrixN contains, along its diagonal, the MetOffice global climate model.

the relaxa'lt'ion time rate of eagh nudged/observed'variable3.3 FFI and Al: some properties

Any specific setups of a nudging scheme are equivalent to

specifying the entries of the matricesandN: the former  FF| and Al are easy to implement and do not require any
indicates the observed variables, the latter the correspondinfints on the relative accuracy of the estimators, the back-
relaxation times. Note that the nudging observation VeCtorground and observations, entering the initialization proce-
Ynudg for which the time dependence has been omitted forqure. These features make them very attractive in the con-
clarity in Eq. ©), coincides with the observatiop® at ob-  text of seasonal-to-decadal prediction with global numerical
servation times;, and with their time interpolation between models whose typical size and complexity limits the use of
two successive observation times. The initial conditie),  more advanced initialization strategies. FFI and Al produce
is then obtained by integrating E®)(up to the initialization  different initial states, and one approach can outperform the
time (i.e., the start date)’™. FFN has recently been used in other depending on a number of competing factors such as
Magnusson et a(2013) to nudge SST (sea surface tempera- the accuracy and type of the observational network, the am-
ture) with the ECMWEF (European Centre for Medium-Range plitude of the model biases and the desired forecast horizon.

Weather Forecasts) climate model. It is interesting to consider the error-scaling properties of
FFI and Al, with respect to the level of accuracy of the infor-
3.2 Anomaly initialization (Al) mation sources, model and observations. To this end, let us

derive an expression for the initial condition (analysis) error,
In Al (Smith et al, 2007 the model state at initial time is re- €2 = x®—x"&,, by formally subtracting the unknown nature’s
placed by the observed anomaly (i.e., the difference betweestate,x"®, from Eqgs. 4) and (7). Assuming for simplicity
the current observation and its long-term avetdgius the  that the full system is observed (i.el,= |, with | being the
model average (i.e., the simulated climate). To write the Al I x I identity matrix) and after rearranging we have
equation using the data assimilation formalism, we introduce _
the pseudo-observation vector: €t =¢€°, € =€+ )
with €® = xP — x"being the background error.

The expressions (E®) highlight a main feature of these
methods; namely, their dependence on the accuracy of the
with the overbar indicating the long-term average. Thegpservations and, for Al, the role of the model bigd, as
pseudo-observations are equal to the observations minus thfie error level in the idealized limit® — 0. By taking the
difference between the observed and modeled climate. Thgverage of qu), and using the property of unbiased obser-
vations, we get the expressions for the mean initial error:

LAccording to the WMO definition, at least 30 years are neces-_,
sary to compute a climatology, called long-term average in the text€FFI =

yP0=y° — (y° - HXx), (6)

0. & =q (10)
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whereas for the root-mean-square error at analysis time FFIlis more prone to sufferinitial dynamical shocks caused

(RMSE) we have: by the displacement of the model state to the observed values
that can be out of the model attractor. These initial shocks
52 are smaller, but still present, in the Al, since the model is
RMSE3, =0°, RMSE}, = 0% /1+ 6_2 (11)  forced to deviate from its mean state by only the amount of
a° the observed anomalies. However shocks can also be gener-

_ _ _ _ ated by inconsistencies or geographical mismatches between
RMSEFI scales linearly with the observational error, while the model climate and observed anomali®ggnusson et

the behavior of RMSE, depends on the ratiéi—zz that mea-  al. 2013. By smoothly moving the model trajectory toward

sures the relative accuracy of model-observations. In realthe observations, the nudging approach has the potential to

istic circumstances this ratio is (much) larger thar?liz(>> reduce this problem (see e.gmith et al, 2013.

0°?, implying the observational error being much lower than

model error) and RMSE; behaves almost independently on 4 Advanced initialization procedures

the accuracy of the observations. As a consequence and in

contrast to RMSE,, which can in principle be arbitrarily re- In this section we introduce and discuss two advanced initial-
duced by intervening on the observational accuracy, a signifization methods based on data assimilation theory. The first
icant reduction of RMSE, can only be achieved by improv- approach, referred to as LS, is thought to improve the fit to
the observations. The second, named EPU, is designed to es-
timate and reduce the model drift. LS| and EPU are described
here in the context of FFI, however they can equivalently be
applied in the framework of Al with only minor modifica-
tions.

ing the model. Moreover, wheff)—z2 ~ 1, RMSE,, behaves
almost quadratically witlw© so that for the same reduction
of ¢°, RMSE,, will decrease at a slower rate than RM@E

It is worth mentioning that we have intentionally focused
our discussion on the actual (unknown) error with the pur-
pose of highlighting the response of FFI and Al to observa-4 1 Least-square initialization — LSl
tion and model error. In real applications one usually com-

putes errors using observations, possibly taken from a datgh FFI the observations are fit as if they were perfect and
set independent from the one used in the initialization. If wethe model state is replaced by the observations in all vari-
had proceeded similarly and had used pseudo-observationgples and geographical locations where measurements are
for the Al analysis, the two schemes would have shown sim-ayailable, no matter how accurate these observations are with
ilar scaling properties with respect to the observational errorrespect to the model solution. The information is not trans-
Nevertheless this approach would have hidden the presendgrred from observed-to-unobserved areas and the observa-
of the model bias, whose role we wanted to stress here.  tional impact is confined to the measurement locations, de-
Arguing on how the accuracy of the initial conditions will - spite the possible presence of physically relevant spatial cor-
impact the prediction skill at seasonal-to-decadal timescalegelations. Note however that, in the practice of climate pre-
is far more difficult. In contrast to weather forecast practice diction with realistic models, this issue is partly mitigated
(with horizons of 2weeks) where model error is often ne- py using either a full and homogeneous reanalysis field of
glected and much attention is placed toward an efficient conga|| model variables over its entire domain, or by smoothly
trol of chaotic error growth (see e.@alatella et a.2013,  nudging toward the observations data set when this repre-

in seasonal-to-decadal prediction the growth of initial error issents only a subset of the model variables/dombsieghl et
relatively less important than the bias caused by model defig|, 2013 Doblas-Reyes et al2013H.

ciencies. The unavoidable presence of model error causes the |n data assimilation, statistical knowledge about the accu-

so called “model drift”, in which a forecast initialized close racy of each piece of information entering the analysis update
to the observed state will eventually drift toward the model js ysed to determine the relative weights of their contribution
climate, i.e., the model attractor, following a nonlinear state-according to some criteria of optimalitpéley, 1991). Us-
dependent evolution that can appear as quasi-erratic befoiigg a least-square framework, the background and the obser-
stabilizing. With Al, although at the price of larger errors, vations are linearly combined in order to minimize the ex-
the initial state is kept close to the model attractor and thepected analysis error variancgagwinskj 1970. All errors

drift is mitigated. This makes the mean forecast error lessare assumed to be Gaussian and represented by the first two
time dependent and, as arguedMggnusson et al2012,  statistical moments only: the mean and the covariance. The
the use of standard a posteriori bias correction techniques igackground and observation error covariances are referred
more robust. Nevertheless, although the bias correction poshereafter to a8 andR, according to a standard notation in
processing for forecasts initialized with Al has the advantagedata assimilation literaturéde el al, 1997).

of being independent from the forecast times, it still requires

running long and computationally expensive transient simu-

lations before reaching model equilibrium.
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The least-square analysis update, common to most data aien then becomes
similation procedures, reads (Jazwinski, 1970) 1
x®=xP 4+ BTHT[HB™HT + R [° - Hx"]. (14)
xa:xb+BHT[HBHT+R]_l[y°—be]. (12) _ _ _ _

Equation (3) embeds the idea of interpreting the model

. anomalies as forecast errors (the aciakads in facB =
WhenB andR are the correct error statistice? would co- ————

S ; . ) ) b (b)T m -
incide with the best linear unbiased estimate and the analy(,e ) (€°) ) and we expecB™ to reproduce at least the spa

sis solution minimizes the associated posterior error covarifia! structure of the error covariance. The parameteom-

ance. The matriB plays the crucial role of spreading out Pensates for the deviation of the amplitude of the simu-
the observational information content throughout the entirelat€d covariance from the error covariance and helps to adapt
model domain according to the assumed forecast error strudh® Weighting of the background term in Eq4J. The oc-

ture; in practice the analysis correction is confined within theUrrence of nature’s statistical modifications (i.e., a cI.imate
subspace spanned by the rangdBoClassical data assimi- change) that have not been tracked by the model during the

lation methods, such as optimal interpolation or 3D\Bay{ reference averaging period can be a further limiting factor for
ley, 1991, rely on a statistical estimation of the covariance the accuracy of Eq.1@). However, FF-LSI is easy to imple-
matricesB andR. Nevertheless, while a relatively robust es- ment and has the potential to be beneficial in all the situations

timate of the latter can be easily obtained especially whenVhen only & portion of the mode state vector is observed.

it is related to the observational accuracy alone, more prob- A Very similar approach was originally introduced by
lems arise to estimat®. The approach that has been almost SMith and Murphy(2007) to generate a global ocean anal-
universally adopted since the 1990s is known as the NMCYSIS based on sparsely distributed observations of temper-
(National Meteorological Center)-methoBé(rish and Der- ature and salinity. Using a statg-of-the—art coupled cIm_’nate
ber, 1992 With the NMCB is estimated using the difference model they demonstrate that using r_’nodel-bgsed covariance
between two forecasts verified at the same time, let us say thg!lows for successfully propagating information from data-
24 and 12 h forecasts; this matrix is then used as a proxy fofich t0 data-poor areas and significantly improved the model
the true (and unknown) forecast error matrix. And it is not representation of the observed variability. The LSI proce-

based on observations, that are usually sparsely distributetr® follows a similar line, although our attention here is

over the globe, the NMC method provides a proper represeni” the propagation of information between different model

tation of the global error structur&&lnay, 2003, and itis ~ compartments, such as the atmosphere and the ocean, and

also consistent with the hypothesis of uncorrelated forecast® €xperiments described later are designed for that pur-
and observation error used in E42). Finally, it is worth ~ POSe- Another difference between the tvt\)/o approaches stands
mentioning the research efforts carried out in the last decadel® the definition of the background field,. In LSI this is a

that led to the development of the so-called ensemble-basefprecast-field solution of the model equation at analysis time,
data assimilation algorithms in which the forecast error co-VNile Smith and Murphy(2007 uses a climatology field.
variance matrix, estimated on the basis of an ensemble oPUr choice has the advantage of incorporating fresh, time-
model trajectories, is made time dependent, a very desirabld€Pendent, information about the system, potentially prop-

feature when dealing with chaotic systems (see Exgnsen agating forward the signal of the most recent observations.
2009. However it would in principle require a corresponding time-

In the initialization of climate predictions, the NMC dependent background error covariance that is very difficult

method cannot be directly applied because the backgrounfP 9€t unless sophisticated data assimilation, such as the en-
field here is a climatological (control) model solution output S€Mble Kalman filtergvensen2009, is adopted. The use

after a sufficiently long spin-up, (see Eds.7). In the LSI of a climatological background avoids this issue but at the
method described here the act@als approximated using price of a §tatic a priori .picture of t_he syste.m.’s state. Finally
the model climate covariance, which is then incorporated inn°t€ that, instead of using the tuning coefficienin Smith

the analysis update ®). The model covariance can be esti- 2"d Murphy(2007) the misrepresentation of the actiis

mated rather accurately, and the robustness of this estimaf&eated by limiting the use of Eq14) to the set of obser-

is limited only by the availability of enough computational Vations that lead to a decrease of the posterior analysis er-
resources to make long runs feasible. Under this assumptiorfiO" Variance; the latter is computed using observations when

the proxy of the background error covariance matrix reads 2vailable and turns the global solutiob4 into a series of
local analyses centered around each grid point.

B"=a(x—%) (x—%)", (13) 4.2 Exploring parameter uncertainty — EPU

wherex is a solution of the modell], « a scalar tuning pa- The second novel formulation discussed in this study is
rameter and, as above, the overbar refers to a long-term avenamed full-field initialization with exploring parameter un-
age. The full-field least-square initialization (FF-LSI) equa- certainty (FFI-EPU), and is designed to reduce the model
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drift caused by parametric error. EPU is an online bias cor- The basic idea behind EPU is to use EbB)(to estimate
rection method based on a linear, and short-time, approxiand remove the bias from the forecast at lead timey. Let
mation of the bias evolution; the procedure is said to be on-us define the bias correction time intervallgjas, as the time
line because the estimation and correction of the bias is donperiod over which the bias evolution lad®) is used and the
during the prediction run. A similar approach, in the offline bias correction is applied. EveryTg;jss the bias is estimated
mode, has been introduced in the context of sequential datand removed from the forecast at timeaccording to:
assimilation byCarrassi et al2008, on the basis of the the- |, un
ory of deterministic model error dynamics givenNiicolis ~ * () =Xi" =%¥i —bi =xi — C; ATgias
(2003. aF

An equation for the evolution of the estimation erré, =Xi = 57 lxi 1208 ATBias
can be obtained by linearizing the model equatidh,#long
one of its solutions. By expanding Eq) to the first order in ti =iATgias i =12,..., (19)
dx andsi, we obtain where the suffix “un” stands for unbiased, and the compact
dsx  oF 9E form x(#;) = x; is used to simplify the notation. In EqL9),
o ~ 5"“8}6 + a_)"x’”””' (15) A represents the value of the parameter used in the model
along its entire run, whiléi; the (estimate of) parametric
The solution of Eq.15), with initial conditiondxg, reads error at timey;.
The use of Eq.X9) as a bias correction approach requires
! the estimation of the operat@; = %ui_l,xaxi. The first
8x ~ M ndx0+ f M; dp(r)dr (16)  term ofC, 2F, gives the model functional dependence on the

10 uncertain parameters, i.e., the model sensitivity; it depends
on time through the dependence on the system’s state and
10 .
with M, = oo T Ll being the tangent linear model of allows us to project the error from the parameter to the state
Eq. (1) betweerrg andr, andéu = %Ix,x(”»- The vectosu vector space. Itis a rgctangglar matrix having as many rows
embeds all information about the model error through the@nd columns as the dimension of the state vector and of the
parametric errosA and the functional dependenc%, of parametric error resp_ectively,_ and can be com_puted at any
the dynamics on the uncertain parameters. Assuming that thime along the model integration, the only practical concern
initial error is unbiased, after taking the average 18)( we being the computational constraints arising when using large

get an estimate of the model bias evolution, the drift, as ~ numerical models. . _
The second term, the parametric errdx, is unknown.

! To cope with this we introduce a guess strategy. Two hy-
b(t) =< dx(t) >~ < /M, Sp(r)dr > . (17) potheses are formulated: (1) model users have identified a
’ (possibly limited) set of relevant parameters suspected to

10 be uncertain, and, (2) a range of possible parameter values,

Expression17) provides the time evolution of the bias un- AA = [Amin, Amax]. The parametric error at time, 51, is
der the hypothesis of linearity aforementioned. Neverthelessthen sampled according to
it cannot be solved in the case of realistic climate models, max T\ =

. . . : UOAM*—X), if A>1
mainly because of the huge dimension of the systems N3y, e

volved, and some approximations are required. U (xmin —1,0), if A<
From Eq. (7) we see that the bias evolution (the drift) is
fully correlated in time. Therefore, an approximation suitable ti=iATgias, i=12,..., (20)

for realistic applications can be obtained by expanding itin

. . . Aith U(a, b) being the uniform distribution in the interval
Taylor series up to the first order in time, so that:

(a, b), A the mean value of the rangeA andA the param-
9F eter used in the model. In practideplays the role of the
b(t) ~<dpo > [t —to] =< a0k > [t —10]. (18)  most probable parameter value and is used in E6) {0
discriminate between over-/underestimation of the unknown
Equation (8) gives the short-time evolution of the bias; A" Note that, even in the favorable situatiaf®'c AA,
its accuracy is related to the linear hypothesis made abovegiven thatA"a £ X in general, it is possible that the guess
and to the duration of the short-time linear regime. The ex-strategy 20) erroneously selects positive/negative paramet-
tent of duration of this regime is known to be proportional ric error §A; > 0/8A; < 0, i.e., over-/underestimation) when
to the largest (in absolute value) Lyapunov exponent of thethe true parametric error is actually of the opposite sign
dynamics Nicolis, 2003. For the large class of dissipative (A —A" < 0/A —A"a> Q).
chaotic systems to which environmental models belong, the In the experiments described in Sect. 6 we will put our-
largest Lyapunov exponent is usually the most negative.  selves in this situation and study the capability of EPU to
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reduce the model drift of predictions initialized using FFI.  In all subsequent experiments the nature climate evolution
FFI-EPU is thus given by the FFI updat) {n conjunction is represented by a solution of EQ1 with the coupling
with the EPU bias correction techniquedj—(20) during the  strength parameters set to the standard valyes,0.08 and
forecast run. ¢ =c, = 1. This configuration implies that the tropical at-
mosphere and the ocean are strongly coupled, while the
two atmospheres are only weakly coupled. Numerical solu-
tions of Eqg. 1) are obtained using a second-order Runge—
Kutta scheme with time steps ¢f = 0.01. According to
Pefia and Kalnag2004), the model 21) represents an ENSO
(El Nifio—Southern Oscillation)-like configuration with an
almost slave, small amplitude, atmosphere whose regime

ence of different dynamical compartments having different
. 7 . - changes are modulated by the slow ocean component. Fol-
timescales, three similar copies of the original Lorenz model” "~ ) . . .

lowing their convention, a simulated year is made to corre-

are coupled to simulate the extratropical and tropical atmo- : )
. spond to an ocean regime, and the system oscillates between
sphere and the ocean. The equations read

the normal regime, lasting between 3 and 12years, and an

dxe El Nifio regime, lasting only 1year (equivalent to 240 time
=0 (ye—Xe) — ce(Sxt + k1),

5 The low-order climate model

The low-order climate model is based on the Lorenz
3-variables modellorenz 1963) and has been introduced
by Pefia and Kalnag2004). To mimic the simultaneous pres-

dr steps in the present experimental setupgfia and Kalngy
dye 2004). With the standard values for the coupling parameters
o = Ye~Ye—Xeted ce(Syt+k1), given above, the model (EQ1) is chaotic with two positive
dze Lyapunov exponent&f%‘: 0.9063 0.3150, while the third
o = Yeve~ bze, corresponds to the null one.

To simulate parametric errors originating at the level of
i the coupling between the different model compartments, we
=L =6 (yt—x1) — c(SX +k2) — ce(Sxe+ k1), have modified simultaneously the tropical atmosphere/ocean

(;jt coupling parameters™ andc]", with the superscript m stand-

e _ Fxt— vt — xtzt+ ¢ (SY +k2) +ce(Sye+ k1), (21) ing for “model”, in the range_0.1—1.5 with steps of 0.1. We

dr have assumed that the coupling between the two atmospheres
dz; = xot— b+, Z is known, so that]' = ce. To place ourselves in the situation

dr t SR in which the model is able to reproduce the qualitative be-

havior of nature, we have restricted our analysis to the 109
parameter combinations for which the model stability prop-

Friaiid Y —X)—cxt+k2), erties, as measured by the first three Lyapunov exponents,
dy do not differ too much from those of nature. We further as-
@ = (rX—=Y—=S8XZ)+cOt+k2)., sume that the amplitude of the natural variability and its spec-
trum is well reproduced within each model component. This
i T (SXY —bZ) — ¢,z is not true and it might lead to an overestimation of the per-

formance of Al in our conceptual model.

The atmospheric variables are denoted with the lower-case Figurel shows, with shadow bars, the distributions of the
variables, with the subscripts e/t referring to the extratropi-model bias and of the first three Lyapunov exponents rela-
cal/tropical atmosphere; the ocean variables are denoted wittive to these 109 configurations; the RMS bias is defined by
capital letters. The two atmospheres are coupled throughaking the square root of the mean quadratic biases on all of
the variablest and y at a strength given by the parameter the 9 model variables, each one normalized with respect to
ce; the tropical atmosphere and ocean are coupled througits own variance:
all variables with a strength given by the parameterfor

— _—nat2
the x andy, andc, for the z component. The parameters, Y9, %
o =10,r =28, andb = 8/3, are the same as in the classi- RMS bias= —("t)
cal 3-variable Lorenz modelLérenz 1963); the “uncenter- 9

ing” parameterg; = 10 andkp = —11, taken fronPeflaand The distribution of RMS bias values appears relatively ho-
Kalnay (2004, introduce a sort of phase lag between modelmogeneous with a marked peak between 0.2 and 0.25. As
compartments. The parameteéraindt modulate the ampli-  expected, the range of values of the first Lyapunov exponent,
tude and timescale of the ocean: they are chosen Befia  y1, does not depart too much froycfatz 0.9063, given that
and Kalnay(2004) to be S = 1 andr = 0.1 respectively, im-  the two perturbed coupling parametersandc,, do not di-
plying that the ocean variables will have the same amplituderectly affect the dynamics of the extratropical atmosphere to
as the atmospheres’ but a slower rate by one order of magniwhich y; is associated. In contrast, the Lyapunov exponents
tude. y2 and y3 display a much larger variability; in particular,
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most of the coupling configurations give rise to a less/morezero mean and standard deviatief, so thak® € A/ (0, ¢ °).
unstable tropical atmosphere/ocean with respect to the starFen-year-long predictions are initialized, at each start date,
dard “nature” configuration. This is due to the form of the by using either FFI, Eq4), or Al, Eq. (7), with either obser-
coupling between these two model compartments and to thgations of each model compartment independeridynjth
role of the coefficients andc;: note that in a few cases dimension 3« 9) or of the whole systenH equal to the iden-
becomes positive, and the null exponent corresponds to théty 9 x 9 matrix). The difference between the model and ob-
fourth one. served mean statddx — y°, entering the Al equatiory, is

To illustrate how the statistical properties of the model estimated using the sample of 360 observations/start dates,
(22) respond to a change in the paramete@ndc,, the de-  for the case of observing the whole system (ilé.=1).
pendence of the variance versus the mean for each moddlhe distribution of this “estimated bias” is shown superim-
variable and for all of the 109 model parameter variationsposed onto the “real bias” distribution in the top-right panel
is shown in Fig.2; note that the values of the mean and the in Fig. 1: their comparison helps to visualize the difference
variance are normalized with respect to those of nature. Théetween the two and quantify the error in the bias estimate
figure clearly reveals the complex interplay between the firstused in Al. We see that the estimated biases reproduce rel-
two moments of the model probability density function, typ- atively well the actual distribution, although some discrep-
ical of nonlinear dynamics, and points out to the difficulty in ancies are evident in particular in relation with the position
estimating the climate variance of a model in a regime of biasof the respective largest peaks, slightly shifted toward higher
change (i.e., a climate change). This figure illustrates the devalues in the estimated bias distribution.
pendence of the climate variance on its mean state whereas In most of the discussion that follows, we make use of the
the hypothesis of independence of those is often made in cliRMS skill score (RMSSS) to measure the skill of the initial-
mate prediction. In particular, the classical anomaly initial- ized predictions. RMSSS is defined as:
ization method relies on such a hypothesis. According to this

. . . . . RM Eni'[
figure, a scaling of the variance should be applied also in Al'RMSSS: (1_ S . ) -100[%].
RMSEUnInlt
6 Results where RMSEN/UnInit refers to the RMS error for the ini-

tialized and uninitialized predictions respectively; the latter
In this section we describe the results of the numerical analy<orresponds to the control run. The RMSE is computed us-
sis. We proceed by showing first the results of the comparisoring the anomalies with respect to the mean error over all
between FFl and Al, while LS| and EPU are discussed in thestart dates. In Fig3 the RMSSS, for both FFI and Al, is

two subsequent subsections. shown as a function of time over a 10-year-long prediction.
The RMSSS is calculated by averaging the RMSE over all
6.1 FFland Al comparison start dates and is displayed after a monthly averaging of the

variables; the observation error standard deviation of each
The experimental setup is as follows. We have worked un-variable is set tar® = 1.5 % of the corresponding system’s
der the standard observation system simulation experimematural variability (i.e., the square root of the system’s cli-
(OSSE,Bengtsson et gl1981) configuration in which the  mate variance). Note that in a realistic prediction framework,
simulated nature evolution is sampled at discrete times tmbservation error is meant to incorporate also the representa-
generate the series of simulated observations. The setup hasity error arising from the mismatch between the model and
then been structured following the typical hindcast formatthe observation-resolved scales. These errors are not present
of climate prediction studies. A 40-year-long hindcast periodin our experimental setup, and this legitimates the choice
is considered and the observations/start dates are distributeaf a relatively smallo®. Two cases of coupling error are
homogeneously every month during the first 30 years, makconsidered¢™ = 0.8,0.3 andc]" = 0.9, 1.2: these configu-
ing a total of 360 start dates. The effective number of inde-rations give rise to biases falling in the peak and in the right-
pendent start date&/gn Storch and Zwiers2001), Neg, is most extreme of the real-bias distribution (Fig, while the
around 241, 154, and 127 for the extratropics, tropics andspectrum of the first three Lyapunov exponentsis z =
ocean respectivelylyeq has been calculated using the novel 0.9036 0.1895 0.0, andyy » 3 = 0.9032 0.2162 0.0153, re-
approach given iruemas et al(2014) (their Eq. 7). Note  spectively. By comparing these values with those of na-
that in the CMIP5 (Coupled Model Intercomparison Project) ture given above, we see that both configurations have a
initiative (Taylor et al, 2012, at most we have 52 decadal smaller second exponent and the second configuration pos-
predictions, with some forecasting systems having only 10sesses three positive exponents.
The “nature” and the “control” runs are integrated, after a The first clear message in Fig.is that the largest, long-
long spin-up of 60000 time steps, during the hindcast pedasting RMSSSs are obtained when the whole system is si-
riod. The observations are generated by sampling the natursultaneously initialized (black curves). Note however that
trajectory and then adding a Gaussian white naiSewith FFI performs slightly better with a clear predictive skill
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Fig. 1. Distribution of the RMS bias (top-left panel) and of the first, second and third Lyapunov exponents. The solid line in the top-left panel
shows the distribution of the estimated RMS bias used in the Al.
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Fig. 2. Variance of model as a function of its mean for the sample of 109 model configurations considered and for the 9 model variables.

(RMSSS> 20 %) until around month 30, while in Al the The performance when only one of the “atmospheres” is
drop of the RMSSS after the initialization is more abrupt andinitialized is considered now. When the extratropical atmo-
skillful forecasts last less than 20 months. sphere isinitialized with FFI, the RMSSS is large (RMSSS
The second aspect concerns the role of the ocean as tHe %) until month 20 in both model configurations. The lack
first driver of the system’s predictive skill. When only the of a similar behavior in Al suggests that this gain in pre-
ocean is initialized, significant skill is observed (RMSSS dictability is due to the larger reduction of the actual initial
15 %) until the 20th month. The behavior of FFI and Al is error obtained with FFI. The extratropical atmosphere is in
similar, with only very marginal advantages for FFl. The fact the most unstable model compartment, the one with the
largest initial error reduction obtained with FFI does not faster error growth: reducing the initial error counteracts the
seem to be effective in this case to systematically outperforneffects of this growth, and helps to increase the time horizon
Al: a slow drift (not shown) is present that masks the ben-of skillful predictions. This effect is less pronounced in Al,
efit of this initial error reduction. Having the slowest error where the initial error is not much reduced and is sized as the
growth rate, the ocean behaves like the system’s memorymodel bias (see EQ.1 and related comments). Finally, when
Initializing this compartment is thus the most efficient way only the tropics are initialized, the prediction skill for both
to improve prediction skill and move forward the predictive FFI and Al maintains very low levels.
horizon. The behavior of FFI and Al as a function of the obser-
vational accuracy at different prediction ranges is analyzed
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Fig. 3.RMSSS as a function of the forecast lead time for FFI (left panels) and Al (right panels). Top/bottom panels refer tofHe-case
cM=0.9/cM=0.3, " = 1.2, respectively. Different colors represent the case of the initialization of the full system (black), ocean (green),
tropical atmosphere (purple) and extratropical atmosphere (blue).

in Fig. 4. In these experiments the full system is observed,and climate prediction practices. We believe this is due to two
and the parametric error is set as in the first configura-reasons. First, limiting the source of model error to parameter
tion (c"/c"=0.8/0.9); results (not shown) for the case uncertainty marks a key difference with respect to realistic
(cM/cM = 0.3/1.2) are qualitatively equivalent. Figudhas  s2d contexts where model error is often connected to mul-
to be interpreted in the light of the discussion in Sect. 3.3tiple simultaneous causes, including unresolved scales and
on the dependence of RMg,ﬁ/Al on the observation accu- numerical discretization errors. Second, the model configu-
racyo®. It illustrates that this dependence is propagated andations considered in this study, with errors in the coupling
is also found at longer lead times. Note for instance that, inparameters, do not give rise to strong initial shocks when ini-
contrast to Al, FFI prediction skill appears clearly related to tialized; results (not shown) with error in the model forcing
the observational accuracy up to the third year. A closer in-confirm this conjecture.
spection of the left-bottom panel reveals that such a behavior, Together, Figs4 and5 give an illustration of the response
although at a lower extent, is present even in the longer preef FFI and Al to the variation of the two ingredients on which
diction horizon (years 4-5) as long as observations are sufthey are based, and the behavior of the forecast error seems
ficiently accurate £° < 0.03). However in the longest lead to be quite consistent with the conjecture done in Sect. 3.3 in
time, and for the horizon years 4-5 whefl > 2.5%, Al relation with the analysis error. Even if obtained with a very
shows slightly better skills, a behavior in qualitative agree-simple model, but with a quite large ensemble of start dates,
ment with results oBmith et al.(2013 with the MetOffice  these results point clearly to key differences between FFI and
climate model. Al. FFI seems to be favorable when a good observational
In a similar way, Fig5 analyzes the behavior of FFl and network is at hand and its skill is expected to improve with
Al in relation with the model bias. As above the full sys- a refinement of the observations. However, the performance
tem is observed and the same averaging periods are considf Al is related to the model accuracy and its overall skill is
ered and the observational error standard deviation is set texpected to increase in coincidence with model upgrades.
0°=2.5%. In contrast to Figd, we see here that while FFI
is almost insensitive to the model bias, Al displays a markedg.2 LSI — numerical results
dependence with a performance that systematically improves
when the bias is reduced, that is to say when the model is imin this section we study the performance of FF-LSI in com-
proved. Furthermore, the two approaches converge to similaparison with standard FFI. The observational error standard
RMSSS levels in the limit of long lead times. It is worth men- deviation is equal tar® = 1.5% and the error covariance
tioning that the independence of the FFI skill on the modelR is diagonal and contains the correct observational error
accuracy contradicts what is observed in realistic weathekariance. The background error covariance maBi% is
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Fig. 4.RMSSS as a function of the standard deviation of the observationalefi@xpressed as a fraction of the system’s natural variability.
The six panels refer to six different averaging periods and are indicated in the corresponding labels. FFI (black line), Al (red line).
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Fig. 5. RMSSS as a function of the RMS model bias. The six panels refer to six different averaging periods and are indicated in the
corresponding labels. FFI (black line), Al (red line).

estimated using Eq.18) over 50years of an uninitialized are considered and model error is set as in the first config-

model run. uration,c™, " = 0.8, 0.9; results do not qualitatively differ
The first result of LSI is given in Fig6, and shows the if the second configuration is considered. The range of val-
RMSSS as a function of the scaling parametém Eq. (13); uesis 10° < o < 15 and ther axis is displayed in log scale.

similar to Figs.4 and5, the different panels refer to the dif- The RMSSS values of the FFI are also shown for comparison
ferent prediction horizons. The four observational scenariogdotted lines).
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Fig. 6. RMSSS as a function of the tuning coefficienfor LSI (see text). The six panels refer to six different averaging periods and are
indicated in the corresponding labels. Different colors represent the case of the initialization of the full system (black), ocean (green), tropical
atmosphere (purple) and extratropical atmosphere (blue). The values of the standard FFI are displayed for reference (dots).

For very smalle values the LSI analysis, Eql4), tends The adequacy of the approximation (EkB) in describ-
to over-trust the background field, the observations are pracing the subspace spanned by the range of the a&ual
tically ignored and the RMSSS converges to the small valuegliagnosed in Fig7, which shows the percentage of the ex-
associated with uninitialized predictions. By increasiife plained variance of each of the eigenvectorsBoaind B™
RMSSS increases monotonically and eventually exceeds théFig. 7a), as well as the scalar product of each pair of them
FFI skill level and stabilizes on a plateau afterward. (Fig. 7b),v; (B) x v; (B™), with v; (B) andv; (B™) being the

The fact that the best performances are obtained for largéth eigenvector oB and B™ respectively,x indicates the
enougha values and that no improvements are observedscalar product, anddl=1,...,9. The percentage of variance
when it is further increased is connected to the use of ob-explained by the eigenvectey is calculated as Exgr (v;) =
servations that are significantly more accurate than the back%-loq%], with A; being the'th eigenvalue. From Fig.
ground. The relevant aspect in the discussion about the poteRge’ see that the variance distribution over the eigenmodes
tials of LS| is that, when only a portion of the full system’s s accurately reproduced and that, except for the third and

state is observed, its RMSSS converging level is higher thafoyrth that are almost perpendicular to each other, all remain-
for FFI. This indicates that the benefit of LSI comes by the |ng eigenvectors are a|most fu"y a“gned.

spatial correlations embedded B that make it possible

to propagate the observation’s informational content, other-6 3 EPU — numerical results
wise restricted to the observation subspace alone, to the en-

tire model's domain. In fact whea is large, the observa- i i
tions are fitted as if they were perfect, and the model state>'Milarly to the previous section we study here the perfor-

vector is replaced by the observations at their locations. ouf@nce of the drift correction method EPU. EPU is applied

of these points the information is propagated according to the_during the forecast run once the prediction is initialized us-
off-diagonal elements @™, those that account for the corre- N9 FFI; these experiments are hereafter referred to as FFI-

lations between different variables and model compartmentsEPYU- We compare its performance with standard FFl in the

This interpretation is also supported by the fact that when gbsence of dr!ft correcftion procedure. .
diagonalB™ is used the FF-LSI's RMSSS (not shown) con- e have first studied FFI and FFI-EPU in a set of
verges to the same values as FFI in the limit of largenean- 109 experiments using the model configurations described

ing that as in FFI the observations are perfectly fit but nol" Sect. 5.1; this gives the range of parameter, while the
correction is applied out of observational locations. bias correction time interval is set equal to one time step,
ATgjas =time step. Figure3 shows the mean and standard

deviation of the RMSE relative to the 109 configurations, for
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Fig. 7. (a) Explained variance over each eigenvectoB5t used
in LSI (dotted line; see text) and the actual background error co- *
variance matriXB (solid line).(b) Scalar product between pairs of «
eigenvectors oB™ andB.
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Fig. 9. (a) RMSE of FFI-EPU (solid line) over the first year of
prediction as a function of the width of the sampling distribu-
tion (Eq. 20) scaled with the parametg (see text) for the cases
=08, M=0.9/cm =03, M =1.2. (b) RMSE of FFI-EPU
over the first year of prediction as a function of the bias correction
interval ATgjas, for the case™ = 0.8, ¢I" = 0.9 (black line) and
c¢M=0.3, ¢"=1.2 (red line). FFI (dashed lines) is superimposed
for reference in both panels.

RMSE & STD
T

uncertainty about the actual range of possible parameter val-
ues. To simulate this circumstance, we have used the actual

parameterA"@, and modulated the distribution width using

Averaging Period

a scalar coefficieng, such that; € ¢ (0, g (A —A"2)). As
Flg 8.Mean and standard deviation of the distribution of the RMSE expected’ the best performances are W|t:h 2, as in this sit-
relative to the 109 configurations, for FFI (black) and FFI-EPU ation the mean of the sampling distribution coincides with
(red), as a function of the averaging forecast period. the actual parametric error. However the important remark is
that FFI-EPU outperforms FFI systematically for all values

. . of g in both model configurations.
FFI (black) gnd FFI-EPU (red), as a function of_the averaging ™ o sensitivity of FFI-EPU to the length of bias cor-
forecast period. Results reveal the clear benefit of using EPLgection interval ATw. is analvzed in the riaht panel of
within the forecast year. The relative improvements over FFI 2 MBias, Y gnt p

are equal to 17, 10, and 8 % in the first month and in the firstF'g' 9b. The same two mpdel configurations are consid-
ered, and are displayed with the black and red lines respec-

6 and 12 months respectively. A certain minor advantage 'Stively (see corresponding labels in the figure panel); simi-

also found afterward, with relative improvements equal to : . .
4, 0.6, and 0.2% in the forecast years 2-3, 4-5, and 6_1d_arly the RMSE of FFI is shown with dashed lines. To fo-

The distributions (not shown) of the RMSE for FFI-EPU in cus on the impact o\ Tiias alone, we have set the scal-

X . . ; ing parametep = 2. As expected, the accuracy of FFI-EPU
the six averaging periods are all shifted toward smaller Val_decreases by increasintZ=. as the limit of duration of
ues with respect to FFI. This behavior is in part observed y MYBias,

by looking at the corresponding standard deviations (dotte&he short-time reg|me.of the error g'rowth IS approached. It
) LS . Is remarkable that, with these particular model configura-
lines in Fig.8) that are, except for the period of 4-5years,

lower than for FFI. In Fig8 EPU appears to be more skill- tions, FFI-EPU outperforms FFl in a large range/tiiias

- . . s .. Note moreover that the improvements over FFI are kept
ful within the time horizon of 1 year, suggesting its potential .
. . . as long asA Tgjas < 40 andATgias < 30 time steps for the
usage in the context of seasonal forecasting. Errors in the : ) !
. . L irst and second model configurations respectively. If these
sampling procedure and, most importantly, the deviation of

: ; . ’ : time intervals are taken as measures of the duration of the
the drift dynamics from the linear assumption on which EPU . . o S .
. . L : . short-time regime, it is worth highlighting that the numeri-
is built seems to limit its benefit on longer timescales. M_0.8/cM=0.9 M=0.3/cM=12 . )

The impact of the uncertainty on the width of the uniform €&l resultATg;,s " "> AT~ ° IS consistent
distributions in Eq.20) and the length of the bias correction With the amplitudes of H‘% gargegg (in ab.f,nolglge)mvalltzje of the
time interval, AThias, the two factors controlling the EPU  Lyapunov exponentsy, /=09, _ lvg /=12 in
setup, is investigated in Fi§a. Both model configurations, agreement with the theory of deterministic model error dy-
cM=0.8/c"=0.9 andc™ = 0.3/c" = 1.2, are considered. namics mentioned in Sect. 4.Ri¢olis, 2003.

The RMSE is calculated over the first year of prediction. The The results in Fig9 are quite encouraging about the ro-

error on the width of the sampling distribution reflects the bustness of EPU. Although the extent of their validity with
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more realistic models cannot be assessed with the simplef EPU is very low, reducing the frequency of its application
dynamics used here, they at least motivate studying its perfby increasing the drift correction interval) would reduce the
formance in the situations where large uncertainties on the&eomputational cost.
optimal parameter range are present, or with large climate The comparison between FFI and Al as well as the per-
models where reducing the frequency of its application is deformances of LSI and EPU have been studied using an ideal-
sirable to decrease the associated computational cost. ized coupled climate model based on the classical Lorenz 3
variables systemi_prenz 1963). The model, introduced by
Pefia and Kalnag2004), possesses three compartments char-
7 Conclusion and Discussion acterized by different timescales and amplitudes, and are
taken as proxies for extratropical/tropical atmosphere and
This study provides an outlook of the initialization tech- the ocean. The low model dimension and its low degree of
niques for seasonal-to-decadal predictions using conceptsomplexity allowed us to run a large ensemble of trajecto-
and notations borrowed from the data assimilation contextries (360 start dates) using a standard hindcast experimental
Ouir first purpose was to give a comprehensive comparisorsetup over 30 years and monthly start dates.
between full-field and anomaly initialization (FFI and Al),  The use of the data assimilation formalism helped us to
the two main classes of initialization methods used in ma-rewrite the initialization updates in a general form and high-
jor climate prediction institutions, with the aim of contribut- light specific features such as their sensitivity to observation
ing to the current debate on their respective advantages anand model accuracy. The analysis of their error-scaling prop-
drawbacks. The second objective of this investigation waserties suggests the use of FFI when a good observational net-
the introduction of two methods to improve the initialization work is available and reveals the direct relation of its skill
procedures; namely, the least-square initialization (LSI) andwith the observational accuracy. The skill of Al appears,
the exploring parameter uncertainty (EPU). however, mostly related to the model quality, and clear in-
Following a standard procedure for the analysis update ircreases of skill can only be expected in coincidence with
most data assimilation schemes, LS| operates a least-squameodel upgrades. The numerical results confirm this behav-
fit between observations and model with weights related taior and reveal that, in contrast to Al, FFI prediction skill ap-
the respective assumed level of accuracy. By optimally com-pears clearly related to the observational accuracy up to the
bining model and observations at the initialization step, thethird forecast year. As opposed to this, Al displays a marked
informational content of the observations is propagated to thelependence on the model bias with a performance that sys-
entire model domain and no longer confined to the locationgematically improves when the model is improved.
of the measurement, as in classical FFI or Al. The required We have compared FFl and Al in experiments in which
model error covariance entering the LSI initialization is es- either the full system or each of the model compartments
timated using the covariance of the model anomalies takenvas initialized independently. When the full system is ob-
over a long uninitialized run, in a similar manner to what was served the best performances are obtained in FFI and Al, al-
done inSmith and Murphy(2007. Using LSI, the model's though the former shows clearly better and longer-lasting im-
initial state out of the observational locations is modified ac-provements, with skillful predictions (RMSSS20 %) until
cording to the structure of the model statistics. This allowsmonth 30, whereas in Al the RMSSS falls below this level
to reduce the initial errors in areas otherwise totally uncon-between months 15 and 20. In the initialization of single
strained by the observations and has the potential to mitigateompartments, the best performance (with no remarkable dif-
the dynamical shocks resulting from discontinuities causederences between FFI and Al), is obtained when the stabler
by pushing the model state to observation values and leavingomponent of the model (the ocean) is initialized. Results
it unchanged elsewhere. show also that with FFI it is possible to have some predictive
EPU is an online drift correction method in which the drift skill when the most unstable compartment (the extratropics)
caused by the parametric error is estimated using a short-timis observed. This behavior is not mirrored in Al, which sup-
evolution law and is then removed during the forecast run. Itports the idea that the gain in skill is obtained by the efficient
requires the computation of the model equation’s first deriva-initial error reduction of FFI. However, in agreement with
tive with respect to the parameters assumed to be uncertairesults from a state-of-the-art climate modghfith et al,
(i.e., the model parameter sensitivity), and a hypothesis abou2013, Al slightly outperforms FFI after the fourth year.
the assumed range of possible parameter values. Being basedFinally, FFl was compared with FF-LSI and FFI-EPU.
on a short-time approximation, EPU deteriorates when theResults show that using LS| improves the performance of
length of the time interval over which it is applied is longer FFI in all the situations when only a portion of the system’s
than the duration of the short-time regime. This duration isstate is observed. This proves that the performance of LSl is
certainly connected to the model sensitivity to the specificbased on an efficient propagation of information from data-
set of parameters under consideration and is model depercovered to data-uncovered areas and to some extent reduces
dent. The ideal situation would be to implement EPU at everythe initial error also far from the observational locations. Es-
time step. Nevertheless, although the computational demantimating the background error covariance matrix using the
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statistics of the anomalies has therefore proved to be a viabl®eferences

choice. These results, in agreement v@tith and Murphy

(2007, extend them to the case of the estimation of cross- _ R
covariances between different model compartments (atmofuroux. D. and Blum, J.. A nudging-based data assimilation
spheres and ocean). This feature is extremely relevant for method: the Back and Forth Nudging (BFN) algorithm, Non-

the development of coupled data assimilation systems, where Iz'g'ozrgggzses Geophys., 15, 305-319, 1b5194/npg-15-305-

the aim is to simuIFaneoust update all coupled subsystemgengtsson, L., Ghil, M., and Kallen, E.: (Eds.): Dynamic Me-

based on observations of one compartment alone. teorology: Data Assimilation Methods, Springer Verlag, New
The use of EPU has clearly improved the skill of FFI  vyork/Heidelberg/Berlin, 330 pp., 1981.

within the first forecast year; later, the limits of accuracy of Carrassi, A., Vannitsem, S., and Nicolis, C.: Model error and se-

the linear and short-time assumptions at the basis of EPU quential data assimilation: A deterministic formulation, Q. J.

are approached, and only minor advantages over FFI are Roy. Meteor. Soc., 134, 1297-1313, 2008.

recorded. Results have also demonstrated the robustness @phn, S. E.: An Introduction to Estimation Theory, J. Meteorol.

EPU with respect to the two factors determining its imple-  S0C. Jpn., 75, 257-288, 1997. . . o

mentation: the length of the drift-correction interval and the Py, R.: Atmospheric Data Analysis, Cambridge University

. Press, Cambridge, ISBN: 9780521382151, 1991.
Sg(l’::rtr?g'[)/er(')sf our knowledge of the actual range of pOSSIbleDee, D. P, Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

hi dvis i ded f of . hich ini P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
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