
METHOD Open Access

THetA: inferring intra-tumor heterogeneity from
high-throughput DNA sequencing data
Layla Oesper1*, Ahmad Mahmoody1 and Benjamin J Raphael1,2*

Abstract

Tumor samples are typically heterogeneous, containing admixture by normal, non-cancerous cells and one or more
subpopulations of cancerous cells. Whole-genome sequencing of a tumor sample yields reads from this mixture,
but does not directly reveal the cell of origin for each read. We introduce THetA (Tumor Heterogeneity Analysis),
an algorithm that infers the most likely collection of genomes and their proportions in a sample, for the case
where copy number aberrations distinguish subpopulations. THetA successfully estimates normal admixture and
recovers clonal and subclonal copy number aberrations in real and simulated sequencing data. THetA is available
at http://compbio.cs.brown.edu/software/.
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Background
Cancer is a disease driven in part by somatic mutations,
which accumulate during the lifetime of an individual.
The clonal theory of cancer progression [1] states that
the cancerous cells in a tumor are descended from a
single founder cell and that descendants of this founder
cell acquired multiple mutations beneficial for tumor
growth through multiple rounds of selection and clonal
expansion. A tumor is thus a heterogeneous population
of cells, each cell potentially containing a different com-
plement of somatic mutations. These include both clo-
nal mutations from the founder cell or early rounds of
clonal expansion and subclonal mutations that occurred
after the most recent clonal expansion. Alternatively,
subclonal mutations may suggest that the tumor is poly-
clonal, consisting of subpopulations of cells that are not
all descended from a single founder cell [2].
High-throughput DNA sequencing technologies are

now giving an unprecedented view of this intra-tumor
mutational heterogeneity [3]. However, nearly all recent
cancer sequencing projects generate DNA sequence
from tumor samples consisting of many cells - including
both normal (non-cancerous) cells and one or more dis-
tinct populations of tumor cells. The tumor purity of a

sample is the fraction of cells in the sample that are
cancerous, and not normal cells. If a sample has a low
tumor purity, then the power to detect all types of
somatic aberrations in the cancer genomes is reduced.
For example, lower tumor purity attenuates copy num-
ber ratios or allele frequencies away from the values
expected with integral copy numbers. Methods to detect
somatic copy number aberrations or loss of heterozygos-
ity (LOH) from SNP array data or array comparative
genomic hybridization (aCGH) data must account for
this issue [4-9]. In addition, many algorithms for identi-
fying somatic single-nucleotide mutations from DNA
sequence reads implicitly or explicitly rely on an esti-
mate of tumor purity. For example, the VarScan 2 pro-
gram [10] uses an estimate of tumor purity as input to
calibrate the expected number of reads that contain a
somatic mutation at a locus.
Traditionally, tumor purity was assessed by visual ana-

lysis of tumor cells, either manually by a pathologist or
via image analysis [11]. Recently, methods such as
ASCAT [12] and ABSOLUTE [13] were introduced to
estimate tumor purity directly from SNP array data.
Both of these methods utilize the presence of copy
number aberrations in cancer genomes to estimate both
tumor purity and tumor ploidy, which is the number of
copies of segments of chromosomes or entire chromo-
somes. Tumor purity and tumor ploidy are intertwined;
for example, a heterozygous deletion of one copy of a
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chromosome in a 100% pure tumor sample (containing
one cancer genome) could also be explained as a homo-
zygous deletion in a 50% pure tumor sample (containing
one cancer genome). Thus, it is necessary to estimate
tumor purity and ploidy simultaneously, but this is a
subtle and difficult problem. ASCAT and ABSOLUTE
address this problem by estimating the average ploidy
over the entire cancer genome. These estimates of
tumor purity and average ploidy are then used in a sec-
ond step to derive copy number aberrations.
Both ASCAT and ABSOLUTE have been shown to

yield accurate estimates of tumor purity, achieving in
some cases better estimates than via pathology or other
techniques. However, these methods also have impor-
tant limitations. First, the mathematical models used by
ASCAT and ABSOLUTE are optimized for SNP array
data, as we detail below. While these methods may be
adapted to run on DNA sequencing data (for example,
for ABSOLUTE see [14] and for ASCAT see below), the
underlying mathematical model used by both methods
does not adequately describe the characteristics of
sequencing data. Second, both of these methods apply
various heuristics in their estimation procedures, such
as rounding copy numbers to the closest integer [12]
and do not directly infer integer copy numbers for each
segment of the genome during the estimation. Finally,
both methods do not explicitly identify multiple tumor
subpopulations, and instead infer only a single tumor
subpopulation. For example, ABSOLUTE [13] classifies
copy number aberrations as outliers if they are not clo-
nal, but does not refine these outliers into subpopula-
tions. If a tumor sample consists of multiple tumor
subpopulations, then considering only a single tumor
population may yield inaccurate estimates of tumor pur-
ity, as we show below.
High-throughput DNA sequencing data is much

higher resolution data than SNP arrays, and provides
the opportunity to derive highly accurate estimates of
both tumor purity and the composition of tumor subpo-
pulations. For example, the number of reads containing
a somatic single-nucleotide mutation at a locus provides
- in principle - an estimate of the fraction of cells in a
tumor sample containing this mutation. However, three
interrelated factors complicate this analysis: (1) The
number of reads supporting a somatic single-nucleotide
mutation has high variance, implying that an estimate of
the allele frequency will be highly unreliable at the mod-
est coverages (30× to 40×) employed in nearly all cur-
rent cancer sequencing projects. (2) Somatic mutations
may be present in only a fraction of tumor cells. (3)
Somatic copy number aberrations (nearly ubiquitous in
solid tumors) alter the number of copies of the locus
containing the mutation. While the first issue might be
addressed in part by clustering allele frequency estimates

across the genome [15-17], the second and third issues
complicate such a clustering. Recent methods for ana-
lyzing tumor composition from DNA sequencing data
either ignore copy number aberrations [17] or use itera-
tive approaches [18] or other approximations [12,13],
and do not formally model the generation of DNA
sequencing data from a mixture of integral copy num-
bers for each genomic segment.
Beyond the estimation of tumor purity and ploidy, it is

desirable to identify subclonal aberrations, which can
provide information on the age or history of the tumor
[19], and can yield further insight into tumors that fail
to respond to treatment or metastasize [19-21]. How-
ever, even with a pure tumor sample, characterizing
subclonal mutations is a challenge. Tolliver et al. [22]
infer subclonal copy number aberrations by comparing
aberrations across different individuals, thus assuming
that the progression of somatic copy number aberrations
is conserved across individuals. Gerlinger et al. [23]
recently demonstrated the extent of subclonal mutations
by sequencing multiple (spatially separated) samples
from a tumor, complementing earlier studies of hetero-
geneity using microarray-based techniques [24]. In
another approach, Ding et al. [17] used a targeted ultra-
deep sequencing (1,000 × coverage) approach to esti-
mate allele frequencies for relapse mutations in acute
myeloid leukemia (AML). In another recent study, Nik-
Zainal et al. [25] used a SNP array based estimate of
tumor purity [12] followed by extensive manual analysis
of somatic mutations to identify a clonal (majority)
population and a number of subclonal populations in
each of several breast cancer genomes. Ultimately, sin-
gle-cell sequencing techniques promise to provide a
comprehensive view of cancer heterogeneity [26-29], but
these techniques presently require specialized DNA
amplification steps, which can introduce artifacts and
also incur higher costs because they sequence many
cells. Thus, the problem of the simultaneous estimation
of and correction for tumor purity as well as the identi-
fication of clonal and subclonal mutations will remain a
challenge for the majority of cancer sequencing projects.
In this paper, we introduce Tumor Heterogeneity Ana-

lysis (THetA), an algorithm that infers the most likely
collection of genomes and their proportions from high-
throughput DNA sequencing data, in the case where
copy number aberrations distinguish subpopulations. In
contrast to existing methods, we formulate and optimize
an explicit probabilistic model for the generation of the
observed tumor sequencing data from a mixture of a nor-
mal genome and one or more cancer genomes, each gen-
ome containing integral copy numbers of its segments.
Specifically, we derive and solve the maximum likelihood
mixture decomposition problem (MLMDP) of finding a
collection of genomes - each differing from the normal
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genome by copy number aberrations - whose mixture
best explains the observed sequencing data. Thus, we
generalize the problem of estimating tumor purity to the
problem of determining the proportions of normal cells
and any number of tumor subpopulations in the sample.
Our formulation and solution of the MLMDP

leverages the fact that copy number aberrations create a
strong signal in DNA sequencing data: even relatively
small copy number aberrations cause deviations in the
alignments of thousands to millions of reads. Thus, in
contrast to single-nucleotide mutations, where there is
high variance in the number of reads at each position,
many measurements (reads) are perturbed for each copy
number aberration. Thus, each copy number aberration
provides many data points for deconvolution of the
tumor genome mixture. We show how to solve the
MLMDP as a collection of convex optimization pro-
blems. THetA is the first algorithm - to our knowledge
- that automatically identifies subclonal copy number
aberrations in whole-genome sequencing data from mix-
tures of more than two genomes. Moreover, in the case
of an admixture between a single (clonal) cancer popu-
lation and normal cells, THetA runs in polynomial time;
it is the first rigorous and efficient algorithm for simul-
taneously estimating tumor purity and inferring integral
copy numbers.
We apply our THetA algorithm to simulated data and

to real DNA sequencing data from breast tumors
sequenced at approximately 188× and approximately 40×
coverage from [25]. We quantify the normal cell admix-
ture in each tumor, outperforming other algorithms for
this task. We also demonstrate that allowing only one
tumor subpopulation may lead to highly inaccurate
tumor purity estimates, and subsequent failure to detect
clonal and subclonal copy number aberrations. In the
188× sequenced tumor, we identify both clonal and sub-
clonal tumor cell populations, each containing unique
copy number aberrations. Our results recapitulate most
of the findings reported in [25] for this sample, but also
have some distinct differences, which are supported by
the sequencing data. In one of the 40× sequenced
tumors, we identified two previously unreported tumor
subpopulations, demonstrating the ability to identify
intra-tumor heterogeneity, in particular subclonal aberra-
tions, at the modest sequence coverages that are the cur-
rent standard in cancer sequencing studies.

Results
Maximum likelihood mixture decomposition problem
First, we will formulate the maximum likelihood mixture
decomposition problem of finding the most likely mixture
of tumor cell populations from a sequenced tumor sample.
We assume that sequenced reads from a tumor sample are
aligned to the reference human genome, the first step in

cancer genome sequencing analysis [30,31]. Typically, a
matched normal genome is also sequenced to distinguish
somatic mutations from germline variants. We focus on
copy number aberrations in order to estimate tumor purity
and subpopulations. Thus, we assume that a cancer gen-
ome differs from the reference genome by gains and losses
of segments, or intervals, of the reference genome. These
intervals are identified by examining the density, or depth,
of reads aligning to each location in the reference [32-34],
and/or by clustering discordant paired reads that identify
the breakpoints of copy number aberrations or other rear-
rangements [35-40]. Following this analysis, the reference
genome is partitioned into a sequence I = (I1, ..., Im) of
non-overlapping intervals. We represent a cancer genome
by an interval count vector c = (c1, ..., cm), where cj Î N is
the integer number of copies of interval Ij in the cancer
genome. From the sequencing of a tumor sample, we
observe a read depth vector r = (r1, ..., rm), where rj Î N is
the number of reads with a (unique) alignment within Ij.
A tumor sample is a mixture of cells that contain dif-

ferent collections of somatic mutations, and in particular
somatic copy number aberrations. We assume that the
tumor sample is a mixture of n subpopulations, includ-
ing a subpopulation of normal cells and one or more
subpopulations of cancer cells. Each subpopulation has
a distinct interval count vector representing the genome
of the subpopulation. Thus, we represent a tumor sam-
ple T by: (1) an m × n interval count matrix C = [cjh],
where cjh Î N is the number of copies of interval Ij in
the hth distinct subpopulation; and (2) a genome mixing
vector μ Î ℝn where μh is the fraction of cells in T
from the hth subpopulation. Given a read depth vector r
derived from the sequence of T , our goal is to identify
the underlying interval count matrix C and genome
mixing vector μ that best describe r (Figure 1). We for-
mulate the following problem.
Maximum likelihood mixture decomposition pro-

blem (MLMDP). Given an interval partition I of a
reference genome and an associated read depth vector r
derived from a tumor sample T , find the underlying
interval count matrix C and genome mixing vector μ
that maximize the likelihood P(r|C, μ).
In the Materials and methods section below, we derive

the probability P(r|C, μ) in the MLMDP. In brief, under
the usual assumptions for DNA sequencing, the probabil-
ity pj that a read that aligns to an interval Ij is equal to the
fraction of the total DNA in the sample originating from
interval Ij. Hence, the probability P(r|C, μ) of the observed
read depth vector r follows a multinomial distribution
determined by the interval count matrix C and genome
mixing vector μ. We emphasize that the multinomial dis-
tribution models the fact that the number of reads aligning
to each interval are not independent random variables, but
rather are dependent on the number of copies (ploidy) of
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each interval in the cancer genome(s) (please see Addi-
tional file 1, Section A). In contrast to our probabilistic
model for DNA sequencing data, other methods for esti-
mating tumor purity and ploidy [12,13] do not model the
data as an observation from an experiment. Rather, they
assume that the observed copy number ratio of an interval
(or probe) is the ratio of the expected value of the tumor
copy number and the expected value of the normal copy
number (please see Additional file 1, Section B). Thus,
they implicitly assume that the observed data is an average
over many experiments.

Solving the maximum likelihood mixture decomposition
problem
We now give an overview of our algorithm for solving
the instance of the MLMDP where P(r|C, μ) is the mul-
tinomial probability described above. Further details are
in the Materials and methods section.
Restricting the space of interval count matrices
In practice, the interval count matrix C is not allowed to
be any integer-valued matrix. There are three natural
constraints on the interval count matrix: (1) One com-
ponent of the tumor sample is the normal genome.
Thus, we set the first column c1 = (2, 2, ..., 2)T, the vec-
tor whose entries are all two. (2) The number n of sub-
populations is less than the number m of intervals. (3)
The copy numbers of the intervals are integers between
0 and k, inclusive, where k ≥ 2. We let Cm,n,k denote the
set of all matrices satisfying these properties.
A convex optimization algorithm
We wish to find the interval count matrix C ∈ Cm,n,k and
the genome mixing vector μ that maximize the multinomial
likelihood P(r|C, μ). However, this optimization problem is

not straightforward to solve because it contains both inte-
ger-valued variables (entries of C) and real-valued variables
(entries of μ). We show that a special coordinate transfor-
mation allows the MLMDP to be solved as a disjunction of
constrained convex optimization problems by enumerating
the possible interval count matrices and solving a separate
convex optimization problem for each such C (see Materi-
als and methods). Since the number of possible matrices C
grows exponentially with m and n, this brute-force strategy
approach will not scale well beyond small values of n sub-
populations and m intervals. In a special, but important,
case where a sample contains a single clonal tumor popula-
tion along with a normal admixture (that is, n = 2), we
show how to further restrict the space of possible interval
count matrices C, and obtain an efficient algorithm (poly-
nomial time in m) for the MLMDP. The runtime for our
algorithm depends on the number of intervals m and maxi-
mum copy number k in the input. Simulations with m = 39
and k = 3 (described below) run in 1 to 2 minutes on a
standard desktop, while increasing to k = 5 increases the
runtime to approximately 25 to 40 minutes.
Selecting a solution
Two additional issues to be addressed in deriving a solu-
tion are: (1) how to select from multiple optimal solu-
tions and (2) how to choose the number n of tumor
subpopulations in the mixture. We note that tumor
sequencing data alone does not distinguish between dif-
ferent optimal solutions with the same maximum likeli-
hood. In mathematical terms, this is because only the
parameter of the multinomial distribution is identifiable
from the observed read depth vector r. Thus, we cannot
distinguish between pairs (C, μ) and (C’, μ’) of interval
count matrices and genome mixing vectors that give the

Figure 1 Algorithm overview. A mixture of three subpopulations with two distinct genomes: a normal genome (represented here with one
copy of each interval for simplicity), and an aneuploid genome with a duplication of one interval (red). If reads are distributed uniformly over
the aggregate DNA in the sample, then the observed distribution of reads over the blue, red and yellow intervals will follow a multinomial
distribution with parameter Ĉμ. Here C is the interval count matrix giving the integral number of copies of each interval in each genome in the
mixture, and μ is the genome mixing vector giving the proportion of each subpopulation in the mixture. We find the pair (C, μ) that maximizes
the likelihood of the observed read depth vector r.
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same multinomial parameter. Our algorithm THetA has
options to return the complete family of optimal solu-
tions, or to limit to solutions with a baseline copy num-
ber of the clonal tumor population (see Materials and
methods).
Regarding the second issue, note that the likelihood P

(r|C, μ) increases as the number n of tumor subpopula-
tions in the mixture increases: indeed the observed read
depth vector can be fitted ‘perfectly’ by placing each
copy number aberration in its own tumor subpopula-
tion. However, mixtures with larger n also have greater
model complexity (that is, more parameters). We use a
model selection criterion based on the Bayesian infor-
mation criterion (BIC) to select a model with a balance
between higher likelihood and lower model complexity
in order to avoid overfitting.

Evaluation on simulated cancer genomes
Normal admixture: single cancer genome
Using two different sets of simulated data, we compared
our THetA algorithm to three other methods for esti-
mating tumor purity and ploidy: ASCAT [12], ABSO-
LUTE [13] and CNAnorm [18]. ASCAT and
ABSOLUTE jointly estimate tumor purity and ploidy,
and were originally designed for SNP array data. While
both can be adapted to run on DNA sequencing data,
they do not formally model this type of data, as noted
above. CNAnorm is designed for DNA sequencing data,
but rather than allowing tumor purity and tumor ploidy
to inform each other, it uses an iterative approach that
separately infers purity and copy numbers. In some
instances, CNAnorm relies on the user manually enter-
ing the most abundant ploidy.
As noted above, there are multiple optimal solutions

with the same maximum likelihood. CNAnorm [18] and
ASCAT [12] use ad hoc criteria to return only a single
purity estimate, and ABSOLUTE [13] uses external can-
cer karyotypes to select from multiple possible solutions.
To compare THetA to these other methods, we must
select a single pair (C, μ) from the set returned by
THetA as a representative sample reconstruction. For all
simulations, we chose the pair (C, μ) that maximizes the
total length of all genomic intervals in the tumor gen-
ome with copy number 2, the expected copy number of

the normal genome for humans. We note that this deci-
sion applies only to these simulations - for real sequen-
cing data the set of all equally like solutions is returned
by THetA from which a user may select one using addi-
tional information about the sample under considera-
tion. For further details about the other algorithms
please see Additional file 1, Sections K and L.
For our first set of simulations, we generated a cancer

genome consisting of chromosome arm copy number
aberrations. The copy number for each non-acrocentric
chromosome arm was chosen uniformly at random
from the range 0 (that is, homozygous deletion) through
k > 2 (amplification), up to a specified maximum copy
number k. While real cancer genomes may have copy
numbers larger than the maximum value (k = 7) consid-
ered in these simulations, such high amplitude amplifi-
cations are generally focal events. We emphasize that it
is not necessary to use all copy number aberrations to
infer the tumor composition; for example, if there are a
sufficient number of arm-level copy number aberrations,
these may suffice. We then created a random mixture of
this cancer genome and a ‘matched normal’ genome and
simulated a read depth vector r for the mixture, adding
noise according to the read depth estimation error �.
The parameter � models errors in the sequencing and
analysis process, and we estimated from real sequencing
data that � is in the range from 0.01 to 0.04 (please see
Additional file 1, Section J and Figure S3). Since the
ASCAT algorithm uses SNP array data, we also simu-
lated SNP array data from our mixture. Further details
of the simulations are in Additional file 1, Section I.
Table 1 shows how the four algorithms performed on

the simulated datasets with interval count matrix
C ∈ C39,2,k and mixing vector μ and read depth estima-
tion error � = 0.03. For each value of k, the maximum
copy number, 20 simulated datasets were generated.
The percentage correct C is the percentage of datasets
where the inferred interval count matrix C* exactly
equals the true simulated matrix C for the sample. The

copy number error is
1

m (n − 1)

∣∣C − C∗∣∣
2, that is the

average error per copy number estimate made, or per
entry in C, where error is the Euclidean distance
between C and C*. The purity error is

∣∣μ2 − μ∗
2

∣∣, that is
Table 1 Performance of the algorithms on simulated data with one tumor population (n = 2)

% correct C Copy number error (median) Purity error (median)

k THetA ASCAT CNAnorm ABSOLUTE THetA ASCAT CNAnorm ABSOLUTE THetA ASCAT CNAnorm ABSOLUTE

3 100.0 85.0 40.0 70.0 0.0 0.0 0.103 0.000 0.004 0.040 0.068 0.010

4 90.0 55.0 8.3 50.0 0.0 0.0 0.163 0.013 0.004 0.037 0.064 0.010

5 85.0 50.0 6.7 15.0 0.0 0.013 0.185 0.160 0.004 0.062 0.038 0.075

6 55.0 40.0 0.0 15.0 0.0 0.026 0.291 0.433 0.006 0.063 0.066 0.157

7 30.0 15.0 0.0 10.0 0.031 0.036 0.445 0.471 0.005 0.069 0.108 0.149
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the distance between the true and inferred tumor purity.
We only calculated results for CNAnorm where the
inferred purity was <100% (there were between 12 and
15 trials for each k). Additional file 1, Figure S4 illus-
trates the results obtained by each algorithm on one of
the datasets when k = 7.
For this first set of simulations, we found that our

THetA algorithm computes both C and μ very accu-
rately over a range of copy numbers k. In particular,
THetA outperforms CNAnorm, ABSOLUTE and
ASCAT despite the fact that ASCAT uses additional
information (allele frequencies) that THetA does not
consider. Even with high amplitude copy number aber-
rations (k = 7) THetA on average estimates tumor pur-
ity within 0.5% of the true purity, compared to 6.9%,
10.8% and 14.9% by ASCAT, CNAnorm and ABSO-
LUTE respectively. Even when THetA does not estimate
all copy numbers across the genome correctly, it esti-
mates most copy numbers correctly and estimates the
copy number correctly for more segments than the
other algorithms (see Additional file 1, Figure S4).
Further results comparing THetA to CNAnorm for dif-
ferent read depth estimation errors are in Additional file
1, Figure S5.
We also compared THetA, CNAnorm, and ABSO-

LUTE using a second set of simulated mixtures of
tumor and normal cells created using real sequencing
data from an AML tumor sample and matched normal
sample (TCGA-AB-2965) from The Cancer Genome
Atlas (TCGA) [41]. This sample was chosen due to its
high purity (approximately 95% pure) and lack of copy
number aberrations. We spiked 10 copy number var-
iants of length 2.5 Mb at random non-overlapping posi-
tions in Chr20 (excluding the centromere) into the
tumor genome. As in the first set of simulations, the
copy number for each variant was chosen uniformly at
random from the range 0 (that is, homozygous deletion)
through k > 2 (amplification), up to a specified maxi-
mum copy number k = 5. (We did not run ASCAT on
this simulated data since this algorithm was designed
only for microarray data.) We again found that THetA
outperforms both CNAnorm and ABSOLUTE on all
measures (Figure 2). In particular, THetA estimates the
sample purity with an order of magnitude better accu-
racy (using the root mean squared error as a metric of
comparison as was done for ABSOLUTE [13]), and con-
sistently identifies more true copy number aberrations
than the other algorithms across different purity values
and sequencing coverage. In particular, THetA identifies
7.4 and 2.2 more copy number aberrations, on average,
than ABSOLUTE and CNAnorm, respectively, across all
purity values at 30× sequencing coverage. Even when we
relax the requirement that a copy number aberration
must be predicted with the correct copy number, and

instead count any non-normal copy number as correct,
THetA still outperforms the other algorithms (see Addi-
tional file 1, Figure S7). Further details of the simula-
tions are in Additional file 1, Section I.
Mixture of tumor subpopulations
We next evaluated the performance of THetA on a
simulated mixture containing two subpopulations of
tumor cells with different copy number aberrations and
an admixture with normal cells. Thus, there were three
distinct subpopulations in the mixture (n = 3). Our
method for constructing the simulated data was the
same as for the first set of simulations, as described in
the previous section, with a fixed read depth estimation
error of � = 0.02 along with a few minor changes (see
Additional file 1, Section I).
Table 2 shows how the three algorithms performed on

the simulated datasets with interval count matrix C Î
Cm,3,3 and mixing vector μ and read depth estimation
error � = 0.02. The percentage correct C and copy
number error are defined as for Table 1. We defined the
purity error as the distance between the true and pre-
dicted fraction of tumor cells in the sample. Thus, pur-
ity error is

∣∣(1 − μ1) − (
1 − μ∗

1

)∣∣
2, as the proportion of

tumor cells in the sample is 1- μ1. Since CNAnorm and
ABSOLUTE are not able to infer multiple subpopula-
tions, their percentage correct C = 0, and we list only
their purity estimates. We only calculated results for
CNAnorm where the inferred purity was <100% (there
were between 14 and 18 trials for each m).
While the performance of THetA was less precise in esti-

mating all copy numbers (that is, the entries in C) exactly
than for the tumor with a normal admixture (n = 2),
THetA maintains a good level of accuracy as the estimates
are near the true interval copy numbers. THetA correctly
computes on average 94% of the copy numbers across all
subpopulations in the mixture when there are m = 12
intervals with varying copy number in the subpopulations.
THetA also estimates the tumor purity with good accuracy
(within 3.6% of the true purity when m = 12), whereas
both CNAnorm and ABSOLUTE gravely misestimate the
tumor purity by 30.1% and 54.7%, respectively. One possi-
ble explanation for these errors is that both of these meth-
ods do not account for multiple subpopulations in the
sample and therefore tend to report tumor purity as either
the fraction of the sample representing the largest subpo-
pulation, or as an average of the fractions of all tumor sub-
populations. Thus, THetA successfully recovers a complex
mixture of two tumor subpopulations and a normal cell
admixture directly from the observed read depth.

Results from breast cancer sequencing data
We analyzed Illumina paired-end sequencing data from
three breast cancer genomes and their matched normal
samples from [25]. We downloaded the data from the
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Figure 2 Comparison of THetA to CNAnorm and ABSOLUTE on simulated mixtures from real sequencing data. (A) Comparison of true
and inferred tumor purity by THetA, CNAnorm and ABSOLUTE on simulated mixtures of DNA sequencing data from an acute myeloid leukemia
sample and a matched normal sample. Gray dashed line indicates True Purity = Inferred Purity. Below each plot are the root mean squared
errors (RMSEs) for each method. (B) Comparison of the number of copy number aberrations correctly predicted (defined as 50% reciprocal
overlap in position and correct integral copy count) by each method for varying tumor purity and sequence coverage. Num TP is the number of
true positive copy number aberrations predicted. In most cases, THetA outperforms both CNAnorm and ABSOLUTE. Similar results counting
aberrations with correct position (with 50% reciprocal overlap) but allowing for difference between true and predicted copy number are in
Additional file 1, Figure S7. RMSE: root mean squared error.
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European Genome-phenome Archive (accession number
EGAD00001000138). This includes two samples that
were sequenced to a depth of approximately 40× cover-
age and one sample, PD4120a, that was sequenced with
approximately 188× coverage. We used the BIC-Seq seg-
mentation algorithm [32] to partition the 22 autosomes
into intervals according to read depth. We formed an
interval count vector from all intervals longer than 50
kb, focusing on these longer genomic intervals because
their observed read depth will have lower variance (see
Additional file 1, Figure S11). Most intervals removed in
this step are relatively short for the samples analyzed.
For the two 40× coverage genomes changing this cutoff
to 10 kb resulted in the same partition as when 50 kb
was used. For the 188× genome we only removed nine
intervals from consideration when the threshold was 50
kb and seven when the threshold was 10 kb. The results
from THetA are identical for the two different sets of
intervals. We assume that most of the tumor genome
does not undergo copy number aberrations, and thus
the mode of the read depth vector is a normal baseline.
We set lower and upper bounds on the copy number
for each interval from this baseline. For further details,
see Additional file 1, Section N.
Breast tumor: 188× sequence coverage
We analyzed the 188× sequenced tumor PD4120a using
our THetA algorithm. We consider that the mixture
contains a normal admixture with a single tumor subpo-
pulation (n = 2) and a normal admixture with two dis-
tinct tumor subpopulations (n = 3). This sample was
extensively annotated by [25] and thus acts a positive
control for THetA.
Table 3 shows the tumor purity and copy number

aberrations identified by the various algorithms on the
188× coverage breast cancer genome (sample PD4120a).
Assuming a single tumor subpopulation admixed with
normal cells (n = 2), THetA’s estimate of tumor purity
(65.7%) and inferred copy number aberrations are very
close to those obtained by CNAnorm [18] (67.2%),
ASCAT (66.0%) [12] and ABSOLUTE (65%) [13]. How-
ever, all of these estimates are lower than the tumor
purity of 70% reported by [25], who identified a second
tumor subpopulation in the sample (see below). Because

ABSOLUTE, ASCAT, CNAnorm and THetA (with n =
2) do not model multiple tumor subpopulations, their
reported tumor purities are an average of the fraction of
aberrant cells amongst the different subpopulations in
the tumor sample, and thus generally smaller than the
tumor purity estimate obtained when we allow more
than one tumor subpopulation (see below). In addition,
we note that ASCAT used additional information (B-
allele frequencies), while THetA, CNAnorm and ABSO-
LUTE used only read depth. The identified aberrations
do not distinguish between those in different subpopula-
tions, but do include several previously reported in
breast cancer [42-47]. We also ran THetA using chro-
mosome arms as the intervals, rather than the BIC-Seq
intervals. Using chromosome arms, we estimated a simi-
lar sample purity of 61.7% and predicted the same set of
copy number aberrations as with the BIC-Seq intervals.
Assuming n = 3 subpopulations - normal cells plus

two distinct subpopulations of cancer cells - we analyzed
a subset of longer intervals that are most informative for
copy number analysis (Table 3). THetA’s estimate of
72% tumor purity is slightly higher than the 70%
reported by [25]. Moreover, THetA’s estimate of tumor
purity is higher than the approximately 65% to 67%
tumor purity given above for ABSOLUTE, ASCAT and
CNAnorm, three methods that assume only one tumor
subpopulation. Our BIC model selection chose this solu-
tion as a better representation of the data (Figure 3A),
than the solution that only considers a mixture of nor-
mal cells and a single tumor population. Using the n =
3 model we identified all copy number variants identi-
fied above for a single tumor population, plus some
additional aberrations including subclonal deletions of
chromosomes 8, 11, 12, 14 and 15 not identified under
that model (nor by the other algorithms). This demon-
strates THetA’s ability to identify copy number aberra-
tions in subpopulations of cells. While many of the
clonal and subclonal copy number aberrations found by
THetA are identical to those reported by [25], there are
several notable differences including: a clonal deletion of
16q and different classification of aberrations on chro-
mosomes 1 and 22 as clonal vs. subclonal. Table 3 dis-
plays the complete set of differences where aberrations
in bold indicate a difference between our predictions
and those reported by [25]. Aberrations reported by [25]
include several chromosomes not considered as part of
our analysis (2, 6, 7, 9, 18 and 21). In Table 3 italicized
aberrations were not input to the n = 3 THetA analysis,
and were inferred by examination of read depth ratios
corrected for normal admixture and tumor cell fractions
derived from THetA (see Additional file 1, Section Q).
We investigated further the following three differences

between our analysis and [25]: (1) clonal deletion of
chromosome 16q, (2) clonal vs. subclonal amplification

Table 2 Performance of the algorithms on simulated data
with two tumor populations (n = 3)

% correct C Copy number
error (median)

Purity error (median)

m THetA THetA THetA CNAnorm ABSOLUTE

6 35.0 0.118 0.081 0.202 0.458

8 45.0 0.075 0.052 0.276 0.477

10 35.0 0.071 0.055 0.177 0.434

12 45.0 0.059 0.036 0.301 0.547

Oesper et al. Genome Biology 2013, 14:R80
http://genomebiology.com/2013/14/7/R80

Page 8 of 21



of chromosome 1q and (3) clonal vs. subclonal deletions
in chromosome 22q. We analyzed these differences
using two complementary approaches. First, we analyzed
the distribution of tumor/normal read depth ratios in 50
kb bins across the genome. This distribution contains
distinct peaks corresponding to copy number aberra-
tions occurring in different subpopulations. After cor-
recting the read depth ratios for a normal admixture
using a linear scaling (see Additional file 1, Section O),
peaks corresponding to clonal aberrations will occur at
ratios divisible by 0.5, whereas peaks corresponding to
subclonal aberrations will not (Figure 3B). Second, we
analyzed a virtual SNP array that we constructed from
the read counts and the variant allele frequencies

derived from aligned reads at known germline SNPs
(see Materials and methods). Copy number aberrations
occurring in different subpopulations appear as distinct
clusters in a scatter plot of read count vs. variant allele
frequencies (Figure 3C).
The first difference we analyzed was our prediction of

a clonal deletion of chromosome 16q, which was not
reported by [25]. Visual inspection of the virtual SNP
array data for chromosome 4 (predicted to be a clonal
deletion by both methods) and chromosome 16q shows
three distinct clusters - one for regions of normal copy
(centered at a variant allele frequency of 0.5) and two
clusters (positioned symmetrically around a variant allele
frequency of 0.5) with a lower read count that indicate a

Table 3 Comparison of various algorithms on the 188× coverage breast cancer genome

Sample PD4120a

Algorithm % normal
admixture

Clonal
(% tumor purity)a

Subclonal (%)a

THetA, n = 2 34.3% Del: 1p, 4q, 13, 16q, 22q -

(segmentation) +1: 1q

(65.7%)

THetA, n = 2 (chromosome arms) 38.3% Del: 1p, 4q, 13, 16q, 22q -

+1: 1q

(61.7%)

CNAnormb

(chromosome arms)
32.8% Del: 1p, 4q, 13, 16q, 22q -

+1: 1q

(67.2%)

ASCATc 34% Del: 1p, 4q, 13, 16q, 22q -

(virtual SNP array) +1: 1q, 17q, 18, 19, 20

(66.0%)

ABSOLUTEd (segmentation) 35% (65.0%) -

THetA 28.0% Del: 1p, 4q, 16q, 22q12.2- Del: 13, 22q11.2-12.1

n = 3 13.3 +1: 1q

(72.0%) (61.9%)

Del: 8, 11, 12, 14, 15

(10.1%)

Del: 2, 7, 4p, 6,
9, 18, 21

Nik-Zainal et al. (2012) 30% Del: 4q Del: 13, t(1;22)

[25] +1: 1q (47.6%)

(70.0%) Tetraploid with:

Del(-2): 2, 7

Del(-1): 6, 8, 9, 11, 12,

14, 15, 18, 21

(9.8%)

a Entries in bold are differences between THetA and [25]. Entries in italics were not input to the n = 3 THetA analysis but were inferred using THetA’s output.
b When CNAnorm was run using BIC-Seq intervals the normal admixture was estimated at 6.7%, therefore we report results from CNAnorm using chromosome
arms. CNAnorm does not return integer copy numbers - and thus we report aberrations where the returned copy number was within 0.15 of the nearest integer,
other aberrations were considered inconclusive.
c For ASCAT we use virtual SNP array data as input. ASCAT performs its own segmentation; we list only the large aberrations.
d We report here the maximum likelihood solution returned by ABSOLUTE when considering only karyotypes. When considering only somatic copy number
aberrations or a combination, ABSOLUTE infers a tetraploid solution. For this sample, ABSOLUTE returns copy numbers for only a subset of the input intervals, so
we do not report specific copy number aberrations predicted.
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Figure 3 Analysis of the 188× coverage breast tumor PD4120a. (A) (Left) Read depth ratios (gray) and the copy number aberrations inferred
by our algorithm when n = 3 including the normal population (black), dominant (clonal) tumor population (blue) and subclonal tumor
population (red). (Right) A reconstruction of the tumor mixture with the inferred aberrations and estimated fraction of cells in each
subpopulation. (B) Read depth ratios in 50 kb intervals after centering so chromosome 3 has a mean of 1 and correcting for 28% normal
admixture using a simple linear scaling. (C) Virtual SNP array results showing distinct clusters of regions according to the number of reads
containing each SNP and fraction of reads supporting the variant allele. (D) Virtual SNP array data comparing variant allele fractions and read
counts for chromosomes 4 and 16. This data demonstrate that both chromosomes have undergone the same type of copy number aberration,
which we predicted to be a clonal deletion in 72% of cells in the sample. (E) Virtual SNP array data for chromosomes 13 and 22. Chromosome
22q11.2-12.1 and chromosome 13 appear to be affected by the same type of aberration, which we predicted to be a subclonal deletion in
61.9% of cells in the sample. In contrast, 22q12.2-13.3 is different, and the data are consistent with a clonal deletion. See Additional file 1, Figure
S13 for further details.
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deletion (Figure 3D). These deletion clusters have vir-
tually identical locations in the scatter plot for chromo-
somes 4 and 16q - supporting the conclusion that these
deletions occur in the same fraction of the tumor sam-
ple. Comparing the difference between the observed and
expected read depth ratios in these deletions for differ-
ent aberration fractions (the percentage of the sample
containing the aberration) reveals that the optimal aber-
ration fraction for both deletions is very similar - addi-
tional evidence that these deletions occur in the same
fraction of the tumor sample (see Additional file 1, Sec-
tion Q and Figure S12). Given the strong evidence for
this chromosome 16 deletion, we suspect that its omis-
sion from [25] was an oversight rather than a deficiency
of the analysis.
The second difference is that we predicted chromo-

some 1q to be amplified in a subclonal population con-
sisting of 61.9% of the cells in the sample, whereas [25]
indicated that this aberration is clonal (occurring in 70%
of cells in the sample). Since this was the only large
amplification present in the sample, we were not able to
compare its variant allele frequencies to a different
amplification (as we did with chromosomes 4 and 16
above). Therefore, we examined the read depth data
more closely. Visual inspection of read depth ratios after
adjusting for our predicted 28% normal admixture
(Figure 3B) and the 30% normal admixture predicted by
[25] (see Additional file 1, Figure S11) shows that the
corrected read depth ratios for chromosome 1q do not
match a ratio of 1.5 well (as would be expected if there
was a clonal amplification with copy number 3) - an
indication that 1q is a subclonal aberration. Comparison
of read depth ratios for 1q to other clonal aberrations
supports our prediction that 1q is a subclonal deletion
(see Additional file 1, Figure S12).
The final difference involves chromosome 22q; we

predicted that it contains both clonal and subclonal
deletions, while [25] only reported subclonal events. In
particular, [25] reported that a deletion of a derivative
chromosome from a translocation between chromo-
somes 1 and 22 is the rearrangement responsible for the
subclonal deletion observed on 22q. We found that 1p
(see Additional file 1, Figure S12) and the distal portion
of 22q (cytogenetic bands 12.2-13.3) appear to be clonal
deletions, while the proximal portion of 22q (cytogenetic
bands 11.2-12.1) is a subclonal deletion. In particular,
the read-depth/variant-allele plot from the virtual SNP
array shows an oblong cluster for chromosome 22 that
only partially overlaps with the cluster for chromosome
13, a chromosome predicted by both methods to have
undergone a subclonal deletion (Figure 3E). This evi-
dence supports another possible sequence of rearrange-
ments: (1) A non-reciprocal translocation occurred
between chromosomes 1 and 22 (supported by the

output from the GASV algorithm [48] for clustering of
discordant reads as discussed in Additional file 1, Sec-
tion Q) resulting in the clonal loss of 1p and 22q12.2-
13.3. Following this translocation, two copies of
22q11.2-12.1 remained. (2) One of these remaining two
copies of 22q11.2-12.1 was deleted in a subclonal popu-
lation (see Additional file 1, Figure S13).
Breast tumor: 40× sequence coverage
We also analyzed two tumor samples from [25]
sequenced at approximately 40× coverage. For sample
PD4088a, the model of this mixture preferred by our
model selection procedure was a single clonal tumor
population with normal admixture fraction 41%. [25]
also reported this sample as clonal, although they did
not provide an estimate of tumor purity or copy number
aberrations. Further details of the analysis of this sample
are in Additional file 1, Section S and Figure S16.
We analyzed sample PD4115a, sequenced at approxi-

mately 40× coverage using THetA, again considering
the case where the mixture contains a normal admixture
with a single tumor subpopulation (n = 2) and a normal
admixture with two distinct tumor subpopulations (n =
3). Our BIC model selection chose the model where the
sample is a mixture of normal cells and two distinct
subpopulations of tumor cells (Figure 4A) over the
model where the sample contains a single tumor subpo-
pulation with a normal admixture. While [25] provided
some analysis of aberrations in this example, they did
not provide a complete tumor history as they did for
the 188× coverage genome. Complete information of
our analysis of this sample, when we consider it as a
mixture of a single tumor subpopulation along with a
normal admixture, is in Additional file 1, Section R and
Figure S14. For the model considering multiple tumor
subpopulations, we analyzed a subset of longer intervals
that are most informative for copy number analysis
(further details are in Materials and methods). We esti-
mated a normal admixture of 24% (tumor purity 76%)
and two tumor subpopulations of 43.3% and 32.7%. The
presence of these subclonal populations is apparent
from visual inspection of corrected read depth ratios
after centering the distribution (ratios in chromosome
20 - which is predicted to contain no copy number
aberrations - are translated to have a mean ratio of 1)
and correction for a normal admixture (Figure 4B). In
particular, a large peak near a corrected ratio of 0.5
represents clonal deletions (Figure 4C). In addition, two
overlapping, but distinct smaller peaks appear between
the clonal deletions and regions of normal copy (Figure
4D and 4E). These peaks represent two distinct subclo-
nal populations in the tumor sample. A statistical test of
the difference in read depth ratios between these peaks
supports the conclusion that these subclonal populations
are indeed distinct (see Additional file 1, Figure S15).
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Figure 4 Analysis of the 40× coverage breast tumor PD4115a. (A) (Left) Read depth ratios (gray) and the inferred copy number aberrations
calculated by our algorithm when n = 3 including the normal population (black), dominant (clonal) tumor population (blue) and subclonal
tumor population (red). (Right) A reconstruction of the tumor mixture with the inferred aberrations and estimated fraction of cells in each
subpopulation. (B) Distribution of read depth ratios over 50 kb intervals after centering and correction for 24% normal admixture using a simple
linear scaling. Several peaks fall near to expected corrected ratios (0.5, 1, 1.5, 2). Two overlapping but distinct peaks can be seen indicating
multiple subclonal deletions in similar proportions (labeled D and E). (C) (Top) Read depth ratios in 50 kb bins for chromosomes 5, 9 and 11,
each of which has a clonal deletion (purple). (Bottom) Distribution of read depth ratios after correction for the aberration fraction of 76% of the
sample. (D) (Top) Read depth ratios in 50 kb bins for chromosomes 3, 4 and 5, each of which has a subclonal deletion (blue). (Bottom)
Distribution of read depth ratios after correction for the aberration fraction of 43.3% of the sample. (E) (Top) Read depth ratios as in (D), but a
different subclonal deletion is highlighted (red). (Bottom) Distribution of read depth ratios after correction for the aberration fraction of 32.7% of
the sample.
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Virtual SNP array analysis of this sample was difficult
due to the lower sequence coverage. This leads to over-
lapping clusters in the read-count/variant-allele plot, as
well as distinct banding resulting from the integrality of
read counts (Figure 5A). The only clearly distinct clus-
ters are for highly amplified regions, which have corre-
spondingly higher read counts. Since our analysis for

this model used only a subset of chromosome intervals
to infer normal admixture and tumor subpopulations,
we were able to use the resulting genome mixing vector
to analyze other chromosomes that were not used in
computing the maximum likelihood solution. We ana-
lyzed several regions in chromosome 8 (Figure 5B), a
chromosome with a complicated amplification pattern.

Figure 5 Analysis of chromosome 8 in sample PD4115a. (A) Virtual SNP array data from this sample show few distinct clusters (compared
with the 188× sample in Figure 3A), with amplification of chromosome 8 (green) being the most prominent. (B) Read depth ratios for
chromosome 8 organized by genomic coordinate. (C) Histograms of read depth ratios for chromosome 8 corrected for 24% normal admixture,
indicating regions of copy numbers 2, 3 and 4 (cyan, orange and pink), with the latter two being clonal amplifications. (D) Variant allele
frequencies for chromosome 8. The region with copy number 4 (pink) has variant allele frequencies clustered around 0.5, suggesting duplication
of both chromosomal homologs, while the telomeric region with copy number 2 (cyan) has a loss of heterozygosity, suggesting a copy neutral
LOH event. LOH: loss of heterozygosity
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After correcting read depth ratios in 50 kb intervals in
this region for the estimated normal admixture of 24%,
three distinct peaks centered near ratios of 1, 1.5 and 2
were apparent, corresponding to integer copy numbers
of 2, 3 and 4, respectively, in the tumor sample (Figure
5C). The amplifications are clonal aberrations. Interest-
ingly, the variant allele frequencies for germline SNPs in
the regions corresponding to the peak at corrected ratio
2 (copy number 4) are centered at 0.5. This implies that
both homologs of chr8q13-21 are present at equal copy
number in this region; that is, there is a duplication of
both homologs (Figure 5D). In addition, we observed
that the variant allele frequencies for chromosome 8p
are centered at the values of 0 and 1, although this seg-
ment of the chromosome is inferred to have copy num-
ber 2. This indicates that there was a copy-neutral loss
of heterozygosity (LOH) in this region. LOH in 8p has
been previously reported in breast cancer [49,50] and
copy neutral LOH in 8p has been reported in cell line
data for other cancers [51].

Discussion
We introduce Tumor Heterogeneity Analysis (THetA),
an algorithm that infers the most likely collection of
genomes and their proportions from high-throughput
DNA sequencing data, in the case where copy number
aberrations distinguish subpopulations. We show that
THetA outperforms three other methods, CNAnorm
[18], ASCAT [12] and ABSOLUTE [13], for inferring
tumor purity and identifying copy number aberrations
in the case of a single tumor cell population admixed
with normal (non-cancerous) cells. Moreover, we
demonstrate that THetA successfully estimates tumor
purity even at low purity (10%) and with modest
sequence coverages (approximately 30×) on both real
and simulated data. In contrast to other recent methods
[12,13] that first infer average ploidy across the genome,
THetA simultaneously estimates tumor purity and com-
putes the integral copy number of each genomic seg-
ment/interval. These advantages result from THetA
exploiting the large number of data points (reads) that
measure copy number aberrations in high-throughput
sequencing data - information that is not available from
SNP arrays.
We also demonstrate that THetA successfully decon-

volves a tumor sample into a normal population and
multiple tumor subpopulations, inferring the proportion
of each subpopulation in the mixture, and partitioning
copy number aberrations into clonal and subclonal
populations. Other existing methods, such as ASCAT
[12], ABSOLUTE [13] and CNAnorm [18], do not
directly infer multiple subpopulations. Further, we show
that these methods can produce highly inaccurate esti-
mates of tumor purity on samples containing multiple

subpopulations, and are sometimes unable to identify
some copy number aberrations that occur in subpopula-
tions of tumor cells. In addition, THetA reports all pos-
sible solutions of interval count matrices C and genome
mixing vectors μ with the same maximum likelihood,
allowing users to explore different maximum likelihood
solutions. Thus, THetA is an attractive alternative to
these methods.
We demonstrated the advantages of THetA using

three breast cancer genomes sequenced in [25]: one
sequenced at approximately 188× coverage and two at
approximately 40× coverage. Nik-Zainal et al. [25]
showed how a large amount of information about a
tumor’s evolutional history can be derived by analyzing
clonal and subclonal mutations in high-coverage
sequencing data. Our THetA algorithm automates
some of the manual analysis involved in such recon-
structions. For the 188× genome, our results are lar-
gely concordant with the extensive analysis and
annotation of this sample in [25]. THetA automatically
recovered nearly all of the copy number aberrations
reported in [25], but with some differences in the clas-
sification of aberrations as clonal or subclonal. Allele
data not used by THetA provides external evidence
that support the THetA results in several cases. On
one of the 40× coverage genomes, we identified two
previously unreported tumor subpopulations in nearly
equal proportions, as well as a 24% normal admixture.
These results are supported by statistical comparisons
of read depth ratios, and also allowed us to identify
copy-neutral LOH on chromosome 8q. Thus, we
demonstrated that it is possible to identify multiple
tumor populations successfully in a single sample by
considering a subset of genomic intervals. Further, we
did so for an approximately 40× sequenced tumor,
demonstrating the ability to identify intra-tumor het-
erogeneity at sequence coverages that are the current
standard in cancer sequencing studies.
THetA uses only read depth for inferring intra-tumor

heterogeneity, in contrast to other methods [12,13,17,25]
that use allele frequencies of heterozygous germline
SNPs and somatic mutations. Since copy number aberra-
tions - even those of a modest size - affect a large number
of reads, THetA is able to infer multiple tumor subpopu-
lations directly from sequencing data. However, THetA
also has some limitations. First, the reliance on copy
number aberrations means that THetA is unable to iden-
tify tumor subpopulations that do not contain copy num-
ber aberrations. As copy number aberrations are
ubiquitous in many types of cancers, particularly solid
tumors, we expect that THetA will prove useful for ana-
lyzing a wide range of different cancer samples. Second,
while the mathematical model used by THetA allows for
any number of subpopulations, in practice the number of
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subpopulations that can be correctly inferred depends on
having at least one copy number aberration that distin-
guishes every subpopulation. Finally, THetA’s computa-
tion time increases with an increasing number of
subpopulations.
Our focus in the development of THetA was to

address rigorously the difficult problem of analyzing
tumor purity and subclonal copy number aberrations
from DNA sequencing data. A logical next step is to use
the output from THetA to help predict single-nucleotide
mutations in tumor samples and/or assess the clonality
of somatic mutations, both challenging problems in
their own right. Carter et al. [13] and Nik-Zainal et al.
[25] show that once tumor purity is correctly estimated,
then this value can be used to analyze the clonality/sub-
clonality of somatic mutations. Incorporating the addi-
tional signal of variant allele frequencies into the
probabilistic model, as well as extending the model to
allele-specific copy number changes [52], are important
directions for future work. Ultimately, a desirable goal is
to integrate into a single probabilistic framework the
detection of all types of somatic aberrations (single
nucleotide, copy number and rearrangements) with the
estimation of tumor purity and the derivation of tumor
subpopulations. Finally, further algorithmic improve-
ments in THetA would help in the analysis of more
complicated tumor samples that have more intervals
(for example, smaller copy number aberrations), higher
amplitude copy number aberrations, more subpopula-
tions or more complicated rearrangements; for example,
due to breakage/fusion/bridge (B/F/B) cycles [53], chro-
mothripsis [54] or extrachromosomal amplifications
[55]. THetA runs in polynomial time for a mixture of
two genomes with intervals of equal weight, but the
question of the complexity of the MLMDP for n > 2
remains open.
A number of other techniques have recently been used

to study intra-tumor heterogeneity. For example [56]
uses expression profiles across different individuals to
identify differentially expressed genes with respect to
healthy cells at the cancer site of origin. Single-cell
sequencing and multi-region sequencing from a primary
tumor are alternative strategies that have been success-
fully employed [23-29]. As these technologies improve
they will likely further contribute to our understanding
of intra-tumor heterogeneity. However, sequencing of
primary tumor samples as well as matched tumor/
metastasis samples will remain a dominant protocol for
some time. Thus, algorithms, such as THetA, ABSO-
LUTE, ASCAT and others, that can derive information
about intra-tumor heterogeneity from DNA sequencing
of tumor samples are a useful complement to other
technologies and techniques for tumor heterogeneity
studies.

Conclusions
Tumors are highly heterogeneous with individual cells
in a tumor typically having different complements of
somatic mutations. Highly accurate estimates of tumor
purity and tumor subpopulation frequencies are neces-
sary for investigating intra-tumor heterogeneity from
single tumor samples. We introduce THetA, an algo-
rithm that infers the most likely collection of genomes
and their proportions from high-throughput DNA
sequencing data, in the case where copy number aberra-
tions distinguish subpopulations. We show the power of
THetA with both simulated and real sequencing data -
demonstrating the ability to identify intra-tumor hetero-
geneity (in particular subclonal copy number aberra-
tions) at modest sequence coverages (approximately
40×) that are the current standard in cancer sequencing
studies.

Materials and methods
Intervals and counts: probability model
In this section we derive the probability P(r|C, μ) in the
maximum likelihood mixture decomposition problem
(MLMDP).
Single genome
Following the usual assumptions (for example, the
Lander-Waterman model), we assume that the starting
positions of reads in a cancer genome are uniformly dis-
tributed over its length. The probability of a read from a
cancer genome aligning to an interval Ij in the reference
genome depends on: (i) the number of copies of the
interval in the cancer genome, (ii) the length of the
interval and (iii) possible difficulties in aligning reads to
Ij due to repetitive sequence or other effects. We first
describe the model under the simplifying assumption
that there are no alignment difficulties and all the inter-
vals in I are of equal length, which without loss of gen-
erality we set to length 1. Below we show how to
remove these restrictions by incorporating an interval
weight vector w into the model, which assigns a weight
to each interval in proportion to its length or mappabil-
ity. Let c = (cl, ..., cm) be the (unknown) number of
copies of each interval in the cancer genome. Then the
probability pj that a read aligns to Ij satisfies:

pj =
cj

|c|1
where |c|1 =

∑m
j=1 cj is the l1-norm of c. We use the

notation:

x̂ =
x

|x|1
to denote a normalized vector. Thus, the observed read

depth vector r is the result of r =
∑m

j=1 rj independent
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draws from a multinomial distribution with parameter
p = ĉ; that is, r ∼ Mult

(
r;ĉ

)
.

We emphasize that the number of reads aligning to each
interval are not independent random variables. As the total
number of reads becomes extremely large, the multinomial
distributions will converge to independent Poisson distribu-
tions in each interval. However, even with the millions to
billions of reads produced by high-throughput DNA
sequencing, the effects of using a finite number of reads are
an issue in cancer genome sequencing. This is because
large copy number changes - including the gain and loss of
whole chromosomes - are common in cancer genomes. A
large deletion or duplication will affect the number of reads
observed in other intervals; for example, if we consider the
22 autosomes, a homozygous deletion of chromosome
1 will reduce the effective length of the cancer genome by
8.65%, altering the expected number of reads observed
in other intervals (see Additional file 1, Figure S1).
Mixture of genomes
Now suppose we sequence a tumor sample T and align
the obtained reads to the reference genome, observing a
read depth vector r = (r1, ..., rm) Î Nm. Let C = [cjh] be
the (unknown) interval count matrix and μ be the
(unknown) genome mixing vector for the tumor sample.
Here μ is required to be an element of the unit (n - 1)-

simplex �n−1 =

{
(μ1, . . . , μn)

T ∈ Rn|
n∑

h=1

μh = 1, and μh ≥ 0 for all h

}
.

Then the probability pj that a read aligns to Ij is the
ratio of DNA in T from Ij compared to the total
amount of DNA in the sample. That is:

pj =
(Cμ)j

|Cμ|1

Therefore, r is the result of r =
∑m

j=1
rj draws from a

multinomial distribution with parameter (Figure 1):

p = Ĉμ =
Cμ

|Cμ|1
That is r ∼ Mult

(
r; Ĉμ

)
.

Solving the maximum likelihood mixture decomposition
problem
We show here how to solve the MLMDP as a disjunc-
tion of separate convex optimization problems. The
negative log-likelihood of r as a function of the generic
multinomial parameter p ∈ �m−1 is:

Lr (p) = − log (P (r|p)) = − log

⎛⎜⎜⎜⎜⎝
(

m∑
j=1

rj

)
!

m∏
j=1

rj!

m∏
j=1

(
pj

)rj

⎞⎟⎟⎟⎟⎠ = −
m∑

i=1

ri log
(
pi

)
+ α (1)

where a is a constant, depending only on r. Finding
the multinomial parameter p that minimizes this nega-
tive log-likelihood function is straightforward. Using a
Lagrange multiplier to encode the constraint p ∈ �m−1,
one determines that the (unique) value p* maximizing
Lr(p) satisfies:

p∗
i =

ri
m∑

j=1
rj

Moreover, if the entries of r are integers (as they will
be for read counts) and C is permitted to be any inte-
ger-valued matrix, then the (unconstrained) solution:

p∗
i =

ri
m∑

j=1
rj

can be written in the form p = Ĉμ (see Additional file 1,
Section C). Thus, a solution of the MLMDP is obtained by
maximizing the multinomial likelihood over all p ∈ �m−1.
Constraints on C
In the Results section above, we described three natural
constraints on the interval count matrix C. We define
Ωm,n to be pairs (C, μ) where C satisfies the first two of
those conditions:

�m,n =
{
(C, μ) |c1 = 2m, cj ∈ Nm for j > 1, μ ∈ �n−1

}
(2)

Similarly, we define Ωm,n,k ⊆ Ωm,n to be the pairs (C,
μ) where C satisfies all three of the conditions:

�m,n,k =
{
(C, μ) |c1 = 2m, cj ∈ {0, . . . , k}m for j > 1, μ ∈ �n−1

}
(3)

In the following, we will use Ω to refer to either Ωm,n

or Ωm,n,k, as appropriate. Given a pair (C, μ) Î Ω, we
define the negative log-likelihood of the observed read
depth vector r using the multinomial model to be:

Lr (C, μ) = − log (P (r|C, μ)) = −
m∑

i=1

ri log
((

Ĉμ
)
i

)
+ α (4)

For an observed r, our goal is to find the C and μ that
minimize (4). We define the following optimization pro-
blem where the domain of (C, μ) can be either of the
domains Ω defined above:(

C∗, μ∗) = argmin(C,μ)∈�Lr (C, μ) = argmin(C,μ)∈�Lr
(
Ĉμ

)
(5)

Since all entries of C are positive integers and all μj
are positive reals, (5) is a mixed integer problem. In gen-
eral, mixed integer linear programming (MILP) pro-
blems are NP-hard to solve [57]. In our case, the
objective function is a non-linear function of C and μ,
meaning that even sophisticated MILP solvers are unli-
kely to be much benefit for this problem.
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A coordinate transformation
Rather than attempting to solve the optimization pro-
blem (5) as a generic MILP, we derive a coordinate
transformation that allows us to solve this problem as a
constrained optimization problem in ℝm. First, note that
a pair (C, μ) Î Ω defines a probability distribution Ĉμ.

We define P� =
{
Ĉμ| (C, μ) ∈ �

}
to be the space of all

such probability distributions for all (C, μ) Î Ω. Note
that only Ĉμ, and not (C, μ), is identifiable from the
observed data r. We prove the following theorem in
Additional file 1, Section D.
Theorem 1. Suppose p Î PΩ, so p = Ĉμ, for some (C,

μ) Î Ω. Then there exists μ’ Î Δn - 1 such that p = Ĉμ′

where Ĉ = (ĉ1, . . . , ĉn).
Now suppose the interval count matrix C is fixed, and

let H (C) =
{
Ĉμ|μ ∈ �n−1

}
denote the set of convex

combinations of the normalized column vectors in C.
Then (5) reduces to the problem of finding argmin p Î

H(C) Lr(p). Since the objective function Lr(p) is separ-
able convex (see Additional file 1, Section F) and the
domain H(C) is convex, this problem is easy to solve
using standard convex optimization routines.
Let Cm,n,k =

{
C| (C, μ) ∈ �m,n,k

}
be the set of interval

count matrices C appearing in Ωm,n,k. Considering all
interval count matrices C ∈ Cm,n,k gives the following
optimization problem:

minLr (p) subject to p ∈ ∪C∈Cm,n,kH (C) (6)

Figure 6 illustrates the geometry of this optimization
problem. Since in general a union of convex sets is not

convex, the constraint set in (6) is not convex. A brute-
force approach to this problem is to enumerate all C Î
Ĉμ, but the number of such matrices is exponential in
m and n. Note that in the Results section, THetA
demonstrates improved performance in computing C
and μ when the number m of intervals increases in the
case where n = 3. This is expected from the convex geo-
metry used by our algorithm: for a fixed interval count
matrix C, each value Ĉμ, defines a 2-plane in Δm - 1

(see Additional file 1, Figure S2). These planes become
more sparse in Δm - 1 as m increases, and thus our algo-
rithm is less prone to overfitting. In the next section, we
show that in the n = 2 case we can restrict the space of
C matrices to a number that is polynomial in m.

A more efficient algorithm for the MLMDP
We derive an algorithm to solve the MLMDP (as formu-
lated in (6)) that is polynomial time in m when n = 2.
This algorithm relies on the observation that it is neces-
sary to consider only a subset of interval count matrices
C whose entries satisfy ordering constraints imposed by
the read depth vector r. We say that two vectors a =
(a1, ..., am) and b = (b1, ..., bm) Î ℝm have compatible
order if for all 1 ≤ i, j ≤ m, ai ≤ aj if and only if bi ≤ bj.
Note that the vector x = (s, ..., s) Î ℝm for any s Î ℝ
has compatible order with all vectors in ℝm.

Theorem 2. Suppose p∗ = Ĉ∗μ∗ = argminp∈P�m,n,k
Lr (p).

Then we have the following:
1. p* and r have compatible order.
2. If n = 2 and μ2

* > 0, then r and c2
* have compatible

order.

Figure 6 Convex geometry of the MLMDP used in the THetA algorithm. (Left) For a single cancer genome with normal admixture, the
interval count vector c2 of the cancer genome and tumor purity μ define a collection of rays Cμ, for μ Î 0[1]. (Here we show the space Ω3,2,3).
(Right) Normalizing these rays, we obtain the parameter p = Ĉμ, used in the multinomial likelihood. These parameters are embedded in the
simplex Δm - l(gray triangle with a black outline) because their entries sum to one. (This is the space P�3,2,3.) For a fixed interval count matrix C
= (c1, c2) a blue ray (left) defined by Cμ is mapped to the corresponding red/green ray (right) connecting ĉ1 to ĉ2 (right), the normalized
columns of C, as described in Theorem 1. For n > 2, hyperplanes are mapped to hyperplanes (see Additional file 1, Figure S2). We show p∗ = r̂,
the maximum likelihood solution when interval counts are not constrained to be integers. Note that this point is not on any of the rays defined
by interval count matrices. Rays that satisfy the ordering constraint from Theorem 2 are in green. MLMDP: maximum likelihood mixture
decomposition problem
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Theorem 2 (proof is in Additional file 1, Section E)
leads to a more efficient algorithm where we evaluate
only matrices C = (c1, c2) ∈ Cm,2,k where c2 has compati-
ble order with r. The number of such matrices is O(mk)
and enumeration of these matrices is O(mk+1) (see Addi-
tional file 1, Section E). Note that if n ≥ 3, that is, there is
more than one cancer genome in the mixture, then the
ordering constraints do provide some restrictions on the
entries of C (see Additional file 1, Section E). The reduc-
tion is not enough to make the space have polynomial
size (in m), but the restrictions are useful in practice.

Intervals of unequal length and mappability
Thus far, we made the simplifying assumptions that all
intervals in I are of equal length and that reads are
aligned to each interval without any biases from the
DNA sequence of the interval. Now we consider the
general case where each interval Ij has an associated
positive weight wj. These weights can model both inter-
val lengths as well as different mappability of intervals -
that is, the probability of reads aligning uniquely to an
interval in the reference genome can depend on the
repeat content of the interval [58]. Let w = (w1, ..., wm)
be the interval weight vector. In practice, we use the
read depth vector over I for the paired normal sample
as w, which allows us to implicitly incorporate informa-
tion on interval length, mappability and GC content
into the model.
Consider a single cancer genome where c = (c1, ..., cm)

is the number of copies of each interval in the cancer
genome. Then the probability pj of a read aligning to
interval Ij in the reference genome is:

wjcj
m∑

i=1
wici

=
wjcj

|Wc|1

where W is a diagonal matrix such that Wj,j = wj.
Therefore, the observed read depth vector r is obtained
by r =

∑m
j=1 rj independent draws from a multinomial

distribution with parameter:

p =
(

w1c1

|Wc|1
, . . . ,

wmcm

|Wc|1

)
We define the linear transformation F: ℝm ® ℝm to

be �(v) = Ŵv. Thus, p = F(c) and r ~ Mult(r; F(c)).
As in the unweighted case above, if the entries in c are
allowed to be arbitrary positive integers, then for any
integer read depth vector r and non-negative weight
vector w we can always find the maximum likelihood
solution to the corresponding weighted MLMDP (see
Additional file 1, Section G).
Similarly, if we consider a tumor mixture T with

interval count matrix C and genome mixing vector μ,

the probability pj of a read aligning to interval Ij satis-
fies:

pj =
wj(Cμ)j

m∑
i=1

wi(Cμ)i

=
(WCμ)i

|WCμ|1
= �(Cμ)

Given a read depth vector r and an interval weight
vector w, we formulate the analogous maximum likeli-
hood mixture decomposition problem of identifying the
underlying interval count matrix C and genome mixing
vector μ that maximize the multinomial likelihood Mult
(r|F(Cμ)).
Theorem 3 (see Additional file 1, Section G for the

proof) relates the optimal (C, μ) in the cases of equal
and unequal weighted intervals.
Theorem 3. Let F-1 : ℝm ® ℝm be �−−1 (v) = Ŵ−1v.

We have the following set equality:

argmin(C,μ)∈�m,nLr (� (Cμ)) = argmin(C,μ)∈�m,nL�−1(r)
(
Ĉμ

)
Using this theorem, we find the optimal solution in

the weighted interval case by solving the unweighted
interval case; for example, using the techniques above.
As stated, Theorem 3 applies to the case where (C, μ) Î
Ωm,n (that is, the entries of C are unbounded). However,
we can still leverage the logic behind this result when
we add a restriction that C ∈ Cm,2,k. While we do not
expect that argmin(C,μ)∈�m,2,kLr (� (Cμ)) is equal to

argmin(C,μ)∈�m,2,kL�−1(r)
(
Ĉμ

)
, we may assume that a

solution to argmin(C,μ)∈�m,2,kLr (� (Cμ)) will satisfy the

same order constraints as L�−1(r)
(
Ĉμ

)
. Namely, we

expect that the optimal solution will have compatible
order with F-1(r) (Theorem 2). This is because: (1) the
unconstrained optima (when (C, μ) Î Ωm,n) for the two
likelihood functions are equal, (2) the objective function
Lr(p) is well behaved (separable convex) and (3) the
transformation F is linear. Thus, the optima in the con-
strained weighted case cannot deviate too much from
the optima in the constrained unweighted case, where
the ordering conditions hold. Thus, we need only to
consider C ∈ Cm,2,k where c2 has compatible order with
F-1(r) to find an optimum. We verified this statement
empirically over a variety of simulations (see Additional
file 1, Section H).

Model selection
We use the Bayesian information criterion (BIC) to
make a selection from different sized models (that is,
different values of n) and their corresponding sets of
maximum likelihood solutions. The standard form of
the BIC is -2 log(L) + a log(b) where L is the likelihood
of a solution, a is the number of free parameters in the
model and b is the number of data points. We add a
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slight modification to this, which is similar to a modifi-
cation used by the segmentation algorithm BIC-Seq [32]
that allows use of more stringently penalized solutions
with more free parameters using a new parameter g.
The motivation is that the BIC tends to be too liberal
when the model space is large [59] - as is the case here.
Values of g above 1 will penalize models that have more
distinct tumor populations more strongly. That is,
increasing this parameter will more strongly encourage
solutions with fewer subpopulations. The default value
of g is 10, and was chosen because we expect to recover
a small number of distinct subpopulations from sequen-
cing data - thus making penalization of models with
more subpopulations attractive. Additionally, changing g
in either direction (by up to 4) from this default value
yields consistent results on the datasets analyzed. Our
modified BIC is -2 log(L) + ga log(b), where a = (m + 1)
(n - 1) and b is the total number of reads in the inter-
vals for both the tumor and normal samples. Since we
often run the n = 3 version of the algorithm on a subset
of the intervals used in the n = 2 algorithm, we use the
following steps to determine which value of n to select.
(1) Run the algorithm for n = 2 and n = 3 using the
subset of intervals and the lower and upper bounds
used for n = 3 and obtain respective likelihood values.
(2) Compute the modified BIC for both values of n and
choose the one with the lowest value.

Sets of maximum likelihood solutions

If (C, μ), (C’, μ’) Î Ω such that Ĉμ = Ĉ′μ′, then for any
observed read depth vector r, the likelihood of observing
the r will be identical between these two solutions. That

is, Lr
(
Ĉμ

)
= Lr

(
Ĉ′μ′

)
. By default THetA will always

output the complete set of maximum likelihood solu-
tions to the MLMDP given the input parameters (for
example, the maximum copy number k to consider).
However, THetA has several options that allow a user
to input additional information, like sample ploidy,
which may be known in advance. One option allows a
user to supply an expected ploidy for a sample (for
example, 4 in the case of a tetraploid genome), and the
lower and upper bounds considered for all intervals are
rescaled to reflect this expected ploidy. Another option
allows a user to set lower and upper bounds on copy
numbers directly for all intervals in the genome. In
either case, THetA will still output the complete set of
maximum likelihood solutions that reflect the options
supplied by the user.

Code availability
The THetA software is available for download from our
website [60]. For a copy of the software at the time of
publication please see Additional file 2, although we

recommend that the latest version of THetA be down-
loaded from [60].

Analysis of breast cancer genomes
Here we provide additional details of the analysis of the
breast cancer samples.
Breast tumor: 188× sequence coverage
For the n = 2 analysis of sample PD4120a, we used all
genomic intervals derived following BIC-Seq segmenta-
tion (l = 100) after removal of all intervals less than 50
kb in length. For the n = 3 analysis, we selected a subset
of these intervals by choosing: (1) all chromosomes that
BIC-Seq partitioned into a single interval and (2) all
intervals >22 Mb that were reported as having an abnor-
mal copy number (≠ 2) in the n = 2 analysis. We used
only the longest such interval per chromosome if the
number of such intervals was large. We later added all
intervals from chromosome 22 to this subset in order to
resolve differences between our results and those pre-
sented in [25]. Since the results for both subsets were
extremely similar, we present here the results for the lar-
ger subset (including chromosome 22). Results for the
smaller subset are given in Additional file 1, Figure S9.
Breast tumor: 40× sequence coverage
For the n = 2 analysis of sample PD4115a, we used all
genomic intervals derived from BIC-Seq segmentation (l
= 200) after removal of all intervals 50 kb in length. We
found that PD4115a contains many apparent copy number
aberrations with the segmentation containing 102 intervals
(compared to only 69 intervals for sample PD4120a
above). In addition, this sample also includes several highly
amplified regions, and no chromosome was segmented
into a single interval. Thus, we ran THetA for n = 3 on a
subset of the longest intervals in the BIC-Seq partition,
and set lower and upper bounds on the copy number for
each interval (see Additional file 1, Section N).
Virtual SNP arrays
To compare those of our predictions that differed from
those presented in [25], we looked at known germline
SNP allele frequencies derived directly from the sequen-
cing data - a virtual SNP array. We emphasize that this
data was not used by our THetA algorithm for comput-
ing tumor heterogeneity, and therefore this provides
independent data for validation. We looked at read cov-
erage and variant allele frequency for the 907,693 SNP
positions on the 22 autosomes tested by the Affymetrix
6.0 SNP array (SNP positions and major and minor
alleles for hg19 determined using the UCSC genome
browser [61]). The read coverage for a SNP position is
the number of concordant reads with mapping quality
>30 that have an alignment containing either the major
or minor allele at the SNP position. The variant allele
fraction, or BAF, is the fraction of such reads that con-
tains the minor allele.
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Additional material

Additional file 1: Figures and text describing additional information
such as proofs of theorems or additional experimental results.

Additional file 2: THetA software package at the time of
publication. In general, it is recommended that the latest version of
THetA be downloaded from [60].
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THetA: Tumor Heterogeneity Analysis.
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