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Abstract

Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large
ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to
the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of
the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure,
rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice
sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by
unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in
the fidelity control of the splicing process at various steps. This review summarizes the functional roles of
DEXD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the
concept of the complicated splicing reaction based on recent findings.
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Introduction

RNA splicing is a fundamental process in eukaryotic
gene expression and is also highly regulated in higher
eukaryotic cells. Many human diseases are associated
with splicing defects or are caused by splicing misregula-
tion [1, 2]. The splicing reaction requires five small
nuclear RNAs (snRNAs), Ul, U2, U4, U5 and U6, and a
large number of proteins [3-5]. These factors assemble
on the pre-mRNA to form a large ribonucleoprotein
complex, called the spliceosome, on which the catalytic
reactions take place.

The splicing cycle can be divided into four phases:
spliceosome assembly, spliceosome activation, catalytic
reactions, and spliceosome disassembly. Spliceosome
assembly involves sequential binding of the five snRNAs,
in the form of small nuclear ribonucleoprotein particles
(snRNPs), to the pre-mRNA. The snRNAs play roles in
the recognition and alignment of splice sites. Upon the
binding of all five snRNAs, the spliceosome undergoes a
major structural rearrangement, releasing Ul and U4, to
form the active spliceosome, which can then catalyze
two steps of the transesterification reaction, generating
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lariat intermediates and products. After the reaction,
the spliceosome first releases the mature message and
then is disassembled so that the splicing factors can be
recycled [6, 7].

The structures of the catalytic core of the spliceosome
and self-splicing group II introns are highly similar. They
also share the same chemical mechanism and are
believed to be evolutionarily related. For these reasons,
pre-mRNA splicing is thought to also be an RNA-based
reaction, with protein factors to support and modulate
the structure of RNA in the catalytic core. Accumulating
evidence supports RNA-catalyzed splicing of spliceosomal
introns [8—12]. The structures of group II introns have
recently been solved [13-15]. Several structures from
different catalytic states have been determined and have
provided structural and mechanistic insights into how
the introns switch conformations between steps to position
the splice sites [16].

Structural changes of the spliceosome are mediated
by DExD/H-box RNA helicases [17-19]. DExD/H-box
proteins are a family of RNA-dependent ATPases (or
NTPases), which utilize the energy from ATP hydrolysis
to modulate the structure of RNA or ribonucleoprotein
complexes [20, 21]. Eight DExD/H-box proteins are
required for the splicing reaction, two for each phase of
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the spliceosome pathway [22, 23]. Prp5 and Sub2 are re-
quired for the assembly phase of the spliceosome, with
both involved in the formation of the prespliceosome
[24-26]. Prp28 and Brr2 are required for activation of
the spliceosome in releasing of Ul and U4, respectively
[27-29]. Prp2 and Prpl6 are required for each of the
catalytic steps, and Prp22 and Prp43 are required for
disassembly of the spliceosome [30-35]. Besides their
ATPase-associated functions, Prp2, Prp5, Prplé and
Prp22 have been shown to have an ATP-independent
function in the splicing pathway [25, 36-38]. Prp5,
Prpl6, Prp22 and Prp28 have also been demonstrated to
play roles in the control of splicing fidelity [37, 39-44].
In this review, we summarize the functional roles of
these proteins in the spliceosome pathway and discuss
the underlying mechanisms of their functions.

Review

Overview of pre-mRNA splicing pathway

The spliceosome is assembled in a stepwise manner
through ordered binding of the five snRNAs and protein
factors to the pre-mRNA [6, 7]. Ul recognizes the 5’
splice site through RNA base pairing with the 5" splice
site sequence, and binds to the pre-mRNA to form the
commitment complex (CC), which can be resolved into
two complexes, CC1 and CC2, by gel electrophoresis.
Formation of the commitment complex does not require
ATP [45]. U2 binds to the branch site sequence, also
through RNA base pairing, to form the prespliceosome.
Although Ul normally binds to the pre-mRNA prior to
U2 binding, U2 can bind to the branch site independent
of Ul binding in mammalian extracts [46]. After binding
of Ul and U2 snRNPs, U4, U5 and U6 are recruited to
the spliceosome as a pre-formed U4/U6.U5 tri-snRNP.
Neither U4/U6 di-snRNP or U5 snRNP alone binds to
the spliceosome [47].

Loading of the tri-snRNP marks the end of the assem-
bly phase of the spliceosome. The spliceosome then
undergoes a dramatic structural rearrangement, releas-
ing Ul and U4, and forming new base pairs between U2
and U6 and between U6 and the 5" splice site [6, 7].
RNA-RNA base pairings form the framework of the
catalytic core of the spliceosome, which is highly simi-
lar to that of self-splicing group II introns [48, 49]. The
structure is presumably stabilized and modulated by
protein factors. A protein complex associated with
Prpl19, named NTC for NineTeen Complex[50], is re-
quired for stable association of U5 and U6 with the
spliceosome after the release of Ul and U4 to direct
specific interactions of U5 and U6 with pre-mRNA
[50-52]. Other proteins may be also involved in fine-
tuning the RNA structure during the splicing reaction.

The catalytic reaction comprises two consecutive steps
of transesterification. Each of the catalytic steps involves
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an ATP-dependent step, which requires a DExD/H-box
protein, and an ATP-independent step, which requires a
specific set of proteins to promote the catalytic reaction.
Exchange of proteins modulates structural changes of
the spliceosome during the catalytic reaction. After com-
pletion of the reaction, the spliceosome first releases the
mRNA and is then disassembled to recycle all compo-
nents. Both steps require ATP and DExD/H-box pro-
teins [6, 7, 53].

DExD/H-box proteins in the splicing reaction

Eight DExD/H-box proteins are involved in the splicing
reaction, two for each phase of the pathway [22, 23]. In
general they function as RNA chaperones to modulate
the structure of RNA molecules or ribonucleoprotein
complexes. Except for Brr2, which is an intrinsic compo-
nent of U5 snRNP, all splicing DExD/H-box proteins
only transiently interact with the spliceosome during the
splicing reactions. Prp5, Sub2 and Prp28 belong to the
DEAD-box family, and Brr2 belongs to the Ski2-like
family. Both families of proteins exclusively use ATP for
their functions. The four proteins involved in the cata-
lytic step or disassembly, Prp2, Prpl6, Prp22 and Prp43,
belong to the DEAH/RHA family, and can use all four
kinds of nucleotide triphosphates as energy sources
[17-19]. These four proteins have been demonstrated
to bind to the spliceosome in an ATP-independent
manner, and are dissociated upon hydrolysis of ATP. They
are retained on the spliceosome only when ATP is absent
or the ATPase function of the protein is compromised.
Mutations that abolish the ATPase activity frequently
exhibit dominant-negative phenotypes. The functional
roles of these proteins are illustrated in Fig. 1.

Prp5 and Sub2 in spliceosome assembly

During early stage of spliceosome assembly, the branch
binding protein BBP (branchpoint-binding protein; SF1
in human and Msl5 in yeast) binds to the branch site
first and bridge the 5" splice site and 3" splice site by
interacting with Ul snRNP proteins Prp40 and Mud2
(U2AF65 in human) [54-56], which bind pre-mRNA in
the 3" splice site region [54, 55, 57]. BBP and Mud2,
forming a heterodimer, are thought to recruit Sub2 to or
near the branch site region to mediate the release of
Msl5 and Mud2 and to allow U2 snRNP binding to the
branch site [58, 59]. Although Sub2 is essential for yeast
under normal growth conditions, deletion of MUD2 can
bypass the requirement of SUB2, suggesting that an
essential function of Sub2 is the removal of Mud2 to
facilitate the association of U2 snRNP with the spliceo-
some [26]. It has also been shown that formation of
CC2, but not CC1, requires Sub2 [60], indicative of an
additional function of Sub2 in formation of the commit-
ment complex. Besides functional roles in pre-mRNA
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Fig. 1 Schematic representation of the spliccosome pathway and the function of the DExD/H-box proteins involved. The spliceosome pathway
can be divided into four phases: spliceosome assembly, spliceosome activation, catalytic steps and spliceosome disassembly. Two DExD/H-box
proteins are required for each phase of the pathway, and their functions are shown. a Sub2 is implicated in the removal of BBP/Mud?2 from
binding to the branch site. b Prp5 is implicated in the removal of Cus2 from U2 snRNP and converts U2 snRNA into a functional form. ¢ Prp28 is
implicated in the removal of U1C or destabilization of U1 snRNA from the 5’ splice site to promote U1/U6 switch at the 5’ splice site. d Brr2
catalyzes U4/U6 unwinding to release U4. e Prp2 is required for remodeling of the spliceosome structure by destabilization of SF3a/b. Prp2 binds
to the pre-mRNA in a region downstream of the branch site and translocates in a 3-to’5’ direction to destabilize SF3a/b. f Prp16 is required for the release
of Yju2/Cwc25. g Prp22 mediates the release mature mMRNA, and h Prp43 mediates spliceosome disassembly. Prp22 binds to the mature mRNA in a
region downstream of the splice junction and translocates in a 3-to’5' direction to destabilize mMRNA from the spliceosome

splicing, Sub2 has also been reported to be involved in
mRNA export [61-63].

Formation of the prespliceosome requires DExD/H-
box protein Prp5. Prp5 has been shown to mediate the
conformational change of U2 snRNP by hydrolysis of
ATP, and its ATPase activity is stimulated to a much
higher level by U2 snRNA than by other snRNAs or
nonspecific RNAs [64]. Several U2 snRNP compo-
nents, including Prp9, Prpll, Prp21, Cusl, Cus2 and
stem Ila of U2 snRNA, genetically interact with Prp5
[65-68], thus functionally linking Prp5 and U2 snRNP.
In the absence of Cus2, the formation of prespliceo-
some requires Prp5, but the ATPase function of Prp5
is dispensable for cellular growth and splicing [25].
Prp5 was thus proposed to promote the formation of
stem Ila by displacing Cus2 from U2 in an ATP-
dependent manner to form a functional U2 snRNP
that associates with the spliceosome, and Prp5 has an
additional ATP-independent function in prespliceo-
some formation [24, 25]. Recently, Prp5 was shown to
bind directly to U2 snRNA on binding to the spliceo-
some [40]. Prp5 is retained on the spliceosome when
pre-mRNA carries mutations in the branch site, and
only upon its release can tri-snRNP be recruited to
the spliceosome [40].

In the fission yeast Schizosaccharomyces pombe and
in human, Prp5 was shown to associate with Ul
snRNPs and U2 snRNPs via its N-terminal domain,
bridging Ul and U2 snRNPs to form the prespliceo-
some [68]. Due to the lack of the corresponding N-ter-
minal Ul-interacting domain, the bridging function of U1l
and U2 snRNPs by Prp5 is not found in Saccharomyces
cerevisiae [68].

Prp5 was previously proposed to play a role in spli-
cing fidelity control to proofread the branch site by
competing with base pairing between U2 snRNA and
the branch site sequence in an ATP-dependent manner
[39, 40]. A recent report reveals an alternative mech-
anism for Prp5 functions in proofreading the branch
site sequence by counteracting tri-snRNP binding in-
dependent of ATP [40]. More details are discussed in a
later section.

Prp28 and Brr2 in spliceosome activation

Two DExD/H-box proteins, Prp28 and Brr2, are in-
volved in spliceosome activation. Prp28 was impli-
cated in the displacement of Ul in promoting U1/U6
switch at the 5° splice site [29]. The requirement of
Prp28 can be bypassed by mutations in Ul snRNP
components, ULC (Yhcl in yeast), Prp42, cap-binding
protein Cbp80, and Ynl187, some of which are known
to stabilize Ul-5" splice site interactions. This sug-
gests that Prp28 may destabilize Ul-5" splice site
interactions by destabilization of proteins binding to
Ul snRNA or to the 5" splice site [69, 70].

The human Prp28 ortholog (hPrp28, also known as
DDX23) has an extra N-terminal domain with RS re-
peats that are phosphorylated by SRPK2 (serine/arginine
protein-specific kinase 2). hPrp28 has been shown to
associate with the tri-snRNP, and phosphorylation of
Prp28 plays a role in regulating the recruitment of the
tri-snRNP to the spliceosome [71]. Prp28 has also been
demonstrated to proofread the 5" splice site during spli-
ceosome assembly [42] (see below).

Brr2 is an intrinsic component of U5 snRNP and is as-
sociated with the spliceosome through the binding of
tri-snRNP. Brr2 is required for spliceosome activation by
mediating the release of U4 [27, 28]. Brr2 has been
demonstrated to unwind RNA duplexes in vitro [27, 28],
and unwinding of the U4/U6 duplex can also occur on
the purified snRNP [27], implicating Brr2 in mediating
U4/U6 unwinding during spliceosome activation [27, 28,
72, 73]. Brr2 has been shown to load onto the single
stranded region of U4 located downstream of U4/U6
stem I, and then to translocate along U4 in the 3'-to-5’
direction to disrupt stem I on separating U4/U6 duplex
[74, 75]. Prp8 plays a central role in regulating the func-
tion of Brr2 on the spliceosome. The Jab/MPN domain
in the C-terminal region of Prp8 has been shown to
stimulate the unwinding activity of Brr2 [73], but the
very C-terminal tail of Prp8 inhibits the RNA-binding,
ATPase and U4/U6 unwinding activities of Brr2 [76].
The RNase H domain of Prp8 can also bind the same
region of U4 where Brr2 binds, thus preventing the
binding of Brr2 and inhibiting U4/U6 unwinding [74].
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Brr2 is unusual among DExD/H-box proteins in that it
contains two helicase domains [77]. The N-terminal
helicase domain functions in unwinding activity [72],
but the C-terminal helicase domain is catalytically in-
active. Besides its role in mediating U4/U6 unwinding
during spliceosome activation, Brr2 has additional roles
in regulating the function of other splicing factors. The
C-terminal domain of Brr2 interacts with many spliceo-
somal components, serving as protein-protein inter-
action platform [78, 79]. These proteins include Prp2,
Prpl6 and Slu7, which are involved in catalytic steps,
and Ntr2, which is required for spliceosome disassem-
bly [78, 80, 81]. It is possible that Brr2 serves as the
platform for the recruitment of these splicing factors to
the spliceosome at various stages of post-activated
spliceosomes. Consistent with this notion, Prpl6 and
Slu7 have been shown to compete with the binding of
Ntr2 to the spliceosome to prevent premature disassembly
of the spliceosome [82]. The C-terminal Sec63-2 domain
of Brr2 has been shown to interfere with RNA binding of
Prp16, thereby modulating the ATPase activity of Prpl6
[83]. Brr2 has also been implicated in the mediation of
spliceosome disassembly [84], but whether its ATPase
activity is involved remains controversial [85].

Prp2, Prp16 and Prp22 in the catalytic step

The first catalytic reaction requires DExD/H-box pro-
tein Prp2 to remodel the spliceosome [31, 36, 86]. For
its function, Prp2 requires the cofactor Spp2, which
was initially identified as a multi-copy suppressor of
the temperature-sensitive prp2-1 mutant and shown to
interact with Prp2 through its G-patch domain [87, 88].
Like Prp2, Spp2 can associate with the spliceosome prior
to the first catalytic reaction and is released along with
Prp2 upon ATP hydrolysis [87]. Although Spp2 was
previously shown to be required for the recruitment of
Prp2 to the spliceosome, a recent study using a purified
splicing system revealed that Spp2 is dispensable for
Prp2 recruitment, but functions in coupling the ATPase
activity of Prp2 to remodeling of the spliceosome into a
catalytically active form [89].

The function of Prp2 has recently been demon-
strated to associate with destabilization of U2 snRNP
components SF3a/b complexes from the spliceosome
[36, 86]. SF3b component SAP155 and its Saccharomyces
cerevisiae ortholog Hsh155 have been shown to crosslink
to intron sequences flanking the branch site, suggesting a
role of SF3b in stabilizing U2-branch site interaction
during spliceosome formation [90, 91]. Conceivably,
destabilization of SF3a/b allows exposure of the branch-
point and also relieves the rigidity of the catalytic center
of the spliceosome so that RNA elements can interact to
initiate the catalytic reaction. The function of Prp2 in the
first catalytic step also requires an elF4G-like protein,

Page 5 of 9

Cwc22 [92]. Cwc22 is not required for the recruitment of
Prp2 to the spliceosome, but in its absence, Prp2 is disso-
ciated from the spliceosome upon ATP hydrolysis without
productive action [92].

Studies from proteomic and dual-color fluorescence
cross-correlation spectroscopic (dcFCCS) analysis re-
vealed that several other proteins, including Cwc24,
Cwc27 and Bud13, are displaced during Prp2-mediated
remodeling of the spliceosome, but the functions of
these proteins are not known [93]. After the action of
Prp2, high-affinity binding sites are created for Yju2
and Cwc25, which stabilize first-step conformation of
the catalytic center of the spliceosome to promote the
first reaction [93]. Prp2 has also been implicated in me-
diating an ATP-independent conformational change of
the spliceosome, but the mechanism is unknown [36].

Prp2 has been shown to interact with the C-terminal re-
gion of Brr2 [81] and with pre-mRNA by UV-crosslinking
analysis [81, 94]. A region of the intron sequence 23 to 33
nucleotides downstream of the branchpoint was shown
to be necessary and sufficient for the ATP-dependent
function of Prp2. It has been suggested that Prp2 is
recruited to the spliceosome through interaction with
Brr2 and then translocated to the pre-mRNA, which
stimulates its ATPase activity. Hydrolysis of ATP
powers Prp2 to move on the pre-mRNA in the 3'-to-5’
direction to destabilize SF3a/b [81].

The second catalytic reaction requires the DExD/H-
box protein Prpl6 and three other proteins, Slu7, Prp18
and Prp22 [38, 95, 96], although Prp22 was shown to be
not required in a recent study using a purified splicing
system [97]. Prp16 was originally identified as a suppres-
sor of branchpoint A-to-C (or brC) mutant of the actin
intron [98, 99], but was found to be only required for
the second catalytic reaction in vitro [32]. Prpl6 was
proposed to induce a conformational change in the
spliceosome prior to the second catalytic reaction, judg-
ing from the protection of the 3" splice site from RNase
H cleavage upon Prpl6 action [100]. Although UV-
crosslinking analysis revealed protection of the 3" splice
site may be due to Prp22 binding [101], other changes
in the RNA structure of the spliceosome have also been
observed. Genetic data have suggested that the U2 helix
II switches from Ila to Ilc conformation, and U2/U6
helix I is destabilized during the transition from the
first to second catalytic step [102-104]. Since Prpl6é
can catalyze unwinding of synthetic RNA duplexes in
vitro [105], it was proposed that Prpl6é may mediate
unwinding of the RNA duplex during the transition
[102, 106]. However, it is also possible that change of the
RNA structure is a consequence of protein displacement
mediated by Prp16.

Recent studies have demonstrated dual roles of Prpl6
in the catalytic step. After the first reaction, Prpl6 is
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required for the displacement of Yju2 and Cwc25, which
become tightly associated with the spliceosome [37].
This function in remodeling of the spliceosome requires
ATP hydrolysis and results in stable association of Slu7/
Prpl8 to promote the second reaction [97]. As in the
first step, the RNA structure in the catalytic center of
the spliceosome is less rigid upon displacement of Yju2
and Cwc25. This allows positioning of the 3" splice site
to the catalytic center. PRPI6 has also been demon-
strated genetic interactions with ISY1, PRP8 and U6
snRNA, suggesting that they are potential targets of
Prpl6 [107-109]. Whether these factors interact with
Prpl6 directly or through interaction with Cwc25 re-
mains unknown. Prpl6 also has an ATP-independent
function in the first catalytic step in promoting the bind-
ing of Cwc25 to impaired spliceosomes. Cwc25 binds
tightly to the first-step spliceosome, but does not bind
well to the pre-catalytic spliceosome. Although Prpl6
normally binds to the spliceosome after the first reac-
tion, under conditions that the reaction is impeded such
as when pre-mRNA carries mutations at the branch site,
Prpl6 can bind to the spliceosome to stabilize the bind-
ing of Cwc25 to promote the first reaction without need-
ing ATP [37].

Prp22 and Prp43 in spliceosome disassembly
The primary function of Prp22 is to mediate the release
of mature mRNA after completion of the splicing reac-
tion [33]. Prp22 binds to the spliceosome together with
Slu7 and Prp18 during the second catalytic step and was
previously shown to be also required for the second re-
action [38]. However, a recent study using a purified
splicing system reported Prp22 is not required for the
second reaction [93]. Prp22 binds directly to the intron
sequence downstream of the branch site prior to the re-
action [101] and translocates to the mRNA downstream
of the exon-exon junction after exon ligation. It was pro-
posed that Prp22 promotes disruption of mRNA/U5
contacts by moving along mRNA in the 3'-to-5" direc-
tion in releasing the mRNA from the spliceosome [110].
Prp22 has been demonstrated to unwind RNA duplexes
in vitro [38, 111], and the helicase activity is essential for
mRNA release [112], suggesting that Prp22 might medi-
ate unwinding of mRNA/U5 base pairings. On the other
hand, genetic data showed that Prp8-Argl753 mutants
suppress Prp22 helicase-defective mutants [113] as well
as specific U5 loop 1 mutant alleles [114]. These results
suggest that Prp8-Argl753 may play a role in stabilizing
U5/exon interactions before exon ligation, and Prp22
may function in disrupting RNA-RNA or RNA-protein
interactions that are normally stabilized by Prp8.

Prp43 is the key player in mediating spliceosome dis-
assembly [34, 35, 115]. It mediates disassembly of the
spliceosome normally after completion of the splicing
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reaction, but can also mediate disassembly of the impaired
spliceosome intermediates or spliceosomes arrested in the
middle of the pathway [82, 116]. The function of Prp43
requires two co-factors, Ntrl (also called Spp382) and
Ntr2, which form a dimeric complex for the recruitment
of Prp43 to the spliceosome [35, 117, 118]. Prp43 can also
associate with Ntr1-Ntr2 to form a functional NTR com-
plex, which catalyzes disassembly of the affinity-purified
spliceosome in the presence of ATP [35]. Ntrl interacts
with both Ntr2 and Prp43 on formation of the NTR com-
plex. The G-patch domain of Ntrl interacts with Prp43
and stimulates the helicase activity of Prp43 [119]. Ntr2
interacts with U5 component Brr2, and this interaction is
proposed to mediate the recruitment of NTR to the
spliceosome [80]. Prp43 has been demonstrated to unwind
RNA duplexes in vitro [120], but whether Prp43 catalyzes
RNA unwinding on the spliceosome to mediate disas-
sembly is not clear. Another DExD/H-box protein Brr2
has also been implicated in the disassembly by disrup-
tion of U2/U6 base pairings [84]. However, a recent
study argues against the involvement of the ATPase
function of Brr2 since, while Brr2 is ATP-specific, all
four nucleotide triphosphates could be used as the en-
ergy source in the disassembly assay using a purified
splicing system [85].

Prp43 has been demonstrated to be functionally linked
to discard of spliceosome intermediates rejected from
the pathway [115]. Dissection of the pathway revealed
that only specific intermediate complexes, those formed
after the action of DExD/H-box proteins Prp2 and
Prpl6, are susceptible to Prp43-mediated disassembly,
suggesting a function of DExD/H-box proteins in mark-
ing the spliceosome for susceptibility to the disassembly
machinery, in accordance with their proposed roles in
splicing fidelity control [82].

DExD/H-box proteins in splicing fidelity control

The first insight into the involvement of DExD/H-box
proteins in splicing fidelity control came from the isola-
tion of PRPI6 mutants as suppressors to branchpoint
A-to-C mutation [98, 99]. The level of suppression was
found to inversely correlate with that of the ATPase
activity of Prpl6. A model for a role of Prpl6 in spli-
cing fidelity control by a kinetic proofreading mechan-
ism was proposed [44, 121]. In this model, Prp16 can
direct the impaired spliceosome to a discard pathway
coupling the energy from ATP hydrolysis. A conform-
ational change in the spliceosome, affected by the se-
quence in the branchpoint, competes with the action of
Prpl6 to prevent the spliceosome from being rejected.
While mutation in the branchpoint impedes the con-
formational change of the spliceosome, it allows Prpl6
to act on and reject the impaired spliceosome. Redu-
cing the ATPase activity of Prp16 allows more time for



Liu and Cheng Journal of Biomedical Science (2015) 22:54

the spliceosome to proceed through the conformational
change needed for progression to the normal pathway.
Based on genetic data, Prp2, Prp5, Prp22 and Prp28
have been proposed to play roles in proofreading the
catalytic core of the spliceosome, the branch site, 3’
splice site and the 5 splice, respectively, by similar
mechanisms [37, 39-44, 122]. Recent biochemical
analysis has revealed an ATP-independent function of
Prpl6 in promoting the first catalytic reaction by stabil-
izing the binding of Cwc25 [37]. While splicing of
branchpoint-mutated pre-mRNA is completely blocked
in the absence of Prp16, ATPase-deficient Prp16 allows
progression of the first reaction to a large extent. Based
on this finding, it was proposed that Prpl6-mediated
rejection of impaired spliceosomes might be a conse-
quence of Cwc25 displacement prior to the catalytic
reaction, rendering the spliceosome susceptible to
NTR for disassembly. The relative ratio of the ATP-
independent to ATP-dependent function of Prpl6 de-
termines the efficiency of splicing proceeding through
the first reaction [37, 123]. In this regard, Prpl6 may
only play a passive role in proofreading the branch site
sequence. This also raises a question of whether all
splicing DExD/H-box proteins share a common feature
of controlling splicing fidelity by the ATP-dependent
proofreading mechanism. At least for Prp5, an alterna-
tive ATP-independent mechanism explaining the sup-
pression effect of branch site mutants by Prp5 was
recently proposed [40].

Conclusions

Originating from self-splicing group II introns, the
spliceosome has evolved into a highly sophisticated
structure that requires eight DExD/H-box proteins to
mediate its structural rearrangements along the splicing
pathway. These proteins play roles in remodeling of the
spliceosome by either unwinding of RNA duplexes or
disrupting RNA-protein interactions to facilitate struc-
tural changes of the spliceosome. Under conditions that
structural changes can be more easily achieved, the
function of DExD/H-box proteins can be dispensable.
Although several DExD/H-box proteins have been dem-
onstrated to play roles in proofreading splice sites based
on genetic data, studies using biochemical approaches
have shed more insights into the functional roles of these
proteins, and provided new explanations for previous gen-
etic data by alternative mechanisms. It is necessary to
analyze the function of these proteins in more details to
elucidate the mechanism of splicing fidelity control.
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