
JOURNAL OF 
ENVIRONMENTAL HEALTH
SCIENCE & ENGINEERING

Mirbagheri et al. Journal of Environmental Health Science & Engineering  (2015) 13:17 
DOI 10.1186/s40201-015-0172-4
RESEARCH ARTICLE Open Access
Performance evaluation and modeling of a
submerged membrane bioreactor treating
combined municipal and industrial wastewater
using radial basis function artificial neural
networks
Seyed Ahmad Mirbagheri1, Majid Bagheri1*, Siamak Boudaghpour1, Majid Ehteshami1 and Zahra Bagheri2
Abstract

Treatment process models are efficient tools to assure proper operation and better control of wastewater treatment
systems. The current research was an effort to evaluate performance of a submerged membrane bioreactor (SMBR)
treating combined municipal and industrial wastewater and to simulate effluent quality parameters of the SMBR
using a radial basis function artificial neural network (RBFANN). The results showed that the treatment efficiencies
increase and hydraulic retention time (HRT) decreases for combined wastewater compared with municipal and
industrial wastewaters. The BOD, COD, NHþ

4 −N and total phosphorous (TP) removal efficiencies for combined
wastewater at HRT of 7 hours were 96.9%, 96%, 96.7% and 92%, respectively. As desirable criteria for treating
wastewater, the TBOD/TP ratio increased, the BOD and COD concentrations decreased to 700 and 1000 mg/L,
respectively and the BOD/COD ratio was about 0.5 for combined wastewater. The training procedures of the
RBFANN models were successful for all predicted components. The train and test models showed an almost perfect
match between the experimental and predicted values of effluent BOD, COD, NHþ

4 −N and TP. The coefficient of
determination (R2) values were higher than 0.98 and root mean squared error (RMSE) values did not exceed 7% for
train and test models.

Keywords: Combined wastewater, Submerged membrane bioreactor, Treatment efficiency, Artificial neural network,
Radial basis function
Introduction
The membrane bioreactor (MBR), especially the sub-
merged membrane bioreactor (SMBR), has been exten-
sively investigated and applied for municipal and
industrial wastewater treatment. There are more than
2200 MBR installations in operations or under construc-
tion worldwide and most of them are for municipal
wastewater treatment [1,2]. Earlier studies have already
shown that MBRs can be operated at much higher effi-
ciency than of what is needed for municipal wastewater
[3,4]. Treatment performances were generally good, and
* Correspondence: bagherimajead@yahoo.com
1Department of Civil Engineering, K.N. Toosi University of Technology, Vanak
square, Tehran, Iran
Full list of author information is available at the end of the article

© 2015 Mirbagheri et al.; licensee BioMed Cen
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
deterioration of the performance was not observed [5].
Rosenberger et al. [3] studied aerobic treatment of muni-
cipal wastewater in an MBR for 535 day. The pilot plant
comprised an anoxic zone to enable denitrification. The
hydraulic retention time (HRT) varied between 10.4 and
15.6 hours. Treatment performance was very stable and
on a high level. The chemical oxygen demand (COD)
was reduced by 95%. Nitrification was complete and up
to 82% of the total nitrogen could be denitrified. The ex-
cellent capability of SMBRs in the treatment of municipal
wastewater has decreased the HRT to the minimum pos-
sible amount compared with conventional activated sludge
processes. In other words, it seems that SMBRs are over
designed for the treatment of municipal wastewater.
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The interest of using MBR instead of classical acti-
vated sludge system for the treatment of industrial
wastewater was demonstrated [6,7]. Zhao et al. [8] used
a laboratory-scale anaerobic/anoxic/oxic membrane bio-
reactor system to treat heavily loaded and toxic coke
plant wastewater and operated for more than 500 days.
Treatment performance, acute toxicity assessment, and
dissolved organic characteristics of the system were in-
vestigated. When the HRT of the system was 40 hours,
the removal efficiencies of COD, phenol, NH3 −N, total
nitrogen (TN) and acute toxicity were 89.8%, 99.9%,
99.5%, 71.5% and 98.3%, respectively. A desirable treated
wastewater is water that is not only low in organic or
mineral components, and free from biological entities
such as bacteria, pathogens, and viruses but also cost ef-
ficient and reliable [9,10]. HRT plays an important role
in the removal of pollutants in activated sludge pro-
cesses coupled with membranes [11]. The amount of
HRT for most of industrial wastewaters is higher than
2 days. As a result, the treatment of industrial wastewa-
ter is more expensive than treatment of municipal
wastewater by considering the important role of HRT in
efficiency and the cost of wastewater treatment.
The components in the industrial wastewater are in

huge amount; for instance, high amount of COD and
biochemical oxygen demand (BOD) [12], ammonia, sus-
pended solid or heavy metal [13] and sometimes shock
loading will happen. High strength of industrial waste-
water results in the low biodegradability characteristic of
wastewater [14-16]. A solution used to increase the bio-
degradation of the slowly biodegradable compounds is
the adsorbent addition in the bioreactor [17-19]. Gener-
ally, BOD/COD equal to 0.5 is considered as readily bio-
degradable or easily treatable [20-24]. The BOD/COD
ratio for the industrial wastewaters is not equal to 0.5
and varies from 0.117 to 0.773. The idea of combined
municipal and industrial wastewater is an approach to
set this ratio to 0.5 and improve the other criteria for a
desirable wastewater treatment such as the total BOD to
total phosphorous (TBOD/TP) ratio and the influent
BOD and COD concentrations.
Treatment process models are essential tools to assure

proper operation and better control of wastewater treat-
ment plants. Considerable effort has been devoted to the
modeling of activated sludge processes (ASPs) since
early 1970s [25]. Some deterministic models have been
developed basing on the fundamental biokinetics such as
activated sludge model number one (ASM1) [26,27]. Fol-
lowing ASM1, ASM2, ASM2d and ASM3 models were
developed. The ASM2 [28] models extended the capabil-
ities of ASM1 to involve the biological phosphorus and
nitrogen removals. Whereas, ASM3 [29,30] introduced
an alternative concept to the previous ASM biokinetics
and aimed at simplifying the model application. Despite
the availability of ASM models, the diagnosis of the
process interactions and modeling of ASP in an SMBR is
still difficult [30,31]. Parameter estimation and calibra-
tion of ASM models require expertise and significant ef-
fort. Moreover, calibration has to be performed for each
specific treatment system. Therefore, application of
ASM models to real systems can be cumbersome and
problematic [25,32].
In recent years, artificial neural networks (ANNs) have

been used for monitoring, controlling, classification and
simulation of ASPs. ANN is a non-parametric model
which utilizes interconnected mathematical nodes or
neurons to form a network that can model complex
functional relationships [33]. So far, different types of
neural network architectures and their performances
have been studied for the purpose of neuroidentification
[34-37]. It includes radial basis functions (RBFs), multi-
layer perceptrons (MLPs), recurrent neural networks
(RNNs), and echo-state networks (ESNs). In the litera-
ture to date, a limited number of applications of ANNs
have been made to SMBRs for modeling of a plant oper-
ation [31,38]. Geissler et al. [31] used an ANN model to
predict the filtration performance in a submerged capil-
lary hollow fiber membrane treating municipal wastewa-
ter. The training procedure for the ANN was conducted
based upon pilot-studies with an MBR system using a
novel submerged capillary module. Good correlations
were found between the predicted and measured perme-
ability using ANN. Cinar et al. [38] have also proposed
an ANN model for a SMBR treating cheese whey and
evaluated its performance at different sludge residence
time. The results of the training procedure for effluent
total phosphate, COD, ammonia, nitrate were successful.
However, the results of the testing procedure for effluent
total phosphate were not as good as for the effluent am-
monia and nitrate, although they were better than the
results of effluent COD. Up till now, there have not been
any investigations on treating combined municipal and
industrial wastewater by SMBRs for the purpose of opti-
mizing HRT or performance improvement. Furthermore,
no attempt has been made on the modeling of the com-
bined municipal and industrial treatment systems.
In order to achieve the objective of this study, it was

decided to employ a type of RBF, which is most com-
monly used in classification problems [39]. RBFs have
been successfully applied for solving dynamic system
problems, because they can predict the behavior directly
from input/output data [40-42]. The radial basis func-
tion artificial neural network (RBFANN) was applied to
model the effluent quality parameters of an SMBR treat-
ing combined municipal and industrial wastewater. The
influent concentration of parameters, HRT, mixed liquor
volatile suspended solids (MLVSS), total dissolved solids
(TDS) and pH were inputs of the RBFANN models.
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Sensitivity analyses were performed to determine the ef-
fect and importance order of each input parameter on
the changes of effluent concentrations.

Material and methods
Pilot plant configuration
An SMBR was used in order to treat combined munici-
pal and industrial wastewater in this study. Figure 1
shows the schematic diagram of the hollow fiber SMBR.
The SMBR consisted of a storage tank, an anaerobic re-
actor, an anoxic reactor and an oxic reactor as simultan-
eous aeration/filtration reactor. The storage tank was
made of plastic measuring 0.7 by 0.7 meter and total vol-
ume of 0.49 m3. The influent pump established a con-
tinuous influent wastewater flow from feeding tank to
the anaerobic reactor. The anaerobic, anoxic and oxic
reactors were made of Plexiglas with total volume of
0.06 m3, 0.1 m3 and 0.24 m3, respectively. The anaerobic
reactor measuring 0.4 by 0.3 meter was located 1.2
meter above the ground level to establish a continuous
flow to anoxic reactor. The anoxic reactor measuring 0.5
by 0.4 meter was located 0.9 meter above the ground
level to establish a continuous flow to oxic reactor. The
oxic reactor measuring 0.8 by 0.5 meter performed a
simultaneous aeration/filtration treating role in the
SMBR system. A small portion of the sludge in the oxic
reactor was recirculated back into the anoxic reactor
using a recirculation pump, where it was mixed with the
effluent of anaerobic reactor. This recirculation is a key
feature of the activated sludge process. The temperature
Figure 1 Schematic flow diagram of the experimental apparatus.
was kept about 25°C and the HRT of the SMBR system
varied during the experiments. The SMBR consisted of a
polypropylene hollow fiber membrane with a nominal
pore size of 0.04 μm. The overall membrane surface area
was 8 m2 per module. The maximum permitted pressure
for the hollow fiber membrane was about 30 kPa. A
pressure gauge was installed on the suction path to turn
off the suction pump and open the backwash path when
the trans-membrane pressure exceeded permitted limit
and membrane foiling occurred. Table 1 shows the de-
tailed specification of hollow fiber membrane.

Municipal wastewater characteristics
The pilot plant was located in Ekbatan wastewater treat-
ment plant in Tehran, Iran, which has been operating
since 1988. Influent wastewater analysis for the wastewater
treatment plant was carried out for a four month period.
According to the results obtained from raw wastewater
analysis, the maximum values were selected as critical de-
sign parameters. Table 2 shows the critical values of the
influent wastewater characteristics to Ekbatan wastewater
treatment plant.

Industrial wastewater characteristics
The industrial wastewaters are defined by high strength
wastewaters because of the high concentration of their
components. Table 3 shows the characteristics of high
strength wastewater for different industries. The COD,
BOD and total suspended solids (TSS) are three most
high concentration components of industrial wastewaters



Table 1 Specifications of the hollow fiber membrane used
in this study

Description Value

Material Polypropylene

Capillary Thickness 40 ~ 50 μm

Capillary Outer Diameter 450 μm

Capillary Pore Diameter 0.01 ~ 0.2 μm

Gas permeation 7.0 * 10−2 cm3/cm2 • S • cm Hg

Porosity 40 ~ 50%

Lengthways strength 120,000 kPa

Designed flux 6 ~ 9 L/M2/H

Area of membrane module 8 m2/module

Operating Pressure −10 ~ −30 kPa

Flow rate 1.0 ~ 1.2 m3/ day
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compared with municipal wastewater. In the current re-
search, the high strength wastewater was simulated by in-
creasing the influent COD, BOD, and TSS concentration
to 2000, 1300 and 5000 mg/L, respectively. The simulated
wastewater had the characteristics close to Beverage
wastewater [12], and its TSS concentration was increased
greatly. The TDS concentration was increased to
4500 mg/L and pH was different for each experiment.

Combined municipal and industrial wastewater
characteristics
Much work has been performed to study the performance
of SMBRs in the treatment of municipal and industrial
wastewater, including influences of biological processes
and membrane fouling. A factor which influences mem-
brane performance in an optimum treatment of wastewa-
ter is decreasing HRT while keeping effluent components
lower than discharge limits. Moreover, wastewater with
BOD/COD ratio equal to 0.5 is considered as readily bio-
degradable. It has been shown biodegradability greater
than 0.5 for spent caustic wastewater after treatment by
using wet air oxidation [43]. If the ratio value is less than
0.5, the wastewater needs to have physical or chemical
treatment before a biological treatment takes place
[43,44]. Table 3 shows that for the most of industries this
ratio is not equal to 0.5 and HRT of industrial wastewater
Table 2 Municipal wastewater characteristics in the
critical conditions

Parameter Value Parameter Value

Temperature (°C) 25.8 Org-N (mg/L) 16.8

DO (mg/L) 0 TKN (mg/L) 39.9

BOD5 (mg/L) 180 TS (mg/L) 810

COD (mg/L) 380 TDS (mg/L) 630

NO−
3−N (mg/L) 0.96 TSS (mg/L) 180

NHþ
4 −N (mg/L) 23.1 TP (mg/L) 16.54
is noticeably higher than HRT of municipal wastewater.
Therefore, the municipal and industrial wastewater were
combined in proportions that the BOD/COD ratio
approached 0.5 for the produced combined wastewater.
Analytical methods
Temperature, pH, dissolved oxygen (DO), BOD, COD,
TSS, TDS, mixed liquor suspended solids (MLSS) and
MLVSS concentration, TP, NHþ

4 −N and NO−
3−N were

measured in this study. The pH and temperature were
measured using a digital pH meter. A dissolved oxygen
meter (YSI 5000) was utilized to determine DO. Bio-
degradability was measured by 5-day biochemical oxygen
demand test according to the standard methods [45]. The
seed for BOD test was obtained from the Ekbatan waste-
water treatment plant [46]. The COD was determined ac-
cording to the standard methods [45]. Weekly analyses
included mixed liquor volatile and total suspended solids
(MLVSS, MLSS) in the oxic reactor [47]. MLSS and
MLVSS were determined at the Ekbatan wastewater treat-
ment plant laboratory at the temperature of 550°C [20].
The TP and NHþ

4 −N were measured with aid of a spectro-
photometer (The Hach DR 5000 UV–vis Laboratory
Spectrophotometer) at the wastewater treatment plant
laboratory.
RBFANN; background and methodology
ANNs can be used for monitoring, controlling, classifi-
cation and simulation of experimental data. ANNs are
mathematical models simulating important parameters
based on past observations in complex systems. There
are many types of ANNs for modeling and function ap-
proximation of the engineering problems [35]. The two
well-known ANN models, namely RBFANN and multi-
layer perceptron artificial neural network (MLPANN)
have been used in engineering applications to model or
approximate properties [48]. An RBFANN is the most
commonly used neural network for pattern recognition
problems, and it is also widely used for fault diagnosis.
The RBFANN has the advantages of a fast learning
process, a learning stage without any iteration of updat-
ing weights, robust ability, and adaptation capability
compared with other ANNs such as MLP, RNN and
ESN [41,49]. RBFANNs have a very strong mathematical
foundation rooted in regularization theory for solving ill-
conditioned problems [48]. Tomenko et al. [50] reported
that RBFANNs produced better results than multiple re-
gression in a wetland treatment system. Madaeni et al.
[51] modeled O2 separation from air in a hollow fiber
membrane module with glassy membrane using ANN.
They found RBFANN as the best network with mini-
mum training error and checked generalization capabil-
ity of their network with some unseen data (test data).



Table 3 Characteristics of high strength wastewater for different industries

Industry HRT (day) COD (mg/L) BOD (mg/L) BOD/COD NH4 -N
(mg/L)

TSS
(mg/L) So2−4 (mg/L) po3−4 (mg/L) Oil

(mg/L)
Phenol
(mg/L)

Tannery [14] 2000 - - - - 400 - - -

Tannery [12] 16000 5000 0.313 450 - - - - -

Textile [15] 2 6000 700 0.117 20 - - 120 - -

Textile [16] 0.7-4 4000 500 0.125 4.8 - 200 2 - -

Dyeing [21] 1300 250 0.192 100 200 - - 40 -

Textile [22] 0.58 1500 500 0.333 50 140 - 7 - -

Wheat starch [10] 35000 16000 0.457 - 13300 - - - -

Dairy [12] 3500 2200 0.629 120 - - - - -

Beverage [12] 1800 1000 0.556 - - - - - -

Palm oil [23] 0.8 67000 34000 0.507 50 24000 - - 100000 -

Pet food [24] 2.9 21000 10000 0.476 110 54000 - 200 - -

Dairy product [18] 880 680 0.773 - 2480 - - - -

Phenolic [19] 0.42 797 - - 131 - - - - 37.3

Pharmaceutical [11] 1 6300 3225 0.51 - - - - - -
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Shahsavand and Pourafshari Chenar [52] found
RBFANN a better choice for the prediction of gas separ-
ation performance in a membrane system because of its
powerful noise filtering capability. The RBFANNs could
offer more successful solutions operating on limited data
(less time consuming, supplying additional information
on existing relationships), thus indicating that the use of
hyperspheres to divide up the pattern space into various
classes is more advantageous when dealing with data de-
scribed by a small number of variables [39].
The structure of the basic RBFANN consisted of one

input layer, one output layer, and one hidden layer. A
single-output RBFANN with N hidden layer nodes can
be described by Eq. (1) and (2).

Y ¼
XN
n¼1

wnθn Xð Þ ð1Þ

where X and Y are the input and output of the network,
X = (x1, x2,…, xm)T, wn is the connecting weights be-
tween nth hidden node and the output layer, θn is the
output value of the nth hidden node, and

θn Xð Þ ¼ e −x−μn=σ
2
nð Þ ð2Þ

where μn is the center vector of nth hidden node, x − μn is
the Euclidean distance between x and μn, and σn is the ra-
dius of the nth hidden node.
As its name implies, radially symmetric basis function

is used as activation functions of hidden nodes [39,48].
The transformation from the input nodes to the hidden
nodes is a non-linear one, and training of this portion of
the network is generally accomplished by an unsuper-
vised fashion. The training of the network parameters
(weight) between the hidden and output layers occurs in
a supervised fashion based on target outputs [48]. For a
RBFANN, the capabilities of the final network are deter-
mined by the parameter optimization algorithms and the
structure size. However, the number of hidden nodes in
these RBFANNs is often assumed to be constant [53].
The transfer function of the RBFANN hidden in layer
unit is symmetrical RBF (such as Gaussian function).
RBF network has approximation to nonlinear continuous
function, and it can learn at high speed and undertake a
wide range of data fusion and high-speed processing
data in parallel [54]. In this study, the RBFANN applies
different network functions such as newrbe and newrb
to the input data. The newrb function designs a radial
basis neural network and the newrbe function designs
an exact radial basis ANN.
Model development
Simulation model of operational parameters was estab-
lished based on the theory of feed forward artificial neural
networks, namely RBFANN using the mathematical soft-
ware program MATLAB. The operating parameters, in-
cluding influent BOD, COD, NHþ

4 −N or TP as well as
HRT, MLVSS, TDS and pH were the input variables of the
RBFANN models. These variables were used to train
RBFANN in order to simulate effluent BOD, COD, NHþ

4 −
N and TP. Experimental data over 90 days (30 total data
points) were used in RBFANN modeling process. Table 4
shows the statistical characteristics of the measured



Table 4 Characteristics of measured variables used for
modeling by RBFANN

Input
variable no.

Input
variable Value Output

variable Value

1 Influent conc. Effluent conc.

BOD (mg/L) 500–600 BOD (mg/L) 5.5–172.3

COD (mg/L) 1000–12000 COD (mg/L) 11–396.5

NHþ
4 −N (mg/L) 21–27 NHþ

4 −N (mg/L) 0.2–3.1

TP (mg/L) 15–16.4 TP (mg/L) 1.4–6.4

2 HRT (h) 3–11

3 MLVSS (mg/L) 4120–5990

4 TDS (mg/L) 500–4900

5 pH 6.2–7.6
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process variables used in this study to model effluent
BOD, COD, NHþ

4 −N and TP by RBFANN.
In order to obtain convergence within a reasonable

number of cycles, the input and output data should be
normalized and scaled to the range of 0–1 by Eq. (3)
[55,56]:

xni ¼ xi − xmin

xmax − xmin
ð3Þ

where xi is the initial value, xmax and xmin are the max-
imum and minimum of the initial values, and xni is the
scaled value. After the training and testing of the ANN,
the output data were scaled to the real-world values
through the Eq. (4).

xi ¼ xni xmax − xminð Þ þ xmin ð4Þ
In the current research, the developed networks con-

sisted of three layers including one input layer that com-
prised five neurons (including influent BOD, COD,
NHþ

4 −N or TP, HRT, MLVSS, TDS and pH), one hidden
layer consisting of five neurons (which were constant
due to the application of newrbe function) and the out-
put layer that had one output neuron (which was efflu-
ent BOD or COD, NHþ

4 −N or TP). The RBFANN
applied network function of newrbe (design exact radial
basis network) to the input data. The newrbe function
creates a two-layer network with biases for the both
layers (Figure 2). The first layer has radial basis transfer
function (radbas). Consequently, it calculates its weighted
inputs with Euclidean distance weight function (dist) and
its net input with product net input function (netprod).
The second layer has linear transfer function (purelin).
Consequently, it calculates its weighted inputs with Dot
product weight function (dotprod) and its net input with
sum net input function (netsum). For the newrbe func-
tion, the center is selected by using the fixed centers se-
lected at random method [57]. This function can produce
a network with zero error on training vectors. The stop-
ping criterion for the newrbe function is when the outputs
are exactly the matrix of target class vectors when the in-
puts are the matrix of input vectors [58]. The RBFANN
was designed in an innovative loop that can apply newrbe
function to the input data for user defined number of
times in order to minimize error.
The network was trained until the network average root

mean squared error (RMSE) was minimum and coefficient
of determination (R2) approached 1. Other parameters for
network were chosen as the default values of the software.
The performances of the ANN models were measured by
R2 and RMSE between the predicted values of the network
and the experimental values, which were calculated by
Eq. (5) and (6), respectively [59].

R2 ¼ 1 −

Xn

i¼1
y�i − y ið Þ

p

� �2

Xn

i¼1
y�i − �yð Þ2

ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

y ið Þ
p − y�i

� �2
s

ð6Þ

where y is the average of y over the n data, and y�i and y ið Þ
p

are the ith target and predicted responses, respectively.

Results and discussion
BOD removal efficiency and modeling outcomes
The experiments were executed from HRT of 1 to 7 h in
order to optimize HRT for the municipal wastewater.
The influent BOD and MLVSS concentration varied
from 140 to 180 mg/L and 3380 to 5470 mg/L, respect-
ively. The removal performance of the SMBR increased
from the HRT of 1 to 5 h so the effluent decreased to
5 mg/L with removal efficiency of 97% at HRT of 5 h.
The effluent BOD concentration increased and removal
performance decreased after 5 h due to self-degradation
of microorganisms [60]. Consequently, the kinetic con-
stants including the half saturation coefficient (Ks), the
maximum substrate utilization rate (k) and endogenous
decay coefficient (Kd) were calculated as 113 mg L−1,
2.05 d−1 and 0.036 d−1 different HRTs. The influent
BOD concentration decreased from 175 mg/L to
25 mg/L for the effluent concentration at HRT of 1 h. It
means that the effluent BOD concentration at HRT of
1 h meets discharge limits of municipal wastewater
(BOD < 30 mg/L).
The HRT varied from 5 to 20 h in order to optimize

HRT for the industrial wastewater. The influent BOD
concentration varied from 1265 to 1360 mg/L and
MLVSS concentration changed from 4350 to 7890 mg/L.
The BOD removal efficiency increased from the HRT of
5 to 17 h in a trend like municipal wastewater. The ef-
fluent BOD decreased to 8.7 mg/L with removal



Figure 2 Topological architecture of the RBF artificial neural network used in this study.
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efficiency of 99.34% at HRT of 17 h. Then efficiency de-
creased because of self-degradation [61]. Consequently,
the kinetic constants were calculated as Ks equal to
163.55 mg L−1 and k equal to 3.56 d−1, Kd equal to 0.013
d−1. At HRT of 13 h the effluent BOD concentration de-
creased to 42.1 mg/L with removal efficiency of 96.9%. It
was concluded that the HRT of 13 h cannot meet the
discharge limits and the HRT of 17 h was the optimal
result for the treatment of industrial wastewater. The
difference between the required HRT for the treatment
of municipal and industrial wastewater denotes the no-
ticeable difference in the cost of municipal and industrial
wastewater treatment. Therefore, the idea of combined
municipal and industrial wastewater was followed as a
key to improve the efficiency and decrease the cost of
wastewater treatment.
The concentration of components of combined muni-

cipal and industrial wastewater was between municipal
and industrial wastewaters. The BOD/COD ratio for the
combined wastewater was about 0.5 compared with mu-
nicipal and industrial wastewaters, which changed from
0.38 to 0.5 and from 0.6 to 0.7, respectively [9]. The
HRT varied from 3 to 11 h in order to decrease effluent
BOD concentration to discharge limits. The influent
BOD and MLVSS concentration for the combined
wastewater varied from 500 to 600 and from 4120 to
5990 mg/L, respectively. The influent BOD concentra-
tion decreased from 557 mg/L to 5.5 mg/L for the efflu-
ent of BOD with removal efficiency of 99% at HRT of
9 h. The removal efficiency decreased by increasing
HRT from 9 to 11 h because of self-degradation [60,61].
Consequently, the kinetic constants were calculated as
Ks equal to 177.84 mg L−1 and k equal to 5.29 d−1, Kd

equal to 0.011 d−1. At HRT of 7 h for the combined
wastewater, influent BOD concentration decreased from
600 mg/L to 19 mg/L for the effluent of BOD with
removal efficiency of 96.9%. Therefore, the effluent BOD
concentration met discharge limits at HRT of 7 h. It was
observed that the performance of the SMBR increases
when the influent BOD concentration is lower than 600
to 700 mg/L, which is in a good agreement with the
findings of previous studies [3,24]. We concluded that
by combining municipal and industrial wastewaters, the
treatability of wastewater could be improved by setting
BOD/COD ratio to 0.5 and reduction of wastewater
strength by decreasing influent BOD concentration to
lower than 700 mg/L.
In order to model the effluent BOD concentration by

RBFANN, the influent BOD, HRT, MLVSS, TDS and pH
were input variables of the neural network. The
RBFANN applied network function of newrbe to the in-
put data and the spread of RBF was considered equal to
its default value, 1. A large spread results in a smooth
function approximation, but, by contrast, a large spread
can cause numerical problems [48]. The network func-
tion of newrbe selected 70% of normalized data to train
and 30% to test RBFANN models [38]. The RBFANN
was designed in an innovative loop that applied newrbe
to the data for more than 30 times in order to minimize
error. Optimal network was chosen on the basis of the
minimum average error. Figure 3 shows the denorma-
lized results of the effluent BOD modeling using the
RBFANN according to training and testing data sets.
The results of the training procedure by RBFANN were
successful for the effluent BOD concentration. Figure 3
shows that the train and test models by RBFANN indi-
cated an almost perfect match between the experimental
and the predicted effluent BOD values compared with
the results of models introduced by Cinar et al. [38].
The RMSE values for train and test (verification process)
models were 8.67 and 4.56 mg/L, respectively, and the
R2 values were greater than 0.99 for both models. The



Figure 3 Simulated effluent concentration of BOD by RBFANN model for train and test data.

Table 5 Effect of different single and joint variables on
the effluent BOD models

Input
variable
no.

R2 RMSE (mg/L) Importance
orderTrain Test Train Test

1 0.804 0.863 35.62 32.80 5

2 0.991 0.999 8.15 2.79 1

3 0.907 0.995 24.76 6.43 2

4 0.705 0.674 48.71 42.27 4

5 0.804 0.863 35.62 32.8 3

2-1 0.973 0.961 17.39 16.28 4

2-3 0.998 0.999 2.98 2.15 1

2-4 0.996 0.978 6.82 2.46 3

2-5 0.995 0.999 6.65 1.76 2

2-3-1 0.992 0.999 6.17 2.41 2

2-3-4 0.998 1 4.08 0.12 1

2-3-5 0.996 0.998 5.62 4.23 3

2-3-4-1 0.998 0.998 3.69 3.07 1

2-3-4-5 0.997 0999 4.29 3.25 2

2-3-4-1-5 0.990 0.998 8.67 4.56 1

The numbers 1 to 5 refers to input variables identified in Table 4.
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RBFANN predicted effluent BOD so accurate that the
mean average error for train and test models did not ex-
ceed 5% and 3%, respectively.
The effluent BOD was modeled individually by consid-

ering different single and joint variables as inputs of
neural network to examine the effect of each variable on
the changes of effluent BOD concentration. The joint in-
puts to train the neural network were groups of two,
three and four variables. Table 5 shows HRT among sin-
gle input variables, and HRT and MLVSS among groups
of two variables had the most considerable effect on the
effluent BOD concentration. Furthermore, HRT, MLVSS
and TDS among groups of three variables, and HRT,
MLVSS, TDS and influent BOD between groups of four
variables were determined to have the greatest effects on
the effluent BOD concentration.
The sensitivity [62] of effluent BOD concentration to

changes of an input variable such as HRT determines the
influence and importance of HRT on the effluent BOD
models. The effect of each variable on the RBFANN
models to simulate effluent of BOD compared with other
variables was determined by its importance order. Table 5
shows the importance order of each input variable and the
joint variables for effluent BOD. The variable with higher
rank of importance denoted not only a favorable match
between experimental and simulated values by RBFANN
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models but also low RMSE and high R2 values. The vari-
ation of effluent BOD concentration was influenced by
HRT, MLVSS, TDS, influent BOD concentration and pH,
respectively. The results of this study show that the HRT
and MLVSS have the greatest influence on the effluent
BOD, which are in a good agreement with earlier experi-
mental studies [63,64].

COD removal efficiency and modeling outcomes
To perform COD experiments for the municipal waste-
water the influent COD concentration varied from 310
to 360 mg/L. By increasing HRT from 1 to 5 h the re-
moval efficiencies increased and the best results ob-
tained at HRT of 5 h. At this point, the effluent COD
concentration reached to 8 mg/L with removal efficiency
of 97.9%. The effluent COD concentration increased and
removal efficiency decreased after 5 h [60]. Conse-
quently, the kinetic constants were calculated as Ks

equal to 96 mg L−1, k equal to 2.31 d−1 and Kd equal to
0.043 d−1. The influent COD concentration decreased
from 354 mg/L to 53 mg/L for the effluent COD at HRT
of 1 h. It means that the effluent COD concentration at
HRT of 1 h meets discharge limits of the municipal
wastewater (COD < 60 mg/L).
For the industrial wastewater the influent COD con-

centration varied from 2050 to 2120 mg/L. From the
HRT of 5 to 17 h the removal efficiency increased and
the best results obtained at HRT of 17 h. At this point,
the influent COD concentration decreased from
2100 mg/L to 14.8 mg/L for the effluent COD. Conse-
quently, the kinetic constants were calculated as Ks

equal to 308 mg L−1, k equal to 2.81 d−1, Kd equal to
0.019 d−1. The influent COD concentration decreased
from 2055 mg/L to 71.2 mg/L for the effluent with re-
moval efficiency of 96.5% at HRT of 13 h. Therefore, it
was concluded that the HRT of 13 h cannot meet the
discharge limits and HRT of 17 h was considered as the
optimal result.
The COD experiments were performed for the com-

bined municipal/industrial wastewater with the HRT
varying from 3 to 11 h. The influent COD concentration
for the combined wastewater varied from 1000 to
1200 mg/L. The influent COD concentration at HRT of
9 h decreased from 1130 mg/L to 10.3 mg/L for the ef-
fluent of COD with removal efficiency of 99.1%. By in-
creasing HRT from 9 to 11 h the removal efficiency
decreased [60,61]. Consequently, the kinetic constants
were calculated as Ks equal to 113.2 mg L−1 k equal to
2.72 d−1, Kd equal to 0.022 d−1. The results indicated
that at HRT of 7 h the influent COD concentration de-
creases from 1080 mg/L to 50 mg/L for the effluent with
removal efficiency of 96%. Therefore, the effluent COD
concentration at HRT of 7 h met discharge limits. It was
observed that the performance of the SMBR increases
due to reduction of wastewater strength [9,24] when the
influent COD concentration is lower than 1000 to
1100 mg/L.
In order to model the effluent COD by RBFANN, the

influent COD, HRT, MLVSS, TDS and pH were the in-
put variables of the neural network. The results of the
effluent COD modeling using the RBFANN for train and
test data were denormalized to compare the observed
values of effluent COD concentration with simulated
values. The results of the training procedure by
RBFANN were successful for the effluent COD concen-
tration. Figure 4 shows the train and test models by
RBFANN indicated an almost perfect match between the
experimental and the simulated effluent COD values
compared with the results of models introduced by
Cinar et al. [38]. The RMSE values for train and test
(verification process) models were 25.62 and 9.12 mg/L,
respectively. The values of R2 for train and test models
were 0.99 and 0.98, respectively. The RBF models pre-
dicted effluent COD concentration with a mean average
error for train and test models, which did not exceed 7%
and 3%, respectively.
Table 6 shows HRT among single input variables, and

HRT and MLVSS among groups of two variables had the
most considerable effects on the effluent COD. Further-
more, HRT, MLVSS and TDS among groups of three
variables, and HRT, MLVSS, TDS and influent COD be-
tween groups of four variables were determined to have
the greatest effect on the effluent COD. Table 6 also
shows the importance order of each input and joint vari-
able for effluent COD according to sensitivity analysis
procedure. The variation of effluent COD concentration
was influenced by HRT, MLVSS, TDS, influent COD
concentration and pH, respectively. The results showed
that the HRT and MLVSS have the greatest influence on
the effluent BOD, which are in a good agreement with
earlier experimental studies [63,64]. The results of sensi-
tivity analyses were highly collaborated for both BOD
and COD models performed by RBFANN. The variation
of both effluent BOD and COD concentration to all in-
put variables were the same in their simulation pro-
cesses, which can be justified by similarities of their
natures. As a result, to control the changes of effluent
BOD and COD concentration the most effective vari-
ables are HRT and MLVSS.
NHþ
4 −N removal efficiency and modeling outcomes

The influent NHþ
4 −N concentration for the municipal

wastewater varied from 18 to 24 mg/L. The results
showed that the removal efficiency of NHþ

4 −N is im-
proved with increase of the HRT. The influent NHþ

4 −N
concentration decreased from 24 mg/L to 0.4 mg/L for
the effluent at HRT of 7 h. The influent NHþ

4 −N



Figure 4 Simulated effluent concentration of COD by RBFANN model for train and test data.

Table 6 Effect of different single and joint variables on
the effluent COD models

Input variable
no.

R2 RMSE (mg/L) Importance
orderTrain Test Train Test

1 0.179 0.599 153.49 91.66 5

2 0.947 0.997 44.36 14.1 1

3 0.941 0.994 48.23 35.67 2

4 0.6 0.8 123 63.41 3

5 0.862 0.715 70 109.03 4

2-1 0.951 0.999 47 4.3 4

2-3 0.995 0.999 15.43 6.19 1

2-4 0.998 0.994 11.23 13.58 3

2-5 0.987 0.998 22.45 7.66 2

2-3-1 0.984 0.996 26.66 13.34 3

2-3-4 0.994 0.996 16.48 8.48 1

2-3-5 0.974 0.997 33.13 11.56 2

2-3-4-1 0.992 0.999 19.58 2.61 1

2-3-4-5 0.987 0.991 22.08 14.93 2

2-3-4-1-5 0.992 0.985 25.62 9.12 1

The numbers 1 to 5 refers to input variables identified in Table 4.
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concentration decreased from 23 mg/L to 0.8 mg/L at
HRT of 5 h. As the optimal result, the effluent NHþ

4 −N
concentration with removal efficiency of 96.5% at HRT of
5 h met the discharge limit (NHþ

4 −N <1 mg/L). Increasing
the cell retention time increases Azotobacters and Orga-
notrophic bacteria and then followed by rapid removal of
dissolved carbonaceous biochemical oxygen demand
(CBOD) [20]. Rapid removal of dissolved CBOD increases
the aeration time for the nitrification process [5,20]. In-
creases of the Azotobacter populations in activated sludge
process occurs at relatively high hydraulic retention time
[5,64]. Hence, the required HRT of municipal wastewater
treatment was increased to 5 h.
For the industrial wastewater the influent NHþ

4 −N
concentration varied from 24 to 31 mg/L. The NHþ

4 −N
concentration decreased with increase of HRT for the in-
dustrial wastewater. And at HRT of 17 h the effluent N
Hþ

4 −N concentration was equal to 0.2 mg/L with the
removal efficiency of 99.35%. The effluent NHþ

4 −N con-
centration at HRT of 13 h decreased from 30 mg/L to
0.7 mg/L for the effluent with the removal efficiency of
97.7%.
For the combined municipal and industrial wastewater

the influent NHþ
4 −N concentration varied from 21 to

27 mg/L. The effluent concentration at HRT of 7 h met
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the discharge limits. The influent concentration de-
creased from 24 mg/L to 0.8 mg/L for the effluent with
removal efficiency of 96.7%. The results of NHþ

4 −N ex-
periments for three systems showed that the required
HRT for NHþ

4 −N removal increases the required HRT
for the treatment of municipal wastewater and does not
have any effect on the required HRT for industrial and
combined municipal and industrial wastewaters. The
idea of combined wastewater is more useful because the
treatment system is able to receive sewage with higher
influent BOD and COD concentration without any in-
crease in the HRT.
In order to model the effluent NHþ

4 −N by RBFANN,
the influent NHþ

4 −N concentration, HRT, MLVSS, TDS
and pH were the input variables of network. The results
of the effluent NHþ

4 −N modeling using the RBFANN for
train and test data sets were denormalized to compare
the observed values of effluent NHþ

4 −N concentration
with simulated values. The results of the training pro-
cedure by RBFANN were successful for the effluent N
Hþ

4 −N. Figure 5 shows that the train and test models by
RBFANN indicated an almost perfect match between the
experimental and the simulated values of effluent NHþ

4 −
N concentration compared with the results of models in-
troduced by Cinar et al. [38]. The RMSE values for train
Figure 5 Simulated effluent concentration of NHþ
4 −N by RBFANN mod
and test (verification process) models were 0.06 and
0.14 mg/L, respectively. The R2 values for train and test
models were 0.98 and 0.99, respectively. The RBF
models simulated effluent NHþ

4 −N with a mean average
error for train and test models, which did not exceed 2%
and 5%, respectively.
Table 7 shows HRT among single input variables, and

HRT and MLVSS among groups of two variables had the
most considerable effect on the COD effluent. Further-
more, HRT, MLVSS and pH among groups of three vari-
ables, and HRT, MLVSS, pH and influent NHþ

4 −N
between groups of four variables were determined to
have the greatest effect on the COD effluent. Table 7
also shows the importance order of each input variable
and the joint variables for effluent NHþ

4 −N according to
sensitivity analysis procedure. The variation of effluent
NHþ

4 −N concentration was influenced by HRT, MLVSS,
pH, influent NHþ

4 −N and TDS, respectively. The current
research shows that the HRT and MLVSS have the great-
est influence on the changes of effluent NHþ

4 −N, which
are in a good agreement with earlier experimental studies
[63,64]. The results of sensitivity analysis for the effluent
NHþ

4 −N models indicated that to control the changes of
effluent NHþ

4 −N concentration the most effective vari-
ables are HRT and MLVSS.
el for train and test data.



Table 7 Effect of different single and joint variables on
the effluent NHþ

4 −N models

Input variable
no.

R2 RMSE (mg/L) Importance
orderTrain Test Train Test

1 0.59 0.44 0.78 0.62 5

2 0.983 0.998 0.16 0.12 1

3 0.923 0.985 0.35 0.17 2

4 0.54 0.6 0.81 0.52 4

5 0.78 0.94 0.56 0.29 3

2-1 0.99 0.993 0.13 0.13 3

2-3 0.99 0.994 0.13 0.09 1

2-4 0.99 0.964 0.12 0.23 4

2-5 0.99 0.992 0.14 0.11 2

2-3-1 0.987 0.995 0.15 0.09 3

2-3-4 0.99 0.996 0.13 0.05 2

2-3-5 0.988 1 0.14 0 1

2-3-5-1 0.99 0.998 0.14 0.06 1

2-3-5-4 0.97 0.996 0.2 0.1 2

2-3-5-1-4 0.98 0.991 0.06 0.14 1

The numbers 1 to 5 refers to input variables identified in Table 4.
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Results of TP removal efficiency and modeling
The influent TP concentration for the municipal wastewa-
ter varied from 13.2 to 15.1 mg/L. The results showed that
the removal efficiency of TP is improved with increase of
the HRT from 1 to 5 h. Then, the removal efficiency de-
creased for the HRT of 5 to 7 h. The influent TP concen-
tration decreased from 14.8 to 2 mg/L for the effluent at
HRT of 5 h with removal efficiency of 86.5%. The influent
TP concentration decreased from 14.9 to 5.8 mg/L for the
effluent at HRT of 1 h and met discharge limit (effluent
TP <6 mg/L). The effluent TP concentration depends on
the TBOD/TP ratio so with a ratio less than 20, it is not
possible to achieve the effluent TP concentration lower
than 2 mg/L [65]. We observed that the TBOD/TP ratio
for the influent of Ekbatan wastewater treatment plant
was less than 20. Subsequently, the combination of muni-
cipal and industrial wastewater was an effective method to
correct this problem.
The influent TP concentration for the combined

wastewater varied from 15 to 16.4 mg/L. The influent
TP concentration decreased from 16.2 mg/L to 5.7 mg/L
for the effluent TP at HRT of 1 h. With increasing the
HRT from 7 to 9 h the effluent TP concentration
reached to lower than 1 mg/L with removal efficiency of
92%. The influent TP varied from 17.24 to 20.3 mg/L for
the industrial wastewater. The high ratios of the TBOD/
TP for the industrial wastewater allowed the effluent TP
to be lower than 1 mg/L. The effluent TP concentration
reached to 0.7 mg/L with the removal efficiency of
96.55% at HRT of 17 h.
In order to model the effluent TP by RBFANN, the in-
fluent TP concentration, HRT, MLVSS, TDS and pH
were the input variables of the neural network. The re-
sults of the effluent TP modeling using the RBFANN for
train and test data sets were denormalized to compare
the observed values of effluent TP with simulated values.
The results of the training procedure by RBFANN were
successful for the effluent TP. Figure 6 shows that the
train and test models by RBFANN indicated an almost
perfect match between the experimental and the simu-
lated effluent TP concentration compared with the re-
sults of models introduced by Cinar et al. [38]. The
RMSE values for train and test (verification process)
models were 0.32 and 0.17 mg/L respectively, and the
value of R2 was 0.99 for both models. The RBFANN
models simulated effluent TP so accurate that the mean
average error for train and test models did not exceed
5% and 3%, respectively.
Table 8 shows HRT among single input variables, and

HRT and pH among groups of two variables had the
most considerable effect on the effluent TP. Further-
more, HRT, pH and MLVSS among groups of three vari-
ables, and HRT, pH, MLVSS and influent TP
concentration between groups of four variables were de-
termined to have the greatest effect on the effluent TP.
Table 8 also shows the importance order of each input
variable and the joint variables for effluent TP according
to sensitivity analysis procedure. The variation of efflu-
ent TP concentration was influenced by HRT, pH,
MLVSS, influent TP concentration and TDS, respect-
ively, which is in a good agreement with earlier experi-
mental studies [63,64].

Conclusions
The current research was an effort to evaluate perform-
ance of an SMBR treating combined municipal and in-
dustrial wastewater compared with treating municipal
and industrial wastewaters. The combined municipal
and industrial wastewater showed more satisfactory
treating features for wastewater treatment by an SMBR
compared with the municipal and industrial wastewaters.
Although the concentration of components in combined
wastewater were almost half of the industrial wastewater,
required HRT for combined wastewater was 7 h in com-
parison to 17 h for industrial wastewater. It was ob-
served that treatment performance of the SMBR
improves and HRT decreases noticeably by decreasing
BOD and COD concentration to lower than 700 mg/L
and 1000 mg/L, respectively. The results indicated that
the combined wastewater improves treatment perform-
ance by increasing TBOD/TP ratio and setting BOD/
COD ratio to 0.5. Therefore, effluent TP concentration
was lower than 2 mg/L by increasing TBOD/TP ratio to
more than 20. This study showed that it is possible to



Table 8 Effect of different single and joint variables on
the effluent TP models

Input variable
no.

R2 RMSE (mg/L) Importance
orderTrain Test Train Test

1 0.34 0.3 1.15 1.88 5

2 0.972 0.992 0.35 0.14 1

3 0.878 0.978 0.7 0.29 2

4 0.51 0.8 1.39 0.82 4

5 0.77 0.96 0.99 0.4 3

2-1 0.975 0.97 0.37 0.37 4

2-3 0.99 0.99 0.22 0.16 2

2-4 0.92 0.99 0.53 0.09 3

2-5 0.995 0.997 0.11 0.11 1

2-5-1 0.99 0.998 0.2 0.13 2

2-5-3 0.991 1 0.14 0 1

2-5-4 0.96 0.999 0.35 0.09 3

2-5-3-1 0.99 0.998 0.2 0.1 1

2-5-3-4 0.99 0.993 0.23 0.11 2

2-5-3-1-4 0.988 0.994 0.32 0.17 1

The numbers 1 to 5 refers to input variables identified in Table 4.

Figure 6 Simulated effluent concentration of TP by RBFANN model for train and test data.
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achieve a cost efficient wastewater treatment by SMBR
for the combined wastewater because required HRT was
at the same range for BOD, COD and NHþ

4 −N com-
pared with the municipal and industrial wastewaters.
Treatment process models are efficient tools to assure

proper operation and better control of wastewater treat-
ment systems. ANNs have been successfully used for
monitoring, controlling, classification and simulation of
experimental data. In this study, an RBFANN was uti-
lized in order to simulate effluent quality parameters of
the SMBR treating combined municipal and industrial
wastewater. An RBFANN is the most commonly used
neural network for pattern recognition problems, it is
also widely used for fault diagnosis and solving ill-
conditioned problems. The RBFANN has the advantages
of a fast learning process, a learning stage without any it-
eration of updating weights, robust ability, and adapta-
tion capability compared with other ANNs such as MLP,
RNN and ESN. The results showed that the training and
testing procedure by RBFANN for effluent BOD, COD,
NHþ

4 −N and TP were successful. The train and test
models showed an almost perfect match between the ex-
perimental and predicted values of effluent BOD, COD,
NHþ

4 −N and TP.
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