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Cohen’s h for detection of disease association
with rare genetic variants
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Abstract

Background: The power of the genome wide association studies starts to go down when the minor allele
frequency (MAF) is below 0.05. Here, we proposed the use of Cohen’s h in detecting disease associated rare
variants. The variance stabilizing effect based on the arcsine square root transformation of MAFs to generate
Cohen’s h contributed to the statistical power for rare variants analysis. We re-analyzed published datasets, one
microarray and one sequencing based, and used simulation to compare the performance of Cohen’s h with the risk
difference (RD) and odds ratio (OR).

Results: The analysis showed that the type 1 error rate of Cohen’s h was as expected and Cohen’s h and RD were
both less biased and had higher power than OR. The advantage of Cohen’s h was more obvious when MAF was
less than 0.01.

Conclusions: Cohen’s h can increase the power to find genetic association of rare variants and diseases, especially
when MAF is less than 0.01.
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Background
The prevailing hypothesis in genome-wide association
studies (GWASs) of genetic diseases is “common disease,
common variant” [1,2]. The development of microarray
based genotyping greatly accelerated GWASs [3-5] and
lead to the identification of hundreds of genetic variants
causing susceptibility to complex diseases. Most identified
common variants confer relatively small risk (odds ratio
(OR) at 1.1-1.5) and explain only a modest proportion
concerning the heritability of these diseases [6,7]. In con-
trast, most of the identified rare variants have ORs above
2 [8,9]. This leads to the question of how the missing
heritability can be explained and the search for the pos-
sible contribution by rare variants [1,10-12]. One tech-
nical obstacle to GWAS on rare variants is the calling
algorithm of microarray based genotyping. The reliabil-
ity of genotyping calls drops when the minor allele fre-
quency (MAF) falls below 5%. Recent improvement in
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genotype calling algorithms of microarrays and growing
availability of next generation sequencing technology
make rare variant searching feasible [13].
Many strategies have been developed to analyze disease-

associated rare variants, e.g. the collapsing method [14,15],
the weighted approach [16-18], and regression-based ana-
lysis [19,20]. Generally, these strategies emphasize the sig-
nificance of rare variants by either analyzing a cluster on
aggregate or setting larger weights on them. These studies
focus on hypothesis testing with the aim of increasing the
power of detecting associated rare variants. The vari-
ability of odds ratio increases at the lower end of MAF,
e.g. MAF =0.001 [21-23]. Recent studies raised issues
of the OR based analysis of GWAS [12,21,24,25]. They
predicted additional loci to be uncovered by more
powerful GWAS for these studied traits and combined
with published loci could explain around 15-20% of her-
itability of these traits.
The aim of this study was to examine the distributions

and properties of Cohen’s h [26], and compared its per-
formance in analyzing GWAS data with OR and RD
using publicly available GWAS datasets as well as simulated
datasets. We used the coronary artery disease (CAD)
GWAS dataset from the Wellcome Trust Case Control
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Consortium (WTCCC) [4], as well as a sequencing-based
T1D dataset. We determined the Cohen’s h equivalents to
the OR for declaring a mild, moderate and large effect.
To take advantage of the fact that the power of Cohen’s
h does not depend on MAFs, we describe how to use
Cohen’s h to evaluate the power and sample sizes re-
quired in rare variant studies. Other possible applica-
tions of Cohen’s h for such studies of rare variants are
also discussed.

Methods
Theoretical properties of effect size measures: risk
difference, Cohen’s h and odds ratio
For biallelic SNPs with minor allele A, and major allele
a, the case (group D) and control (group �D) populations
had n1 and n2 allele counts, respectively. Let p1 = P(A|D)
be the MAF of the case group and p2 ¼ P A �DÞjð be the
MAF of the control group. These three ES measures are
functions of MAFs from case and control groups. RD is

defined as d = p1 - p2, and the estimator is d̂ ¼ p̂1−p̂2 ,
where p̂1 and p̂2 are the maximum likelihood estimators
of p1 and p2, respectively. The definition for Cohen’s h
is h ¼ 2arcsin

ffiffiffiffiffi
p1

p� �
−2arcsin

ffiffiffiffiffi
p2

p� �
, and the estimator is

ĥ ¼ 2arcsin
ffiffiffiffiffi
p̂1

p� �
−2arcsin

ffiffiffiffiffi
p̂2

p� �
. The allelic OR can

be defined as OR ¼ p1= 1−p1ð Þ
p2= 1−p2ð Þ, and the corresponding esti-

mator is OR̂ ¼ p̂1= 1−p̂1ð Þ
p̂2= 1−p̂2ð Þ.

The derivations of the asymptotic distributions of estima-
tors and their applications to the calculation of the p-values
were described in Additional file 1. When the normality ap-
proximation fails due to extremely low MAF, the p-values
were validated by the Fisher’s exact test. The performance
of these ES measures were evaluated by accuracy, precision
(i.e., bias and mean square error (MSE)), and type I error
rate. Furthermore, statistical power was computed by
assuming a balanced case–control design with inde-
pendent cases and controls. The power formula for
testing H0 : p1 − p2 = 0 vs. H1 : p1 − p2 ≠ 0 with a total
of n independent cases and controls (i.e. n1 = n2 = n)

Φ
ffiffi
n

p
p1−p2ð Þ−z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
� �

, where Φ denotes the

cumulative normal distribution and z1 − α/2 was the 100
(1-α/2)-th percentile. The power for H0 :OR = 1 vs. H1 :
OR = c could be determined provided that the MAF in
the control group, p2, and c were known according to
the above formula where the MAF in the case group
could be calculated as p1 = (OR * p2)/(OR * p2 − p2 + 1).
In the case of Cohen’s h, the association test can be
set as H0 : h = 0 vs. H1 : h = δ, and the power formula

is 1−Φ −δffiffiffiffiffiffi
2=n

p þ z1−α=2

� �
þΦ −δffiffiffiffiffiffi

2=n
p −z1−α=2

� �
. The sample

size n was varied from 1,000 to 10,000 and the MAF in
the control group was varied from 0.001 to 0.05. The c
values for OR of 1.8, 2, and 3, and δ values of 0.08, 0.1,
and 0.13 for Cohen’s h were considered for p2 < 0.05. We
used a nominal significance level of 5 × 10−8 to calculate
the statistical power of a GWAS.

Simulations and data analysis
GWAS data from the WTCCC, quality control and filtering
We obtained genotyping data of 1,988 CAD patients and
3,004 shared controls (1,504 from 1,958 Birth Cohort
Controls (58C) and 1,500 from UK Blood Services sam-
ple (NBS)) from the WTCCC archive. The majority of
subjects were of European descent. All individuals were
genotyped using Affymetrix GeneChip 500 K arrays. De-
tails of the study samples were described in the original re-
port [4]. We calculated RD, Cohen’s h and log(OR) using
this dataset. The individuals dropped in the WTCCC study
because of evidence of non-European descent or genotyp-
ing problems were excluded in the current analysis. A total
of 1,926 subjects with CAD and 2,938 common controls
were included for further analysis. We further dropped the
SNPs with bad genotype calling, as suggested in the ori-
ginal report. The exclusion criteria for SNPs were (1) MAF
in shared controls is less than 0.002, at which there
were less than 3 individuals for any genotype, (2) call
rate <95%, and (3) Hardy–Weinberg Equilibrium exact
test P value <5.7*10−7 in shared controls and (4) allele
frequency difference test based on two samples propor-
tion test P value <5.7 × 10−7 between 58C and NBS. A
total of 413,059 SNPs consisting of 52,220 (12.64%) rare
SNPs (MAF < 0.05) and 360,839 (87.36%) common
SNPs (MAF≧0.05) passed this filter.

Using simulation to estimate type I error rate and power
To assess statistical properties of ES measures in terms
of bias, MSE, and type I error rate, we performed simu-
lations of a pseudo case–control study using the two
shared controls. We randomly selected 1,480 subjects
from pooled shared controls as pseudo-cases and kept
the remaining 1,458 samples as pseudo-controls. For
every replication, we calculated the ES estimate by each
measure and tested the association for each SNP. The
bias was calculated as the mean deviation of estimates
from 0 per replication, and the MSE was the mean of
the square of the bias. The fraction of times that the p-
values of the association tests were less than 0.05 was
the empirical type I error rate. These three indices for
rare and common variants on each autosome were
shown in Additional file 2 (bias, MSE) and Additional
file 3 (type I error rate).
To better compare the performance of Cohen’s h

with other methods including Combined Multivariate
and Collapsing Method (CMC) [15], Weighted Sum
Statistic (WSS) [16] and Variable Threshold (VT) [17],
we used simulated rare variants datasets generated by



Table 1 Biases, MSEs and type I error rates for RD, Cohen’s
h and OR

ES Type of
SNP

No.
SNPs

Bias MSE Min Max Type I
error
rate

RD Common 360839 0.00004 0.00012 −0.046 0.044 0.050

Rare 52220 0.00002 0.00001 −0.015 0.015 0.051

Cohen’s h Common 360839 0.00008 0.00068 −0.103 0.097 0.050

Rare 52220 0.00018 0.00072 −0.091 0.092 0.056

log(OR) Common 360839 0.00021 0.00477 −0.346 0.346 0.050

Rare 52220 0.00178 0.11395 −2.707 2.739 0.048

Wen and Yeh BMC Genomics 2014, 15:875 Page 3 of 11
http://www.biomedcentral.com/1471-2164/15/875
the SimRare program ([27], http://code.google.com/p/
simrare/). SimRare uses the forward-time simulation
program to generate sequence data. Evolution parame-
ters used were: (1) an additive multi-locus model with
selection coefficient distribution by Kryukov [28], (2)
the mutation rate was 1.8×10−8, and (3) the effective
population sizes were 8,100, 8,100, 7,900, 900,000 with
500, 10, 370 generations, respectively. Fifty replica-
tions of fixed gene lengths including 250, 500, 1,000,
2,000, and 5,000 base pairs were simulated. The longer
gene length produced a larger number of rare variants.
The corresponding mean numbers of rare variants
were 46.2, 96, 187.5, 377.7 and 944.3. For the setting
of risk simulations, we assume a model with a disease
prevalence rate of 1% and 2,000 cases and 2,000 con-
trols. The power was assessed at OR = 0.5 for protect-
ive mutations and OR = 3 for detrimental mutations
with an additive mode of inheritance over 1,000 repli-
cations. For CMC, WSS and VT, p-values were ob-
tained empirically through 1,000 permutations for
each replication (i.e., gene-specific). For single-marker
testing methods such as RD, Cohen’s h and OR, the
smallest p-value for testing the rare variant was re-
corded for each replication. We defined the unadjusted
power for single marker testing methods as the pro-
portion of replicates with minimum p-values < =0.05.
Furthermore, we used Bonferroni correction and the
Benjamin-Hochberg procedure [29] to adjust for mul-
tiple testing.

Applying Cohen’s h to microarray and sequencing-based
datasets
We compared the three measures described above on
one microarray typed (CAD) [4] and one sequence based
(T1D) [30] dataset. For the CAD dataset, the association
tests were used separately for the analysis of rare vari-
ants (0.05 >MAF ≧0.002) and common variants. For
each SNP, the magnitude of ES was estimated by RD,
OR, and Cohen’s h. Moreover, we adjusted the signifi-
cance level by Bonferroni correction at a p-value thresh-
old of 1.2 × 10−7(0.05/41,3059). The sequence based T1D
dataset was retrieved from http://www.sciencemag.org/
content/early/2009/03/05/science.1167728/rel-suppl/62c4d
688b3668c3c/suppl/DC1. A total of 179 rare variants
(defined as MAF < 3%) in 10 candidate genes were used in
the current study [30].

Results
Performance of ES measures: bias, MSE, type I error and
power
Table 1 summarizes the accuracy (bias), precision
(MSE) and type 1 error rate of RD, Cohen’s h, and OR
for common and rare variants. Box-plots of the distri-
butions of estimates of RD, Cohen’s h, and log(OR) for
rare and common SNPs on each autosome are pre-
sented in Additional file 4 and Additional file 5. Among
the 22 autosomes, mean biases and MSEs based on log
(OR) of rare SNPs were larger than those of common
SNPs, while RD and Cohen’s h obtained more similar
estimates regardless of the MAFs. Thus, the OR would
be more sensitive to changes in MAFs. Figure 1 pre-
sents the estimated type I error rates for RD, Cohen’s h,
and log(OR) for common SNPs and rare SNPs. The
performance of each measure of ES was very close for
common SNPs in each autosome. The range of type I
error rate for every ES measure was approximately
(0.041, 0.056), and the average type I error rates for 22
autosomes were the same (0.05). As for rare SNPs,
ranges of type I error rates of RD, Cohen’s h, and OR
were (0.037, 0.065), (0.042, 0.068), and (0.036, 0.061),
respectively. The value of the type I error rate for each
ES measure was slightly larger than 0.05 at a few auto-
somes. The results indicated that every ES measure
would probably produce slightly inflated type 1 error
rates concerning the effect of rare variants in genetic
association studies. Results from these simulations indi-
cated that the estimate of OR for rare variant disease
association might have greater bias and variability com-
pared with RD and Cohen’s h. Equally important is the
conclusion that the true significance may be missed by
relatively large variation of OR estimates, followed by a
loss of power to detect rare variants. This suggests po-
tential utility of Cohen’s h for detecting rare variants
associated with complex diseases.
Table 2 showed the power of analyzing one marker at

a time in comparison with methods (joint analysis
methods) of jointly analyzing a group of mutations in-
cluding CMC, WSS and VT in detecting disease associ-
ated genes. The power was lowest for single-marker
tests and increased with the number of rare variants.
When there were 96 variants within the gene on
average, the unadjusted power was 0.465, 0.393, 0.521
and >0.878 for RD, OR, Cohen’s h and joint analysis
methods, respectively. As the mean number of variants
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http://code.google.com/p/simrare/
http://www.sciencemag.org/content/early/2009/03/05/science.1167728/rel-suppl/62c4d688b3668c3c/suppl/DC1
http://www.sciencemag.org/content/early/2009/03/05/science.1167728/rel-suppl/62c4d688b3668c3c/suppl/DC1
http://www.sciencemag.org/content/early/2009/03/05/science.1167728/rel-suppl/62c4d688b3668c3c/suppl/DC1


5 10 15 20

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

chromosome

ty
p
e
 1
 e
r
r
o
r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 all

Cohen's h for rSNP

RD for rSNP

log(OR) for rSNP

Cohen's h for cSNP

RD for cSNP

log(OR) for cSNP

Figure 1 Mean of empirical type I error rates for risk difference (RD), Cohen’s h and log(OR) in each autosome.
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was increased from 96 to 377.7, the unadjusted power
for the single-marker test increased to 0.88, 0.814, 0.918
and 1 for RD, OR, Cohen’s h and joint analysis methods,
respectively. For these situations, the greatest power
was observed in joint analysis methods, followed by
Table 2 Empirical power for tests at nominal level 0.05 based

Fixed gene length (bp) Mean no of rare SNPs

250 46.2

Unadj.

BH

Bonf.

500 96

Unadj.

BH

Bonf.

1000 187.5

Unadj.

BH

Bonf.

2000 377.7

Unadj.

BH

Bonf.

5000 944.3

Unadj.

BH

Bonf.

Unadj.: Without adjustment for multiple testing. BH: Benjamini-Hochberg procedure
Cohen’s h, which was always the largest of the three
single-marker tests taking into account the adjustment
for multiple testing. The results highlighted that for rare
variants, Cohen’s h was a better association measure
than RD and OR.
on 1000 replicates

RD OR Cohen’s h CMC WSS VT

0.491 0.644 0.501

0.142 0.107 0.178

0.042 0.037 0.051

0.037 0.030 0.043

0.878 0.931 0.882

0.465 0.393 0.521

0.106 0.080 0.135

0.087 0.064 0.113

0.992 0.998 0.992

0.584 0.509 0.652

0.136 0.109 0.162

0.121 0.083 0.141

1 1 1

0.880 0.814 0.918

0.254 0.194 0.306

0.211 0.143 0.256

1 1 1

0.973 0.94 0.987

0.370 0.265 0.451

0.305 0.191 0.388

. Bonf.: Bonferroni correction.
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Statistical power required to detect disease association of
rare SNPs based on Cohen’s h
Generally, the statistical power is related to the magni-
tude of the ES, the sample size, and the variance of the
estimator of ES. The variance of each of the ES measures
except Cohen’s h is related to the MAF in cases and
controls (shown in Additional file 1). Accordingly, a
MAF threshold was adopted to avoid limited power for
SNPs with low MAF, and the threshold chosen also
depended on the sample size of the study and the ex-
pected ES values. Figure 2A illustrated the relationship
between the statistical power and the MAFs in the con-
trol group given similar magnitudes of ES for OR and
Cohen’s h (n =5,000). Cohen’s h was more powerful than
OR (Figure 2B). Even at a stringent significance level of
α =10−8, the power of Cohen’s h remained higher than
that of OR at α =5 × 10−8 for SNPs with MAF < 0.001
(data not shown).
For p2 ≤ 0.01, when the sample sizes increased from

1,000 to 10,000 and, we found that for all scenarios, the
power of Cohen’s h remained higher than that of OR
for the same ES measures (Figure 2B). For a SNP with
OR =3 and p2 = 0.01, a total sample size of 4,060 (2,030
cases and 2,030 controls) was needed to achieve 80%
statistical power to detect the effect at a genome-wide sig-
nificance level of 5 × 10−8. However, the statistical power
of Cohen’s h was approximately 85% with the same sam-
ple size. Additionally, the power ratio of the power based
on Cohen’s h versus that of OR was consistently larger
A B

Figure 2 Relationship between power and needed sample size based
estimated by OR (bold line) and Cohen’s h (dotted line) at the same thresh
h at varying MAF in controls. (C) Power ratio at varying MAF in controls an
than 1 (Figure 2C). Hence, Cohen’s h was more powerful
at identifying rare SNPs. The notable power gain of
Cohen’s h at lower MAFs might contribute to the findings
for rare SNPs.

Analyses of rare SNPs in CAD data
We performed single marker association tests using all
three ES measures on the WTCCC CAD GWAS data. A
total of 2,938 common controls and 1,926 cases with
CAD were included in this study. We applied one single
marker test at each of the 52,220 rare SNPs and 360,839
common SNPs separately. In addition, when the MAF in
CAD patients was extremely low i.e. <0.002, the asymp-
totic assumption might not hold. In this case, the statis-
tical significance of the p-values was validated by Fisher’s
exact test. Bonferroni correction adjusted p-value of 0.05/
413,059 was the criteria to declare genome-wide signifi-
cance for any SNP (Figure 3). Table 3 summarized the
number of significant SNPs, and genes that had been iden-
tified or validated for CAD based on OR, RD, and Cohen’s
h, respectively. We found that among the 26 SNPs associ-
ated with CAD, 17 were on chromosome 9p21.3. The as-
sociation of these regions with CAD was reported [4,23].
All 3 ES measures identified the same 5 genes associated
with CAD. The relevance of 4 of these genes, PLCL2,
SAMD12-AS1, GAN, and MEF2NB-MEN2B, to interme-
diated cardiac phenotypes was reported [31-33].
Interestingly, when analyzing rare SNPs, the numbers

of significant SNPs were different for each ES measure.
C

on OR and Cohen’s h for rare SNPs. (A) Line plot shows the power
old. (B) power curves given fixed OR =3 with corresponding Cohen’s
d varying sample size.



Figure 3 Manhattan plot showing the significance of association between all rare SNPs and CAD. For all panels, the genome-wide significance
threshold of 0.05/403,089 is shown. Distributions of -log10 p-values for (A) risk difference, (B) Cohen’s h and (C) log(OR).
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Cohen’s h identified most SNPs, followed by RD, then
OR. Compared to the OR results, there were 4 and 9
more SNPs detected by RD and Cohen’s h, respectively
(Table 3). The substantial power gain of Cohen’s h leads
to the identification of more significant rare SNPs. Some
SNPs which were reported to be associated with CAD,
such as rs17146094 (within EIF4H gene), and rs6674781
(near rs6671793), were identified by RD and Cohen’s h
but not OR [5,34].
Surprisingly, 6 further SNPs detected only by Cohen’s

h, consistent with the findings based on Fisher’s exact
test, were located in regions that are known to be associ-
ated with CAD, cholesterol, and arteries (Table 4). This
finding again shows the ability of Cohen’s h to identify
potential rare SNPs associated with disease and other
intermediate disease phenotypes. Although SNPs impli-
cated by our analysis are tightly correlated with other
validated relevant SNPs in the region and are likely to be
Table 3 Significant SNPs for CAD under different ES
measures at genome-wide significance levels

Type of
SNPs

Significant
SNPs

OR RD Cohen’s h

Common Number 26 26 26

Median 1.327 0.065 0.134

Range (0.757, 6.104) (−0.063, 0.354) (−0.129, 0.795)

Rare Number 9 13 18

Median 2.144 0.021 0.119

Range (1.88, 2.41) (−0.009, 0.038) (−0.167, 0.179)
in linkage disequilibrium with the causal variant, most of
the significant rare SNPs remain directly correlated to
CAD. Caution should be taken on interpreting these re-
sults from the rare-variant analysis of the three WTCCC
datasets as the reliability of current microarray based
genotyping still needs improvement for MAF <5%.

Application to sequencing based T1D data
We also tested Cohen’s h on sequencing data. There
were 179 rare variants in 10 candidate genes previously
studied in connection with T1D. Four SNPs (rs35667974,
rs35337543, ss107794687, and ss107794688) which were
shown to be associated with T1D in the previous study
were also identified by RD, Cohen’s h and OR. Another
SNP, ss107794716 residing within the AIRE gene, was
identified by both of RD and Cohen’s h but not OR
(RD = 0.006, p = 0.034; Cohen’s h = 0.106, p = 0.019;
OR = 7.04, p = 0.068). The association of this region
and the AIRE gene with T1D was documented [35-37].
In addition, the magnitudes of p-values of significant
rare variants obtained from Cohen’s h are the smallest.
The results indicates that Cohen’s h are more likely to
identify associated rare variants compared to OR.

Distribution of ES values for rare variants based on CAD
data
The distributions of ES values for rare variants reflected
the magnitude of rare variant-disease associations. We
further explored the ES distributions of Cohen’s h and
OR with regard to robustness and interpretation using



Table 4 Replication of rare SNPs showing statistically significant effect at genome-wide significance levels (1.2 × 10−7) for CAD

Chr ES SNP Nearest gene
or SNP

Location MAF in
controls

MAF in cases OR P-value RD P-value Cohen’s h P-value Exact test
P-valueb

Association of SNP or proxy
with other cardiovascular
phenotypes

Genes within associated interval

3 All rs17042882 PLCL2 3p24.3 0.028 0.061 2.255 4.88 × 10−15 0.033 1.11 × 10−15 0.163 4.00 × 10−15 — Heart failure, Arthritis

3 h rs16827563 VEPH1 3q24-q25 0.005 0 NA NA −0.005 2.18 × 10−5 −0.119 1.02 × 10−8 7.3 × 10−7 Carotid artery disease,
Diabetes Mellitus

7 RD rs17146094 EIF4H 7q11.23 0.017 0.034 2.036 1.27 × 10−7 0.017 7.15 × 10−8 0.109 1.32 × 10−7 — CAD

8 All rs16891338 SAMD12-AS1 8q24.12 0.023 0.043 1.908 4.11 × 10−8 0.02 2.50 × 10−8 0.113 4.66 × 10−8 — Blood Pressure

8 All rs16908145 FLJ45872 8q24.23 0.022 0.043 1.998 6.54 × 10−9 0.021 3.46 × 10−9 0.12 7.08 × 10−9 —

15 RD, h rs7163007 MAP2K5 15q23 0.002 0.011 5.551 2.13 × 10−7 0.009 5.33 × 10−9 0.121 5.85 × 10−9 — BMI, Diabetes Mellitus

16 All rs16955238 GAN 16q24.1 0.022 0.046 2.143 8.91 × 10−11 0.024 3.41 × 10−11 0.135 8.53 × 10−11 — Cholesterol

16 h rs7197337 ANKRD26P1 16q11.2 0.006 0 NA NA −0.006 2.88 × 10−6 −0.132 1.76 × 10−10 2.3 × 10−8

19 All rs11671119 MEF2B MEF2NB 19p13.11 0.033 0.071 2.239 0 0.038 0 0.174 0 — Diabetes Mellitus

SNPs near associated SNPs within 500 kb

1 RD, h rs6674781 rs6671793 2a 0.002 0.011 5.55 2.13 × 10−7 0.009 5.33 × 10−9 0.121 5.85 × 10−9 — Coronary disease

3 h rs17064749 rs7615788 10a 0.008 0.001 0.124 8.36 × 10−5 −0.007 2.84 × 10−6 −0.116 2.28 × 10−8 4.2 × 10−7 Cholesterol

3 h rs10510375 rs1450097 400a 0.009 0.001 0.11 2.97 × 10−5 −0.008 4.03 × 10−7 −0.127 9.67 × 10−10 2.2 × 10−8 Cholesterol, HDL

3 h rs6805861 rs10510197 250a 0.007 0 NA NA −0.007 3.84 × 10−7 −0.145 2.92 × 10−12 1.2 × 10−9 Cholesterol, HDL

4 All rs890447 rs97669522 25a 0.043 0.078 1.883 6.49 × 10−13 0.035 3.09 × 10−13 0.148 8.35 × 10−13 — CAD

5 All rs159171 rs10520872 500a 0.025 0.055 2.27 6.88 × 10−14 0.03 1.62 × 10−14 0.156 5.51 × 10−14 — Cholesterol, LDL

5 h rs41349146 rs2431337 500a 0.007 0 NA NA −0.007 3.84 × 10−7 −0.145 2.92 × 10−12 1.2 × 10−9 Arteries

6 h rs41518850 rs12190287 300a 0.006 0 NA NA −0.006 2.88 × 10−6 −0.132 1.76 × 10−10 2.3 × 10−8 CAD

6 h rs4398751 rs9397922 150a 0.005 0 NA NA −0.005 2.18 × 10−5 −0.119 1.02 × 10−8 7.3 × 10−7 Lipoprotein

8 All rs16883114 rs10503973 200a 0.021 0.041 1.993 1.57 × 10−8 0.02 8.57 × 10−9 0.117 1.69 × 10−8 — Cholesterol, LDL

9 RD, h rs12343115 rs2149998 300a 0.009 0 NA NA −0.009 6.97 × 10−9 −0.167 6.66 × 10−16 3.6 × 10−12 Myocardial Infarction

18 All rs41477147 rs10502528 150a 0.028 0.065 2.413 0 0.037 0 0.179 0 — Arteries

(rs1595963)

21 h rs7276641 rs2829644 300a 0.01 0.002 0.198 2.50 × 10−5 −0.008 2.81 × 10−6 −0.111 8.91 × 10−8 — Coronary disease
adenotes the physical distance (in kb) to the nearest validated SNP. bFisher’s exact test is only required when the asymptotic assumption does not hold. NA: not available; Chr., chromosome; MAF, minor allele
frequency; location according to NCBI Build 37.5; Association of SNP or proxy with other cardiovascular phenotypes was based on the HuGE Navigator database (http://hugenavigator.net/HuGENavigator/
startPagePubLit.do), dbSNP (NCBI website: http://www.ncbi.nlm.nih.gov/projects/SNP/) and MalaCards (http://www.malacards.org/pages/whatsmalacards).
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the GWAS data. The two panels in Figure 4 showed the
scatter plot of OR and Cohen’s h for the rare and com-
mon SNPs, respectively, in the CAD dataset. The ranges
of ORs among rare SNPs were obviously broader than
those of common SNPs. For Cohen’s h, the ranges were
comparable for rare and common SNPs. This indicated
that Cohen’s h is more robust at lower MAF compared
to OR.
Thresholds of Cohen’s h for the evaluation of small,

medium, and large differences between proportions were
previously recommended as 0.2, 0.5, and 0.8, respectively
[26]. However, the proportion of values of Cohen’s h lar-
ger than 0.2 was extremely low from our analysis of
GWAS data (Figure 4). Therefore, we determined the
empirical thresholds of Cohen’s h comparable to com-
monly used cut points for OR in terms of mild, moder-
ate and large effects. The relationship between OR and

Cohen’s h can be derived as h ¼ 2arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OR�p2
OR�p2−p2þ1

q	 

−

2arcsin
ffiffiffiffiffi
p2

p� �
given the MAF of the control group, p2,

and the OR. We found that the relationship between the
MAF and Cohen’s h for rare SNPs was similar to that
for common SNPs. As MAF increases, the magnitudes
of Cohen’s h turned out to be greater at fixed OR. As
such, we determined thresholds for Cohen’s h according
to the average value of varying MAFs. For common
SNPs, the values at 1.2 and 1.5 for OR are comparable
to thresholds at 0.075 and 0.15 for Cohen’s h, respect-
ively. As for rare SNPs, Cohen’s h had thresholds 0.05
and 0.1 corresponding to mild and moderate effects of
OR at 1.5 and 2. One can choose dynamic thresholds for
Figure 4 Scatter plot of OR and Cohen’s h for rare and common SNPs
more outliers using the OR criteria, more outliers using Cohen’s h criteria w
Cohen’s h with varying MAFs; however, this approach is
not practical in comparison to using the p value of the
calculated h. Using the above criteria, we further subdi-
vided all common SNPs into the mild, moderate, and
larger effect categories (Table 5). The proportions of
each category estimated from the OR and Cohen’s h
values for common SNPs resulted in good agreement
(see Additional file 6). For common SNPs, the proportion
of large ES (i.e., |log(OR)| > log(1.5)) falls in the range of
(0.001%, 0.033%) for CAD, CD (data not shown), and RA
(data not shown). This finding is consistent with that ob-
tained from Cohen’s h (i.e., |h| >0.15). Notably, there was
a trend that SNPs with lower MAF were more likely to
have moderate to large ESs by either measure. However,
for rare SNPs, the proportions of the three categories did
not align (see Additional file 7). The proportion of large
effects based on OR (i.e. |log(OR)| > log(2)) rose to 6.296%
in CAD, revealing that approximately 3,288 rare SNPs
have large ESs. In contrast, the estimates from Cohen’s h
with comparably large ESs to OR, lead to markedly fewer,
42 in total, rare SNPs.
Discussion
Despite the hundreds of common genetic variants asso-
ciated with complex diseases identified by GWAS, only
a small fraction of heritability of most common complex
genetic diseases are explained by these genes. Currently,
an increasing number of studies are focusing on rare
disease-associated variants that might shed light on the
issue of missing heritability. The power of GWAS falls
in CAD. (A) common SNPs and (B) rare SNPs. Despite the seemingly
ere statistically significant.



Table 5 Proportions of SNPs with mild, moderate, and large effect for CAD GWAS data

Type of No. of Mild effect (%) Moderate effect (%) Large effect (%)

SNPs SNPs OR Cohen’s h OR Cohen’s h OR Cohen’s h

Common 360839 99.453 99.936 0.546 0.063 0.001 0.001

Rare 52220 69.772 73.416 23.932 26.505 6.296 0.079

The respective thresholds of ORs for mild, moderate and large effect at common SNPs were |log(OR)|≦log(1.2), log(1.2) < |log(OR)|≦log(1.5), and |log(OR)| > log(1.5),
whereas Cohen’s h had respective thresholds of |h|≦0.075, 0.075 < |h|≦0.15, and |h| > 0.15. The respective thresholds of ORs for mild, moderate and large effect at rare
SNPs were |log(OR)|≦log(1.5), log(1.5) < |log(OR)|≦log(2), and |log(OR)| > log(2), whereas Cohen’s h had respective thresholds of |h|≦0.05, 0.05 < |h|≦0.1, and |h| > 0.1.
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steeply with MAFs for values <0.01. We compared
Cohen’s h with OR on simulated and real data. Our re-
sults supported the following conclusions. First, esti-
mates of the ES measures were biased at low MAF
regardless of the method used. The estimates of log(OR)
were more biased and exhibited greater MSE for rare
variants than RD and Cohen’s h, as was reported [21,24].
In contrast to previous simulation studies [21,22,24], we
found slightly increased false positive associations for
rare variants (Figure 1) exceeding the nominal level
(5%). Possible strategies to address this problem in-
cluded the adoption of a more stringent significance
level to prevent inflated false positive results and to ag-
gregate multiple rare SNPs to avoid the burden of mul-
tiple testing [38]. We noticed that single marker testing
was not as efficient as methods that jointly analyze a
group of mutations such as CMC, WSS and VT. Some
studies had demonstrated that CMC, WSS and VT
would encounter the loss of power when the direction of
effects in the combined variants is not consistent, or
when a small fraction of variants are associated with dis-
ease, as compared to single marker testing [39,40].
Hence, we recommend using Cohen’s h for screening
purpose to uncover SNPs that might be overlooked by
the OR or RD based statistic commonly used in GWAS.
Once the candidate genes were flagged, more sophisti-
cated statistical methods and re-sequencing of these po-
tential target regions and more would be needed for
validation.
Second, we compared the empirical distributions of

ORs and Cohen’s h for common and rare variants cor-
responding to the null hypothesis of WTCCC GWAS
with ~2000 cases and 3000 controls. To the best of our
knowledge, most studies used significant or susceptible
SNPs from GWAS findings to examine the distributions
of ORs for common and rare variants [8,12,25]. How-
ever, very weak genetic effects would likely be missed by
studies using only significant SNPs. In our study, the
empirical distributions of ORs could be useful for setting
realistic conditions related to the OR for rare variants in
future simulation studies because the vast majority of
studies typically utilize the OR as the ES measure. A
quick search in PubMed using “Cohen’s h” did not find
any genetic association studies. To our knowledge, the
first paper that mentioned the application of Cohen’s h
for rare variant was Evangelou & Ioannidis [41]. Our study
provided supporting evidence that the application of
Cohen’s h for rare variant analysis was appealing. Add-
itionally, we made an evaluative judgment on whether the
estimated value of Cohen’s h should be considered mild,
moderate, or large to improve its interpretation. As was
widely known, low frequency SNPs had moderate-to-large
effects (compared to common SNPs,) based on the OR
and Cohen’s h. However, for SNPs with MAFs between
0.002 and 0.05, the percentages of large effects based on
OR (6.296%) were much greater than those obtained using
Cohen’s h (0.079%). We argued that the relative greater
bias of OR based estimates might be responsible for this
large difference. The most common argument against the
use of data transformation is the problem of interpretabil-
ity in effect size estimation. The impression of imperfect
correlation between Cohen’s h and effect size needs fur-
ther study.
Third, our finding also showed that Cohen’s h could un-
cover rare disease-associated variants missed by OR
based analysis. The arcsine square root transformation
stabilized Cohen’s h so its asymptotic variance did not de-
pend on the allele frequency. Accordingly, its power to de-
tect a genetic association was relatively robust at low
MAF. The data presented here suggest that test based on
Cohen’s h is an appropriate substitute for OR (Table 4).
The vast majority of the rare disease-associated variants
identified by OR was detrimental. On the contrary, one
was more likely to discover both risk and protective vari-
ants using Cohen’s h. Caution should be taken on inter-
preting these results from the rare-variant analysis of
the three WTCCC datasets as the reliability of current
microarray based genotyping still needed improvement
for MAF <5%. Next-generation sequencing technolo-
gies, such as the 1000 Genome project, will identify
many more variants with very low MAFs; thus, the ap-
plication of Cohen’s h is appropriate. Additionally, esti-
mating and presenting Cohen’s h facilitates future
meta-analysis of GWAS data [41]. However, further
studies are needed to address the slight bias and to con-
trol the false positive rates associated with the analysis
of rare variants. In this situation, all other methods suf-
fer from inflated type I error rates. Thus, alternative
methods will need to be developed based on Cohen’s h
to account for the increased numbers of false positives.
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There are likely several factors that contribute to the
inflated type I error rates, such as population stratifica-
tion and linkage disequilibrium among rare variants.
One possible direction is to use methods to jointly
analyze a group of mutations within a gene, or func-
tional unit, as performed in previous studies [14-20].
Additional studies are required to delineate the optimal
application and interpretation of results based on
Cohen’s h.

Conclusions
Using simulated and publically available data, our results
suggested that Cohen’s h, a difference-type measure based
on the arcsine square root transformation of minor allele
frequencies, was less biased and substantially more power-
ful than OR in detecting the association of rare variants
and complex genetic diseases. Our method offers a useful
option for researchers who wish to quantify rare variants
associated with diseases.
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Additional file 1: Additional information of sampling distributions
of RD, Cohen’s h and OR.

Additional file 2: Biases and MSEs for RD, Cohen’s h and log(OR)
for 22 chromosomes.

Additional file 3: Type I error rates for RD, Cohen’s h and log(OR)
for 22 chromosomes.

Additional file 4: Box-plot of effect sizes for rare SNPs based on
two shared controls in WTCCC data. Panel A: RD; Panel B: Cohen’s h;
Panel C: log(OR).

Additional file 5: Box-plot of effect sizes for common SNPs based
on two shared controls in WTCCC data. Panel A: RD; Panel B: Cohen’s h;
Panel C: log(OR).

Additional file 6: Proportions of mild, moderate, and large effect
for common SNPs in CAD. Grey bar represents OR and Black bar
denotes Cohen’s h.

Additional file 7: Proportions of mild, moderate, and large effect
for rare SNPs in CAD. Grey bar represents OR and Black bar denotes
Cohen’s h.
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