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Abstract
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Background: Multifactor dimensionality reduction (MDR) is widely used to analyze interactions of genes to determine
the complex relationship between diseases and polymorphisms in humans. However, the astronomical number
of high-order combinations makes MDR a highly time-consuming process which can be difficult to implement for
multiple tests to identify more complex interactions between genes. This study proposes a new framework,
named fast MDR (FMDR), which is a greedy search strategy based on the joint effect property.

Results: Six models with different minor allele frequencies (MAFs) and different sample sizes were used to generate
the six simulation data sets. A real data set was obtained from the mitochondrial D-loop of chronic dialysis patients.
Comparison of results from the simulation data and real data sets showed that FMDR identified significant gene-gene
interaction with less computational complexity than the MDR in high-order interaction analysis.

Conclusion: FMDR improves the MDR difficulties associated with the computational loading of high-order SNPs and
can be used to evaluate the relative effects of each individual SNP on disease susceptibility. FMDR is freely available at

Keywords: SNPs, Gene-gene interactions, Multifactor dimensionality reduction

Background

Large single nucleotide polymorphisms (SNPs) research
projects across the human genome are important studies
for biological and biomedical science, with many re-
searchers seeking to use SNPs as predictors for suscepti-
bility to disease. Traditional approaches to identify SNP
interactions usually use bio-statistical methods such as
contingency tables combined with k-fold cross-validation,
but the vast number of possible combinations makes the
application of traditional methods difficult. Therefore,
current research is aimed at combining biostatistics and
machine learning in family-based and case—control associ-
ation studies [1-8].

Multifactor dimensionality reduction (MDR) [9] is a
well-known hybrid technology that combines a 2-way
contingency table, k-fold cross-validation, and a dimen-
sionality reduction technique. MDR belongs to a group
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of non-parametric statistical methods used to determine
high-order gene—gene interactions in case—control stud-
ies [9, 10]. Typically, multi-locus genotypes are classified
into high-risk and low-risk classes, allowing the number
of genotype predictors to be effectively reduced from n
dimensions to one dimension. This reduction influences
the contingency table allowing for the quick computa-
tion of statistics including the accuracy rate, odds ratio
(OR), P-value, etc. Many modifications and extensions to
MDR have been proposed and these can be divided into
three groups. The first group contains modifications and
combinations of biostatistics in MDR; this group in-
cludes entropy-based interpretation methods [11], the
use of OR [12], generalized linear models [13], log-linear
methods [14], Bayesian posterior probability [15], and
model-based methods [16]. The second group focuses
on particular data problems, such as imbalanced data
[17, 18], permutation testing [19], and missing data [20].
These extensions and modifications of MDR have been
used to address different situations encountered in disease
analysis. Many disease studies have thus successfully
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employed MDR to detect interactions between particular
genes, including those for coronary artery disease [21, 22],
hypertension [23-25], bladder cancer [26], and autism
[27]. Finally, the third group aims to reduce MDR compu-
tational time, using methods including parallel implemen-
tations [28] and the use of hardware graphics processing
units (GPUs) [29, 30]. Although these studies use GPUs to
reduce MDR running time, the problem of factorial oper-
ation in MDR still presents a challenge.

This study seeks to develop a new framework to im-
prove MDR computational times in investigations of high-
order gene—gene interaction. The framework retains the
significant factors to reduce the number of multi-locus
evaluations in MDR. Improvements in computational time
were measured over 100 runs on a simulation data set and
a genome-wide analysis of chronic dialysis epistasis.

Method

MDR algorithm

MDR is an attribute construction approach that reduces
the data dimensionality by seeking to identify combina-
tions of multi-locus genotypes that are associated with ei-
ther high-risk or low-risk groups. The combination of two
or more locus genotypes into a single attribute can be
used to effectively estimate the risk associated with gene—
gene interactions in relation to a disease. This study uses
the imbalanced functions proposed by Yang et al. [17].
MDR can be divided into five separate processes. In the
first step, the data are divided into 10 parts for ten-fold
cross-validation. Nine-tenths of the data are classified as
training sets and the remaining 1/10 is used for testing.
The second step is the construction of a contingency
table. For a given interaction order n, n SNPs are selected
from the data set. L is defined as a set of multi-locus geno-
types at n loci and/or environmental factors. L can be rep-
resented as an n-dimensional vector:

L= {l,h,15, ...} (1)

where [ represents an SNP factor and/or environmental
factor.

Next, L is used to calculate the case—control ratios for
each multi-locus genotype. The ratio between cases and
controls is evaluated by Equation (2).
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where the cases are labelled P and the controls are la-
belled N. P and N respectively represent the sizes of
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cases and controls in the training set. Here j represents
the index of samples in the cases and controls. P; repre-
sents the /™ sample among the cases and N; represents
the j™ sample among the controls. u(L, P)) represents a
match (given a score of “1”) if all multi-locus genotypes /
in vector L match P; a mismatch is given a score of “0”.
u(L, N;) represents a match (given a score of “1”) if all
multi-locus genotypes / in vector L match N; a mismatch
is given a score of “0”. For example, a 2-order interaction
model consisting of SNP1 and SNP2 has nine multi-
locus genotypes, i.e., AA-AA, AA-Aa, AA-aa, Aa-AA,
Aa-Aa, Aa-aa, aa-AA, aa-Aa and aa-aa. The AA repre-
sents the homozygous reference genotype, while Aa
represents the heterozygous genotype and aa repre-
sents the homozygous variant genotype. In the first

. P .
multi-locus genotype (AA-AA), the Zj: 1u(L,P,») in-
cludes 88 samples matching AA-AA among the cases
and Z}ilu(L,N /) includes 90 samples matching AA-

AA among the controls. Evaluation with Eq. 2 yields a
value of 0.978, which is computed by (88 x 300)/(90 x
300); P and N are respectively 300 samples among
both the cases and controls.

After the ratio calculation, each L is labelled H'
("high") if the ratio of cases to controls is equal to or
greater than a threshold of 7 (=1); otherwise it is la-
belled L' ("low"). Once all Ls are labelled ‘H” or ‘L, a
new binary attribute is created by pooling the high-risk
genotype combinations into one group and the low-risk
genotype combinations into another group. This means
that the four frequencies (TP, FP, TN, and FN) can be
computed in a 2-way contingency table. Finally, each
possible L computes a training classification error rate
for each n-way interaction in the training set. The clas-
sification error rate is given by Equation (3).

Classification error rate = 0.5

L FN . FP
TP+FN  FP+TN
(3)

Among all # SNP combinations, the best model with
the minimum classification error rate is selected by
the training step. The third step evaluates the
remaining 1/10 of the original data set (i.e., the inde-
pendent test data). This step creates an MDR attribute
for the testing set using the # SNPs that have the
minimum training classification error rate. In addition,
the best model in each cross-validation is collected
and named the cross-validation consistency (CVC). In
the fourth step, the procedure is repeated 10 times
(i.e., ten-fold cross-validation) so that each sample is
included in the testing set once, and the resulting clas-
sification error rates of each of the ten models in CVC
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are averaged. In the last step, the best MDR model
with the highest frequency in CVC is selected.

Fast MDR algorithm (FMDR)
FMDR proposes a new framework to improve the MDR
computational time. Figure 1 shows the FMDR flowchart
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consisting of five steps: (1) data processing, (2) selection
of training and testing sets, (3) evaluation of all possible
combinations, (4) identifying the best model, and (5)
statistical analysis of the best model. In the FMDR, the
number of selected SNPs is limited to two at the outset.
The framework is represented by the thick frame in
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Table 1 A paired t-test comparison of the power analysis between MDR and FMDR for 2- to 5-loci

Model' 2-loci 3-loci 4-oci 5-loci
MDR FMDR P-value? MDR FMDR P-value MDR FMDR P-value MDR FMDR P-value
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Model 1 0.12 (£0.11) 2 (£0.11) = 0.27 (£0.21) 0.27 (£0.21) - 0.67 (£0.21) 0.67 (x0.21) 0.17 0.94 (£0.08) 1(£0.11) <0.001
Model 2 0.05 (£0.00) 0.05 (x0.00) - 0.24 (+0.18) 0.24 (£0.18) - 0.78 (+0.14) 0.78 (£0.14) 0.65 0.96 (£0.04) 0.96 (+0.05) 0.001
Model 3 0.05 (+0.00) 0.05 (+0.00) - 0.73 (+0.14) 0.72 (£0.14) 0.01 0.90 (+0.08) 0.88 (+0.09) 0.003 0.99 (+0.01) 0.99 (£0.01) <0.001
Model 4 0.24 (£0.10) 0.24 (+0.10) - 0.50 (£0.14) 0.50 (+0.14) 0.32 0.88 (£0.09) 0.87 (+0.09) 0.01 0.99 (£0.02) 0.98 (+0.03) 0.001
Model 5 0.06 (£0.01) 0.06 (x0.01) - 0.50 (+0.13) 0.50 (£0.12) 0.89 0.95 (£0.06) 1 (x0.10) <0.001 0 (£0.00) 1.00 (£0.00) -
Model 6 0.05 (+0.00) 0.05 (+0.00) - 0.11 (+0.04) 1 (x0.04) - 0.70 (+0.12) 0.70 (£0.12) 0.001 1.00 (+0.00) 1.00 (+0.00) 0.001

"Model 1: MAF = 0.1, sample = 800 (400 cases and 400 controls), Model 2: MAF = 0.1, sample = 1600 (800 cases and 800 controls), Model 3: MAF = 0.2, sample = 800 (400 cases and 400 controls), Model 4: MAF = 0.2,
sample = 1600 (800 cases and 800 controls), Model 5: MAF = 0.4, sample = 800 (400 cases and 400 controls), Model 6: MAF = 0.4, sample = 1600 (800 cases and 800 controls); 2P-value were estimated from pairwise
t-test; > the same power analyses between MDR and FMDR

687'91 (5L0T) $21WouaD JN ‘[p 12 Buei

0l Jo ¥ abeyd



Yang et al. BMC Genomics (2015) 16:489

steps (2) and (5) (Fig. 1). In step (2), the framework
checks whether or not the number of loci is equal to
two. If yes, all available two-order locus combinations
amongst the loci are created and regarded as conditions.
All these conditions are then used to evaluate the con-
tingency table (step (3)), and the classification error rate
in each combination is estimated by Equation (3) (step
(4)). In step (5), all two-order locus combinations are
sorted based on the classification error rate, and then
the results of the best #% combinations with the mini-
mum classification error rate are saved into the i™ mem-
ory where i is the i™-fold cross-validation. When ten
cross-validations are computed, the best 2-loci model is
output to show related gene—gene interaction informa-
tion. If the number of order exceeds two (i.e., m-loci,
m>2), each cross-validation uses the corresponding
memory and the recorded results of the best #% combi-
nations to create the available combinations (go to step
(2)), ie., conditions. In step (3), these conditions are
evaluated using the contingency table, and the classifica-
tion error rates of the conditions are estimated in step
(4). The results are then sorted and the best 7% combi-
nations are saved into /™ memory to analyze the next
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interaction order. This process tremendously reduces
the number of available combinations. The processes are
repeatedly implemented until the defined number of se-
lected SNPs is analyzed.

lllustrative example to FMDR and statistical analysis

The supplementary Additional file 1 provides an example
to illustrate how the FMDR works, and the supplementary
Additional file 2 explains the statistical analysis method.

Results

Results on the simulated data set

All simulated models set the 50 attributes with a herit-
ability of 0.2. The minor allele frequencies (MAFs) were
0.1, 0.2, and 0.4. The sample sizes were 800 and 1600, in
which the total number of cases is equal to the total
number of controls. The simulation data was generated
using GAMETES, software used for generating complex
n-loci models with random architectures [31]. The set-
tings and results of the six models are shown in Table 1.
Figure 2 shows the power analysis box plots of six
models. A summary of the six simulation data set shows
that the difference between MDR and FMDR was
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Fig. 2 Performance comparison between MDR and FMDR on six simulated models for different minor allele frequencies (MAFs) and different
sample sizes (a—f of Fig. 2). For all models, heritability h? =02, and MAF includes 0.1, 0.2, and 04. For each model, 100 datasets are generated by
randomly sorted samples. The figures show the box plot, where the boundary of the box closest to zero indicates the 257 percentile, a line
within the box marks the median, and the boundary of the box farthest from zero indicates the 75 percentile. Error bars near the top and
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statistically significant for 4-loci and 5-loci, but there
was only a slight difference between the averages of the
two methods.

Figure 3 showed the execution times for the simula-
tion data sets. The MDR execution times in all locus
orders were collected in a stand-alone test. The total
of all FMDR execution times for all locus orders was
collected since FMDR uses a continual analysis strat-
egy. For the six simulation data sets, MDR and FMDR
required similar durations to implement the 2-loci
analysis. When comparing 2-loci and n-loci (n =3, 4,
5) in model 1, the growth times between MDR and
FMDR for 3-loci to 5-loci were 3.796 vs. 2.691, 38.279
vs. 8.712, and 424.18 vs. 43.260 (milliseconds). Simi-
larly, Figure C1 of supplementary Additional file 3
compares the 2-loci and n-loci in models 3-6. We
compared the growth time between 800 and 1600
samples in different MAFs. For MAF = 0.1, MDR and
FMDR for 2-loci to 5-loci were 1.162 vs. 1.197, 1.796
vs. 1.452, 2.140 vs. 1.599, and 2.063 vs. 1.774. Simi-
larly, Figure D1 of supplementary Additional file 4
shows the growth times between MDR and FMDR in
other MAFs (i.e., MAF =0.2 and MAF =0.4). The re-
sults for the simulation data sets showed that FMDR
effectively reduces MDR computational time.

Results on the chronic dialysis data set

The 77 mitochondrial SNPs in the D-loop region of
chronic dialysis patients were obtained from investiga-
tions conducted by Chen et al. [32] that enrolled 193
chronic dialysis patients and 704 healthy controls from
unrelated ethnic Chinese in Taiwan. The results revealed
that chronic peritoneal dialysis patients suffer from
higher oxidative stress than healthy subjects; this ele-
vated oxidative stress alters the number of copies of
mtDNA in peripheral leukocytes. The possible complicated
networks with direct or indirect cross-communication
among the 77 SNP candidates were explained. The ratio of
controls (n=704) to cases (n=193) was 3.65:1. We ran-
domly sorted the samples in the data set to generate 100
data sets each of which was then divided into ten groups
for ten-fold cross-validation. The ratios of cases to controls
amongst 1000 training sets range from 3.41-3.95, with a
mean (SD) ratio of 3.65 (0.10). Each data set was used once
to test MDR and FMDR.

For the 100 tests, we summed up the frequencies of
the results based on the cross-validation consistency
(CVCQC) and the classification error rate in each test. The
accuracy and OR of the best candidate model was evalu-
ated. Table 2 shows the best, worst, and mean (+SD) in
the 100 tests for MDR and FMDR. For the 3- —6-loci



Table 2 Analysis results of the chronic dialysis data sets from MDR and FMDR

Models Method 3-loci 4-loci 5-loci 6-loci
MDR FMDR MDR FMDR MDR FMDR MDR FMDR
Best
Candidate model 40,56,64 40,56,64 21,5964,71 21,59,64,71 21,5962, 64,71 21,5962, 64,71 214559, 62,64,71 21,4559, 62,64,71
Consistency 2/10 2/10 4/10 2/10 1/10 1/10 2/10 3/10
Accuracy 0.56 0.56 0.58 0.58 0.58 0.58 0.60 0.60
OR (95 % CI) 1.79 1.79 191 191 213 213 230 230
(1.27-2.52) (1.27-252) (1.38-2.63) (1.38-2.63) (1.54-2.94) (1.54-2.94) (1.66-3.18) (1.66-3.18)
Worst
candidate model 45,56,62 45,56,65 40,45,56,62 19,21,34, 56 41,43,45, 56,62 40,5664, 71,77 4,21,56, 60,62,70 40,21,56, 64,71,77
Consistency 1/10 1710 2/10 1710 1/10 1/10 1/10 1710
Accuracy 0.56 0.56 0.57 0.56 0.57 057 0.58 0.59
OR (95 % CI) 1.64 1.65 1.82 178 1.86 1.90 213 228
(1.18-2.27) (1.19-2.31) (1.31-2.54) (1.27-249) (1.34-2.60) (1.36-2.64) (1.50-3.03) (1.59-3.26)
Accuracy
Mean (SD) 0.56 (+0.00) 0.56 (+0.00) 058 (+0.01) 0.58 (+0.01) 0.58 (+0.002) 058 (+0.002) 060 (£0.01) 0.60 (+0.01)
P-value' - 007 032 085
OR
Mean (SD) 1.73 (£0.05) 1.73 (x£0.05) 2.04 (+0.19) 203 (£0.19) 221 (x0.18) 217 (£0.19) 231 (£0.08) 230 (£0.08)
P-value 0.66 044 0.03 0.46
Power
Mean (SD) 097 (+0.03) 0.99 (+0.02) 0.99 (+0.02) 0.99 (+0.02) 0.99 (+0.003) 0.99 (+0.002) 0.99 (+0.004) 0.99 (+0.003)
P-value <0.001 0.83 0.71 <0.001

"P-value were estimated from pairwise t-test; 2 the same accuracies between MDR and FMDR
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models producing the best accuracy amongst the 100
tests, both MDR and FMDR had the same candidate
model, and also had the same accuracy and OR. In the
models for 3- to 6-loci with the lowest accuracy amongst
the 100 tests, MDR and FMDR were different slightly,
and the accuracy and OR also differed. A box plot was
used to compare the two methods for 3-, 4-, 5-, and 6-
loci interactions. Figure 4a and b respectively shows the
accuracy and OR box plot of MDR and FMDR. Paired ¢-
test comparison results indicate that the accuracy and
OR values for 3- —6-loci analysis over 100 test runs were
similar for both MDR and FMDR. Figure 4c shows the
box plot of the power results of MDR and FMDR for
four order interactions. As the order of interaction in-
creases, both MDR and FMDR shows increasing power
values. All powers of MDR and FMDR exceeded 0.8. A
summary of the 100 test runs shows that the difference
between MDR and FMDR was statistically significant for
3- and 6-loci, but the average difference between the
two methods is very slight, i.e.,, -0.011 at 3-loci and
0.002 at 6-loci. In addition, the powers in the 4- and 5-
loci analysis over 100 test runs are similar for both MDR
and FMDR.

8.0
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| —— MDR —@— FMDR |

Fig. 5 Execution times of MDR and FMDR for the real data set with
chronic dialysis. The horizontal axis represents execution time in
logyo milliseconds, while the vertical axis represents the number of

loci in the model

In Fig. 5, for the real data set, both MDR and FMDR
required similar amounts of time to implement the 2-
loci analysis. When comparing 2-loci and #-loci (1 =3,
4, 5, 6), the growth times between MDR and FMDR are
10.40 vs. 5.95, 200.16 vs. 21.08, 2880.95 vs. 70.93, and
8081.88 vs. 245.81. These results ind-+icate that the pro-
posed framework can reduce the execution times re-
quired by MDR for high-order interaction analysis.

Discussion

The substantial computational limits of MDR make it
difficult to detect nonlinear interactions of high-order
combinations of SNPs amongst a large number of SNPs.
Determining all combinations of SNPs in MDR entails
calculating C(N,M) x V= N//[M!(N-M)!'] x V' combina-
tions, where N is the total number of SNPs, M is the
number of factors considered for a model, and V is the
number of cross-validation intervals. In big-O notation,
MDR has a time complexity of O(n!).

Exhaustive search approaches, e.g., genetic algorithm
(GA) [10] and ant colony optimization (ACO) [33] are
important for improving MDR computational times. GA
and ACO use small combinations to find the acceptable
n-loci gene—gene interaction model in a huge combin-
ation space, thus effectively reducing the computational
time requirements. However, all parameters can influ-
ence the results of detected gene—gene interaction. The
parameters of population size, generation size, random
seed, and algorithm setting (e.g., mutation probability in
GA and pheromone in ACO) are difficult to define to
successfully find the n-loci gene—gene interaction model
for data sets of different sizes, i.e., sample size and SNP
size. Therefore, current research directions focus on the
use of software and hardware to improve MDR compu-
tational times.

Many researchers employ software [28] and hardware
[29, 30] techniques to speed up MDR. Bush et al. pro-
posed a framework which divides the MDR processes
into three classes: (1) a data handling class, (2) a model
generation and processing class, and (3) a result storage
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class. These three modular classes were implemented in
parallel, finding that parallel MDR can be used to
analyze high-order interactions of small data sets and
can feasibly perform lower-end genome-wide analyses.
Greene et al. and Sinnott-Armstrong et al. [29, 30]
employed modern computer Graphics Processing Units
(GPUs) to speed up MDR since GPUs have a higher
memory bandwidth and computational capability than
Central Processing Units (CPUs). Still, the factorial in-
crease of time complexity remains an obstacle.

The FMDR procedure is a type of greedy search strat-
egy [34], and is based on joint effect property [35]. The
joint effect can be divided into the three effects: (1) over-
all effect, (2) n-order interaction effect, and (3) main ef-
fect. In epistasis, overall effect indicates the common
effect amongst # risk factors. The main effect indicates
any effect(s) could serve as a guide to determining the
correct multi-locus interaction. The n-order interaction
effect indicates the least proper subset of the loci also in-
teracts epistatically. The highly-associated SNPs have a
high probability of being a significant factor in the next-
order interaction. A low classification error rate in an
MDR model indicates a high statistically significant risk
of n-loci effects. Suppose all 2-loci combinations in four
SNPs are sorted according the classification error rate as
{SNP,, SNP,}, {SNP,, SNP., {SNP,, SNP., {SNP,
SNPy}, ..., {SNP,, SNP4}. The {SNP,, SNP.} is the best
model in 2-loci gene—gene interaction. The {SNP,,
SNP.} and {SNP,, SNP.} combinations are both probably
significant models for gene—gene interaction, but neither
is the best model. SNP, has the highest probability of
joining the 3-loci gene—gene interaction because it’s
strong association with SNP, and SNP,, (i.e., 2-order
interaction effect). On the other hand, {SNP,, SNPg4} is
the worst model; it means that adding SNP4 via SNPy,
into the gene—gene interaction network is the least likely
scenario. SNP4 has a high probability of being added via
the SNP, effect because {SNP,, SNP4} belongs to the top
model with a low classification error rate. Therefore, the
{SNPy,, SNPg4} can be deleted, and all combinations based
on {SNP,, SNPg} in 3-loci combination are not evalu-
ated. These properties allow us to apply the greedy
search strategy to find the significant gene—gene inter-
action model. Moreover, FMDR only sets one parameter
to select the number of best combinations with the low
classification error rate, which are then saved into the
memory. We suggest the optimal choice for # is the dy-
namic adjustment according to the order of interaction,
ie, n=2 with 2-order gene-gene interaction and n=3
with 3-order gene-gene interaction.

The idea behind FMDR is the retention of good results
for high-order interaction, indicating the available com-
binations are generated from n% good results, i.e., n%
results x N combinations, where N is the total number
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of SNPs. Therefore, FMDR has a time complexity of
O(n). The execution time of FMDR is much shorter than
that of MDR in high-order gene—gene interactions be-
cause FMDR effectively decreases the number of pos-
sible unnecessary computations. FMDR includes the
following advantages: (1) FMDR can effectively reduce
the computational time required by MDR for high-order
interactions, (2) the best model has a low classification
error rate and a high sensitivity for disease prediction,
and (3) FMDR can easily be combined with existing
MDR methods.

Conclusions

FMDR based on the joint effect property reduces MDR
computational time by retaining results for higher inter-
actions. The retained number of results can be formula-
rized and improved using statistical methods and
mathematic theories in future work. The time complex-
ity can be easily computed by estimation of a function.
We suggest that the function be designed as a dynamic
adjustment based on the data set size and the order of
interaction. The flexible framework underlying FMDR
can effectively improve the limitations of existing MDR
methods in finding high-order interactions.
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