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Abstract

Background: Genes of the major histocompatibility complex (MHC) exhibit high levels of variability, which is
believed to have arisen through pathogen-mediated selection. We investigated the relationship between parasite
load and genetic diversity at selectively neutral, non-coding markers (microsatellites) and adaptive genetic variation
at a functionally important part of the MHC in six independent natural populations of Brandt’s voles (Lasiopodomys
brandtii) from two regions of the Xilingol Grassland area of Inner Mongolia.

Results: Two-hundred and fifty-two voles were screened for gastrointestinal parasites, and were assessed for
genetic variation. Parasite screening was done through non-invasive fecal egg counts, while allelic diversity was
determined via single-stranded conformation polymorphism and DNA sequencing. We detected eight distinct
helminth egg morphotypes. A total of 10 microsatellite loci were genotyped and 19 unique MHC class II B alleles
were isolated. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at
putative antigen binding sites of DRB. Neutral and adaptive genetic diversity differed between the six vole
populations. To test the main pathogen-driven selection hypotheses for the maintenance of host MHC diversity and
parasite species-specific co-evolutionary effects, multivariate approaches (generalized linear mixed models) were
used to test for associations between the MHC class II DRB genotype and infections with nematodes. We found no
evidence for heterozygote advantage, and overall heterozygosity was lower than expected in the MHC alleles. We
identified an association between the parasite load and specific MHC alleles in the voles, and this pattern varied
between geographic regions.

Conclusions: The results suggest that MHC variability in Brandt’s voles is maintained by rare allele advantage and
fluctuating selection, but the data failed to show any heterozygote advantage effect. Our results add to a growing
body of evidence showing that the mode and relative strength of pathogen-driven selection acting on MHC
diversity varies within specific wild populations. In addition, our study contributes to the understanding of what
maintains MHC diversity, of host-pathogen coevolution and of how genetic diversity is maintained in voles.
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Background
Genetic diversity is widely believed to influence the
evolutionary and adaptive potential of populations and
species [1]. Analysis of patterns and levels of genetic
variation at neutral markers, such as autosomal mic-
rosatellites and mitochondrial DNA regions, has been
widely used in the last decades to infer historical events
(e.g. past demographic expansions or contractions) [2-5]
and geographical features (e.g. fragmentation) [6-8] in
natural populations. However, studying molecular poly-
morphism at loci under selection is the only direct way
to understand the genetics of adaptive processes [9].
Pathogens represent very powerful agents of selection
that have the potential to drive rapid changes in the
genetic composition of natural host populations. In the
co-evolutionary host-pathogen interplay pathogens are
particularly important for maintaining host genetic
variation [10]. The role that genetic variation plays in buff-
ering host populations from pathogens has been empha-
sized in several studies. These studies found associations
between low levels of genetic diversity, increased pathogen
susceptibility, and high pathogen loads [11-14].
In vertebrates, the genes of the major histocompatibil-

ity complex (MHC) are among the most debated candi-
dates in the co-evolutionary process of host-parasite
interactions at the molecular level [15]. They have been
studied extensively in model species under laboratory
conditions, but, because of their functional importance
in the immune system and mate choice, they have also
become the focus of an increasing number of studies on
natural populations [15-18]. MHC genes code for cell
surface molecules that present self and nonself antigens
to T-cells. This function enables them to play a vital role
in the recognition of pathogens invading the body. The
region of the molecule responsible for binding antigens,
the so-called antigen-binding sites (ABS), show particu-
larly high levels of variation, not only in the number of
alleles, but also in the extent of sequence divergence be-
tween alleles. In particular, the ABS sites display more
non-synonymous than synonymous substitutions that
change the amino acid sequence of the peptide and thus
allow binding of a diverse array of antigens [19]. This in-
dicates that selection processes maintain polymorphism
in the functionally important regions of the MHC. Im-
portantly, genetic diversity in the ABS facilitates binding
of a diverse array of antigens to the molecule [20].
The exceptionally high allelic polymorphism found in

the MHC loci is believed to be maintained by pathogen-
mediated selection, although the relative importance of a
number of nonexclusive hypotheses explaining the po-
tential selection mechanisms that enhance or maintain
adaptive genetic variation is debated [14,21,22]. The het-
erozygote advantage hypothesis [23] proposes that indi-
viduals heterozygous at MHC loci are able to respond to
a greater range of pathogen peptides than homozygotes
and, consequently, benefit from increased resistance to
pathogens. Heterozygotes are, therefore, more likely to
have higher relative fitness and, as a result, more MHC
alleles persist, on average, in the population. This hy-
pothesis has been used to explain the persistence of
highly divergent MHC alleles over millions of years [24].
Support for heterozygote advantage hypothesis comes
mainly from mate choice studies [25,26]; however, re-
searchers have rarely investigated the possible advan-
tages of MHC heterozygosity in one individual in the
context of infectious diseases, such as intestinal parasite
infestations (but see [15,27-29]).
The second selection mechanism is described by the

rare allele advantage hypothesis (also known as the nega-
tive frequency dependent selection hypothesis) [30]. In
this scenario, the selection pressure exerted by common
parasites favors rare resistant host alleles. As those host
alleles become more common, the host population ex-
erts a reciprocal selection pressure on the parasite popu-
lation, favoring other parasite genotypes to which the
host has not yet adapted. With time, this could lead to
continual cycling of host and parasite genotype frequen-
cies within the population, which could maintain high
levels of MHC variability [27,28,31].
Finally, the fluctuating selection hypothesis [32] pro-

poses that spatial and temporal heterogeneity in the type
and abundance of pathogens may maintain diversity at
the MHC. In short-term field studies, the detection of
associations between specific MHC alleles and parasite
load is usually presumed to be an indicator of this selec-
tion mechanism. However, host-parasite interactions are
also shaped by environmental conditions, which play an
important regulating role in the distribution, transmission,
and developmental success of parasites and pathogens
[33]. These conditions can influence parasite species rich-
ness, as well as the intensity of infestation in the host spe-
cies. Therefore, co-evolutionary selection processes should
vary not only in time but also in space, and different spe-
cific MHC alleles should have an advantage in different
environments [34].
Over the last decades, there have been ample findings

of associations between MHC alleles and parasite load,
even in studies on free-ranging species under constant
challenge by a diverse range of pathogens [14,21]. How-
ever, under homogeneous parasite selection, these mech-
anisms alone do not explain the observed large allelic
diversity at the metapopulation level. Therefore, the idea
of parasites exerting divergent selection on locally
adapted MHC allele pools in heterogeneous environ-
ments has been put forth to suggest how this unparal-
leled genetic diversity is maintained. Several recent field
surveys investigating MHC variation on different geo-
graphical scales and in heterogeneous habitats have
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proposed that contrasting parasite communities may
shape MHC composition (e.g., in mammals [35], in birds
[36,37] and in fish [38-40]).
Brandt's vole (Lasiopodomys brandtii) is the dominant

rodent species of the typical steppe habitat extending from
the central part of Inner Mongolia through the middle
and east of Dornod Aimag in the Republic of Mongolia, to
the southern borders of Mongolia in Transbaikalia, Russia
[41]. The distribution of this species is discontinuous in
Inner Mongolia [42,43]. However, it is a widespread spe-
cies living in a diverse environment, which presumably ne-
cessitates constant adaptation to environmental change,
such as encountering new parasites, but also persistence
to challenges from ancient pathogen [44]. There is sig-
nificant variation in the density of these voles between
years [43]. The presumably high parasite pressure in
these habitats could lead to pronounced and therefore
detectable signs of otherwise more subtle mechanisms
of selection [45].
In this study, we examined the role of parasite-mediated

MHC polymorphism in six independent natural popula-
tions of Brandt’s voles, from Maodeng Livestock Farm
(MD) and East Ujimqin (DWQ) of the Xilingol Grassland
area of Inner Mongolia, to understand the selective mech-
anisms that act on MHC in response to parasitism. Our
specific aims were to test for an association between: (1)
individual parasite load and MHC heterozygosity (indicat-
ing heterozygote advantage) and (2) individual pathogen
load and specific MHC alleles (rare allele advantage and
fluctuating selection) [21].

Results
Parasite load
We detected eight distinct helminth egg morphotypes in
252 Brandt’s voles’ fecal samples. Five of these were classi-
fied as nematodes and, among them, two nematode
morphotypes were identified as Syphacia obvelata and
Aspiculuris tetraptera. The remaining three morphotypes
belonged to the Trichostrongylidae family. Two different
cestode morphotypes were detected, which were identified
as Schizorchis ochotonae and Hymenolepis nana. In ad-
dition, one trematode morphotype from the Echinosto-
matidae family was detected. Among the individuals
examined, 94.5% had infections with one to four
Table 1 Mean parasite prevalence, mean species richness, and

Region Maodeng livestock farm (MD

Population (Sample size) M1 (n = 41) M2 (n = 43)

Prevalence (%) 80.49% 83.72%

Mean species richness 1.78 ± 0.80 1.74 ± 0.83

Mean infection intensity 3.95 ± 0.29 3.96 ± 0.31

Note: Brandt’s voles were captured from six populations in two regions (N = 252). P
per individual, and parasite infection intensity was estimated using fecal egg count
deviation are shown.
helminths, with most of the infections caused by nema-
todes (99.2% of infected individuals), whereas only 6.3%
and 3.4% of the infections were caused by cestodes and
trematodes, respectively. Because of the high frequency of
nematode infections found in this study and the minor
prevalence of cestode and trematode infections, the latter
two helminths were excluded from subsequent analyses.
The mean parasite prevalence, species richness (by

taxonomic group), and parasite intensity for all of the
Brandt’s voles captured from six populations in two re-
gions is presented in Table 1. A global analysis of relative
differences in parasite community structure based on
pairwise Hellinger distances revealed strong differences
between two regions (Permutational multivariate ana-
lysis, DF = 1, SS = 4.86, MS = 0.142, F = 1.32, R2 = 0.207,
P = 0.005). Differences between all pairs of neighboring
populations in either MD or DWQ region were non-
significant.
MHC variability
A total of 252 individuals in six populations from two
different regions were genotyped. Overall, 23 different
sequence variants (alleles) could be distinguished via
single-stranded conformation polymorphism analysis,
which were confirmed by sequencing. BLAST search re-
sults showed that sequence similarities between Brandt’s
voles Labr-DRB and mouse MHC Class II variants were
84% to 91%. All of the alleles detected showed the
unique DRB origin. Four sequences revealed different
nucleotide contents (differing in one or two nucleotide
positions), but identical amino acid sequences, and were
therefore treated as one allele. The remaining 19 alleles
could be translated into unique amino acid sequences.
These were labeled Labr-DRB*01 to Labr-DRB*19
according to their frequency following the nomenclature
of Klein, et al. [46]. MHC class II DRB sequences from
this study are deposited at GenBank (accession numbers:
JX046707-JX046725; also see Additional file 1: Table S1).
The phylogenetic relationships of these alleles are
displayed in Figure 1. In MD we identified 13 alleles, while
DWQ yielded 15. Nine of the 19 alleles identified in this
study were shared between two regions; Figure 2 shows
the relative frequency and distribution of each allele.
mean infection intensity for Brandt’s voles

) East Ujimqin (DWQ)

M3 (n = 41) D1 (n = 44) D2 (n = 41) D3 (n = 42)

82. 93% 86.36% 87.80% 88.10%

1.75 ± 0.72 2.11 ± 0.75 2.39 ± 0.97 2.03 ± 0.72

3.97 ± 0.31 4.21 ± 0.10 4.24 ± 0.12 4.12 ± 0.26

arasite species richness was defined as the number of helminth morphotypes
s (FEC, log10EPG; EPG, nematode eggs per gram feces). Mean ± standard



Figure 1 Geographical locations of the six populations of Brandt's vole.
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Evidence for positive selection
The rates of synonymous (dS) and nonsynonymous (dN)
substitutions were calculated separately for ABS and
non-ABS. For the ABS, dN (0.390) was significantly
higher than dS (0.072), resulting in a dN/dS ratio of 5.43
(Z > 2.613; P < 0.01). In contrast, the non-ABS ratio be-
tween nonsynonymous (dN = 0.057) and synonymous
substitutions (dS = 0.038) did not significantly deviate
from unity (dN/dS = 1.49, Z < 1.165; n.s.). Moreover, dN
was 6.84 times higher in the ABS than in the non-ABS.
This indicates positive selection processes that maintain
polymorphism in the functionally important regions of
the MHC.

Population differentiation
No indication of linkage disequilibrium between pairs of
microsatellite loci or between microsatellites and the
MHC locus or deviation from Hardy-Weinberg equilib-
rium within loci was found (all P > 0.05 after Bonferroni
correction). The study populations differed in their levels
of genetic diversity with regard to both genetic markers
(Table 2). Regarding the microsatellite markers, there
was low variation in the mean multilocus heterozygosity
(MLH) values among populations, but the mean d2 (dif-
ference in repeat units, averaged over all loci) values var-
ied notably from 125.22 (population D3) to 189.22
(population D1). There was a wide range in the MHC
heterozygosity observed among populations, from 0.62
(population D3) to 0.78 (population D2). Every popula-
tion had a significant observed heterozygosity deficit
compared to the expected heterozygosity. The corrected
values for MHC allelic richness varied widely as well,
from 30.65 in population M2 to 40.69 in population D1
(Table 2).
Differentiation among populations was highly signifi-

cant for both types of markers (microsatellites: FST =
0.0671, P < 0.001; MHC: FST = 0.0512, P < 0.001). In
addition, differentiation test between all pairs of popula-
tions showed significantly differentiated for microsatel-
lite loci and MHC (Table 3). Pairwise FST values for
microsatellite loci ranged from 0.0075 to 0.0907, and for
MHC from 0.0014 to 0.0836.

Association between parasite load and MHC
heterozygosity
Using generalized linear mixed models (GLMMs), we in-
vestigated the effects of population genetic diversity on
parasite load, the results of which are listed in Table 4.
We calculated models for the influence of each genetic
predictor separately. Neither neutral genetic nor MHC
diversity showed significant effects on the parasite load.
No support for MHC heterozygote advantage (parasite
species richness: P = 0.86; parasite infection intensity:
P = 0.37) or association with MHC allelic richness (para-
site species richness: P = 0.80; parasite infection inten-
sity: P = 0.66) could be detected at the population level.



Figure 2 Minimum evolutionary tree for MHC DRB exon 2 alleles of Brandt’s voles. The tree is based on nucleotide sequences (Kimura
2-parameter). Bootstrap values (>50) are displayed (1000 replications). The scale bar indicates genetic distance in units of nucleotide substitutions
per site. Dog, cat, sheep, and human DRB exon 2 sequences were used to root the tree. GenBank accession numbers follow the species
designations. Alleles found in the MD region alone are indicated by squares, those in the DWQ region alone are indicated by triangles, and those
in both regions are indicated by diamonds.
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Similarly, the two separate GLMMs, which included
either prevalence or infection intensity as response vari-
ables (from all of the nematode species combined), in
addition to MHC genotypes (homozygote, heterozygote)
and MLH as predictors, also did not reveal any support
for heterozygote advantage. There was no support for the
hypothesis that MHC heterozygous individuals are less
Table 2 Genetic diversity for Brandt’s voles

Microsatellites MHC

Pop N Mean MLH Mean d2 Allelic richness Hobs/Hexp

M1 41 1.160 188.57 38.65 0.75/0.91

M2 43 1.378 131.71 30.65 0.76/0.91

M3 41 1.171 158.24 39.00 0.67/0.89

D1 44 1.283 189.22 40.69 0.76/0.89

D2 41 1.118 175.17 33.77 0.78/0.93

D3 42 1.348 125.22 39.87 0.62/0.94

Abbreviations: Note: Brandt’s voles were captured from six populations in two
regions (N, 252): Pop population, N sample size, MLH multilocus
heterozygosity, d2 difference in repeat microsatellite units averaged over all
loci, Hobs observed heterozygosity, Hexp, expected heterozygosity according to
Hardy-Weinberg. MHC allelic richness was corrected for sample size.
infected than homozygotes (prevalence: β ± SE =17.683 ±
0.439, t =15.383, P = 0.328). The same applied to MLH
(β ± SE = 0.635 ± 0.611, t =1.874, P = 0.267). Additionally,
restricting the data to each of the three most common
nematodes (S. obvelata, A. tetraptera, Trichostrongylidae)
did not reveal any evidence for heterozygote advantage
(all P > 0.10).
Table 3 Estimation of pairwise genetic distance (FST)
between Brandt’s vole populations

M1 M2 M3 D1 D2 D3

M1 - 0.0288 0.0640 0.0075 0.0703 0.0680

M2 0.0251 - 0.0146 0.0404 0.0726 0.0317

M3 0.0836 0.0363 - 0.0871 0.0320 0.0907

D1 0.0529 0.0435 0.0014 - 0.0452 0.0745

D2 0.0449 0.0278 0.0663 0.0236 - 0.0619

D3 0.0587 0.0429 0.0653 0.0652 0.0500 -

Note: Above the diagonal we indicate pairwise FST of microsatellites. Below the
diagonal we show pairwise FST for MHC. Bold values indicate that FST reached
statistical significance after correction for multiple testing.



Table 4 Genetic diversity effects on nematode load in
Brandt’s voles as calculated by generalized linear mixed
models

a) Nematode species richness

Model β ± SE t P

MLH 2.576 ± 1.369 0.634 0.44

d2 0.038 ± 0.008 0.197 0.78

MHC Hobs 0.023 ± 0.015 0.428 0.86

MHC allelic richness −0.206 ± 0.091 −0.720 0.80

b) Nematode infection intensity

Model β ± SE t P

MLH 0.176 ± 0.054 0.803 0.24

d2 0.031 ± 0.009 0.865 0.88

MHC Hobs 0.446 ± 0.172 0.263 0.37

MHC allelic richness −0.332 ± 0.015 −0.430 0.66

Note: Full models: (a) nematode species richness; (b) nematode infection
intensity. β ± SE = the coefficient ± standard error, t = t-value,
P = p significance value.
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Association between parasite load and specific MHC
alleles
Our GLMMs did reveal relationships between specific
MHC alleles and parasite load in Brandt’s voles. Five of
Table 5 Effects of the most abundant vole Labr-DRB* alleles o

a) Nematode prevalence

Response variable Predictor β

Prev (Syphacia obvelata) Sex −0.699

Body mass 0.981

Labr-DRB*11 1.343

Prev (Aspiculuris tetraptera) Sex −0.955

Body mass 0.748

Labr-DRB*04 −2.512

Prev (Trichostrongylidae) Sex −0.897

Body mass 1.194

Labr-DRB*19 3.256

b) Nematode infection intensity

Response variable Predictor β

FEC (Syphacia obvelata) Sex −0.592

Body mass 0.643

Labr-DRB*13 3.565

FEC (Aspiculuris tetraptera) Sex −0.678

Body mass 1.190

Labr-DRB*12 2.409

FEC (Trichostrongylidae) Sex −0.833

Body mass 0.639

Labr-DRB*19 3.042

Abbreviation: Note: Most abundant Labr-DRB* alleles (frequency ≥ 5 individuals). Da
(a) nematode prevalence and (b) nematode infection intensity. β ± SE, the coefficien
the 19 alleles had specific effects either in terms of posi-
tive or negative associations towards parasite loads
(Table 5). The Labr-DRB*11 and Labr-DRB*13 alleles
were significantly associated with the status of S. obvelata
infection. Allele *11 was associated with a higher preva-
lence (t = 1.822, P = 0.031), while allele *13 was signifi-
cantly related with an elevated infection intensity
(t = 4.913, P = 0.035). As for A. tetraptera, voles that car-
ried the Labr-DRB*04 allele were significantly less
infected than animals without it (t = −4.152, P < 0.001),
while Labr-DRB*12 alleles were associated with an in-
creased probability of a higher infection intensity
(t = 4.289, P = 0.008). Furthermore, positive associations
of the subfamily Trichostrongylidae and Labr-DRB*19
alleles were revealed for both prevalence (t = 2.689,
P = 0.030) and infection intensity (t = 1.653, P = 0.005).
Our GLMMs also revealed that alleles associated with

high or low infection intensity differed between sampling
regions. We found a significant region-specific effect
(MD: t = −2.35, p = 0.021; DWQ: t = 1.56, p = 0.014) of
the Labr-DRB*03 allele on the intensity of infection with
A. tetraptera. In MD, animals carrying Labr-DRB*03 had
fewer parasites than animals without it, but in DWQ the
association was the opposite.
n nematode prevalence and infection intensity

± SE t P Effect

± 0.156 −1.461 0.009 -

± 0.214 2.475 0.075

± 0.262 1.822 0.031 +

± 0.247 −0.436 0.046 -

± 0.250 4.629 0.089

± 0.208 −4.152 <0.001 -

± 0.362 −0.773 0.032 -

± 0.191 3.710 0.059

± 0.814 2.689 0.030 +

± SE t P Effect

± 0.178 −0.167 0.039 -

± 0.439 3.218 0.064

± 0.255 4.913 0.035 +

± 0.176 −0.359 0.018 -

± 0.182 2.661 0.053

± 0.914 4.289 0.008 +

± 0.286 −0.507 0.022 -

± 0.342 3.042 0.059

± 0.570 1.653 0.005 +

ta are based on multivariate generalized linear mixed models: full models for
t ± standard error: t t-value, P p significance value.
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Discussion
The aim of our study was to investigate whether
parasite-mediated selection could explain MHC variabil-
ity in free-ranging Brandt’s voles. MHC class II-DRB
exon2 polymorphism and nematode burden were sur-
veyed and selective mechanisms that may be acting on
the MHC in the presence of nematodes were tested.
In 252 individuals of L. brandtii, 19 distinct Labr-DRB

alleles were detected. The alleles showed high levels of
nucleotide and amino acid sequence divergence. Poly-
morphism was highest in the functionally important
antigen recognition and binding sites of the MHC. In
the ABS, significantly more nonsynonymous substitu-
tions than synonymous substitutions were found. This is
considered a clear indication of positive selection [47]
and characteristic of proteins with antigen-presenting
functions [48]. High levels of polymorphism given by the
number of alleles as well as by the sequence divergence,
especially at ABS sites, are common findings in MHC
genes, and were found in a variety of studies [48-50].
Because the MHC plays a major role in vertebrate im-
mune systems, pathogen-driven selection processes are
thought to be involved in the maintenance of diversity at
MHC loci [22]. Many studies of wild mammals have
demonstrated a correlation between MHC diversity and
resistance against pathogens. In a large survey of avian
malaria in 13 populations of the house sparrow (Passer
domesticus), variable selection pressures were observed
to select for different host allelic lineages resulting in
population-specific associations between MHC alleles
and risk of infection [37]. Similarly, rodent species that
face a rich ectoparasite fauna also maintain increased
allelic polymorphism at the MHC [51,52].
It is important to note that while we monitored the

community of gastrointestinal parasites in the fecal sam-
ples, we concentrated our attention on helminth parasite
species because of their prevalence [53-55], their impact
on fitness and mortality in a wide range of wild animal
species [56-58], and because their infestation intensity
can be assessed non-invasively by fecal sampling. Over-
all, we detected eight distinct helminth egg morphotypes
and an infestation rate of 94.5%. To date, the studies of
individual MHC and parasite loads in natural popula-
tions, particularly for mammals, have mostly focused on
helminths [15,49,59-61]. However, most organisms are
faced with enormous numbers of pathogens, and identi-
fying and measuring the vast community of parasites
and pathogens that can infect a natural population will
be crucial [62]. Whether results from highly simplified
study systems (a single pathogen species) are applicable
to more complex systems is questionable. Therefore,
extending the scope of studies across a broader range of
parasite taxa would enhance our understanding of
MHC-parasite dynamics in natural populations. A
serious challenge lies in fully characterizing the MHC
and pathogen load. This is unlikely to be possible in
most study systems, and even if it were, statistical ana-
lysis may be intractable. The best study systems will
probably be characterized by intermediate levels of
pathogen diversity and simple, well-characterized, MHC
structures, thus avoiding oversimplification while retaining
statistical tractability [21].
In our study, we found neither support for the hetero-

zygote advantage hypothesis on the population nor on
the individual level, and heterozygosity of MHC alleles
was lower than expected in all of the study populations.
These findings suggest little or no direct selection for
MHC heterozygosity in populations at our study sites, at
least for the generation of voles we sampled. Consis-
tent low MHC heterozygosity may have arisen from
underdominance [21]. The lack of associations between
MHC genetic diversity and parasite load at the popula-
tion level in our study adds to the mixed results of
former studies [28,50,63]. Studies have indicated that if
hosts and pathogens share a long-term co-evolutionary
history, selection via diverse pathogens causes high
MHC polymorphism in a species or population, whereas
low MHC polymorphism indicates the presence of re-
laxed pathogenic selection pressure [38,64,65]. Alterna-
tively, it might have been because MHC diversity was
not fully characterized as a result of methodological er-
rors, such as null alleles. However, as the MHC se-
quences could be amplified from all of the study
individuals, and on the basis of at least two independent
polymerase chain reaction (PCR) and single-stranded
conformation polymorphism (SSCP) assays, as well as
forward and reverse sequence analyses, respectively, the
obstacle of null alleles is improbable.
We detected an association between parasite load and

specific MHC alleles in the individuals. The Labr-
DRB*11 and Labr-DRB*13 alleles were significantly asso-
ciated with the status of S. obvelata infection. As for A.
tetraptera, voles that carried the Labr-DRB*04 allele
were significantly less infected than animals without it,
while Labr-DRB*12 alleles were associated with an in-
creased probability of a higher infection intensity. Posi-
tive associations of the subfamily Trichostrongylidae and
Labr-DRB*19 alleles were revealed for both parasite
abundance and infection intensity. In MD, animals car-
rying Labr-DRB*03 had fewer parasites than animals
without it, but in DWQ the association was the opposite.
Differences in vole susceptibility to parasitism were not
explained by differences in the geographic distribution
of alleles; all above alleles were detected in at least five
populations and in both sampling regions. The associ-
ation between certain alleles and susceptibility, or re-
sistance to certain parasites and spatial variation in
resistance, matches the predictions for rare allele
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advantage, but also for fluctuating selection [21]. Rare al-
lele advantage arises as the evolution of new parasite
and pathogen phenotypes reduces the relative fitness of
common host genotypes, thereby providing a selective
advantage to rare host [66]. Evidence in favor of this hy-
pothesis comes from multiple studies demonstrating as-
sociations between specific MHC alleles and resistance
to viral (e.g., hepatitis [67], Puumala virus [68]) and bac-
terial (e.g., tuberculosis [69]) infections as well as blood-
borne parasites(e.g., malaria [70]) and helminths [10,71].
In reality, however, natural populations are exposed to
fluctuating environmental conditions and, subsequently,
host-pathogen interactions are similarly expected to vary
spatiotemporally [72]. Charbonnel and Pemberton [73]
detected fluctuating selection at an MHC locus during a
13-year survey of a population of feral sheep, perhaps
driven by interactions with parasitic nematodes. Empir-
ical genetic evidence for geographic heterogeneity in se-
lective pressures has been shown in fish [74], birds
[36,75] and mammals [35,76]. A selection model demon-
strated that temporal variation in pathogen resistance
may be sufficient to maintain polymorphism in the ab-
sence of both heterozygote and rare-allele advantage
[34]. While it is generally accepted that any or both of
these proposed mechanisms can play a role in shaping
the distribution of MHC variation, distinguishing be-
tween them in natural populations can be challenging
due to similarities in the expected genetic outcomes, re-
quiring long-term studies of multiple populations to
examine temporal changes in parasite resistance to al-
leles and spatiotemporal variation in the forces driving
parasite abundance [21]. Under rare-allele advantage,
one would expect to see different alleles conferring re-
sistance to the same pathogen in different populations,
and for resistance to change with time, so that different
alleles become associated with resistance. Under fluctu-
ating selection, one would expect to observe external
biotic and/or abiotic forces driving spatio-temporal vari-
ation in pathogen abundance, leading to distinct subsets
of alleles being selected for in different populations and/
or different time periods [21], and higher population
structure at MHC relative to neutral loci.
In wild rodents, parasite prevalence and intensity are

known to underlie spatial and temporal variation, as well
as intrinsic factors such as the immune status, sex, and
age of the host [28,63]. By using the individual multivari-
ate GLMM approach we were able to focus on ‘pure’
parasite driven selection mechanisms because our
models allowed us to include confounding factors that
could obscure the detection of MHC effects. In 252
adult Brandt’s voles, male voles were significantly heavier
than females (males: 35.4 ± 1.2 g, females: 33.5 ± 1.1 g,
Analysis of covariance, F = 1.2, P = 0.028). There were no
significant associations between parasite load and host
body mass, however, vole gender had a significant effect
on nematode prevalence and intensity (Table 4). Further-
more, some aspects of the biology of Brandt’s voles sug-
gest that a stable equilibrium between these voles and
their parasites, which is a prerequisite for rare allele ad-
vantage, may rarely be achieved. Mixing of voles and
parasite populations over an extensive area is possible,
and the dynamic nature of this environment may miti-
gate the evolution of a stable equilibrium between MHC
polymorphism in the host and parasite abundance and
diversity. In addition, most of the parasites hosted by
voles do not have direct lifecycles [77] and variability
among populations may be dependent on the abundance
of intermediate or final hosts of these parasites. In the
case of Strongyloides, which have been found to be the
most abundant and widespread parasites in wildlife, the
abundance of intermediate hosts can affect population
level differences in parasite abundance [78]. Thus, a sig-
nificant association between 1) parasite infection and
specific MHC alleles, 2) marked spatial variation in para-
site infection and an association with specific MHC al-
leles, and 3) the dynamic nature of the environment in
which voles are found, all implicate a role for fluctuating
selection in maintaining MHC polymorphism in voles.
A potential criticism of the present study is that we

must more rigorously characterise the diversity that is
being detected. The ease with which MHC variation can
now be resolved could paradoxically impede progress
with our understanding of MHC dynamics [79]. A large
number of studies are characterizing MHC variation
from genomic DNA extracts with little or incomplete
knowledge of (1) the number of loci that are actually be-
ing simultaneously PCR amplified; (2) whether any or all
of these genes are actually expressed and (3) whether the
variation that is resolved reflects sequence differences at
structurally important regions such as the peptide-
binding amino acids [21]. Ultimately, an inability to de-
termine the actual number of expressed loci, identify
alleles as being structural MHC variants, assign alleles to
loci and determine whether an individual is heterozy-
gous or homozygous for a particular locus compromises
rigorous statistical testing of association between MHC
and parasite load, either by introducing variation that is
not directly under selection, or precluding detection of
overdominant selection [79]. This is the first time that
field population of Brandt’s voles have been typed at the
MHC region, we have made every effort to initially
ensure that PCR primers do actually amplify single
expressed products to clarify that subsequent analysis
based on genomic DNA is appropriate [80]. Detailed
molecular groundwork is required to ensure that the full
complement of MHC variation is accurately assessed in
future experiment. The use of next-generation sequen-
cing for MHC screening [81] is likely to be a great help
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in terms of more accurately characterizing MHC diver-
sity. Despite all this, it will be a particular challenge to
be able to completely validate studies from mRNA
extracts, especially from natural populations.

Conclusions
Our results are consistent with pathogen-mediated selec-
tion operating through rare allele advantage and fluctuat-
ing selection, but these two mechanisms could not be
differentiated. Our results failed to show any effect of het-
erozygote advantage, and MHC polymorphism in wild
Brandt’s voles may be constrained through underdomi-
nance. Furthermore, our results add to a growing body of
evidence showing that the mode and relative strength of
pathogen-driven selection acting on MHC diversity varies
within specific wild populations, while the understanding
of what maintains MHC diversity will also feed into our
general understanding of host-pathogen coevolution and
the maintenance of genetic diversity.

Methods
Study areas
Live trapping was used to capture 252 adult Brandt’s
voles from six sites in two regions of Xilingol Grassland,
Inner Mongolia over 1 week in August, 2011. This coin-
cided with the peak activity of Brandt’s voles [45]. Voles
were analyzed from two discontinuous habitats, inclu-
ding three sites (ca. 20 km apart; Sample size: M1 = 41;
M2 = 43; M3 = 41) at the Maodeng Livestock Farm (MD:
GPS reading 44°11’N, 116°27’E), and three sites (ca.
25 km apart; Sample size: D1 = 44; D2 = 41; D3 = 42) in
East Ujimqin (DWQ: GPS reading 45°44’N, 116°16’E)
(Figure 3). Both regions have a cold semi-arid climate,
marked by long, cold, and very dry winters, and by hot,
somewhat humid summers, and strong winds, especially
in spring. The annual precipitation is approximately
260 mm (10.2 in), with more than half of it falling in July
and August. However, relative to the open and free living
Figure 3 Relative frequencies of all the alleles identified in Brandt’s v
expressed as the relative number of individuals per region in which the res
region (grey bars). Black circles mark alleles that were detected as being as
generalized linear mixed models (GLMMs).
environment in DWQ with rolling hills and rocky out-
croppings, it was confirmed that human disturbances
such as grazing activity had effects on the relative dens-
ity and spatiotemporal distribution of the Brandt’s voles
in MD [82].

Sample collection
Traps were set before 6 a.m. and were collected after
8 a.m. in the morning. The details of each trapped vole
were individually recorded (gender, body condition and
body mass). Fecal samples were collected from each trap
(no feces were gathered when traps contained more than
one individual) during each trapping session. We sam-
pled ear tissue with a biopsy ear punch and stored the
tissue immediately in 95% ethanol until DNA isolation.
Animals were handled and immediately released at the
point of capture. The animal handling and sampling
protocol followed the guidelines approved by the Institu-
tional Animal Use and Care Committee, the Institute of
Zoology, Chinese Academy of Sciences (CAS IAUCC).

Parasite identification and counts
Fecal material collected from each individual was stored
at 4°C overnight in Petri dishes on damp blotting paper
to standardize the humidity content. Thereafter, each
sample was weighed and the gastrointestinal parasite
load measured; we measured the fecal egg counts (FEC;
number of eggs per gram feces) using a McMaster float-
ation technique. Following the method of Schad,
Ganzhorn and Sommer [61], we counted two chambers
of a McMaster slide and used the mean values of the in-
dividual samples. We used potassium iodide in the
flotation dilution, which enhances the detection of eggs
with a higher specific weight, as proposed by Meyer-
Lucht and Sommer [15]. We classified helminth eggs
into morphotypes based on size and appearance and
photographed them for taxonomic identification at a
later stage.
oles from both geographic regions. The relative allele frequency is
pective allele occurred, for the MD region (black bars), and DWQ
sociated with a specific nematode species resulting from the
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Microsatellite genotyping
For each vole, DNA extraction from the ear tissue sam-
ple was conducted using a TIANamp Genomic DNA
Kit (Tiangen Biotech, Co., Ltd., Beijing, China) follow-
ing the manufacturer’s protocol. All voles were typed
for 10 microsatellites to assess neutral genetic diversity.
These loci have previously been described for Brandt’s
voles [83] and were amplified following the authors’
protocols [84].

Screening of MHC variation
We examined variation in a highly polymorphic 200 bp
fragment of exon 2 of the MHC class II DRB gene,
which includes the functionally important antigen bind-
ing and recognition sites. As there was no sequence data
available for Brandt's voles, primers were designed after
alignment of the published sequences for small animals
[17,48,85]; these were designated BVF (up): 5’-
ATTACAACAACGGGACGCA-3’ and BVR (down): 5’-
CTCGTAGTTGTGTCTGCA-3’. To identify suitable
primers, an extensive blast search (http://www.ncbi.nlm.
nih.gov) was carried out and DRB sequences from a
wide range of animal species from different phylogenetic
radiations were aligned. Amplifications were conducted
in a final reaction volume of 50 μl, which included
15–50 ng of DNA, 0.25 mM of each primer, 200 mM of
dNTPs, 5 μl of a 10 × reaction buffer solution and 0.5 U
of Taq DNA polymerase (Beijing CoWin Bioscience Co.,
Ltd.). The PCR instrument used was a TaKaRa Thermal
Cycler Dice TP600 (TaKaRa Bio Inc., Japan) and thermal
cycling started with 3 min denaturation at 95°C,
followed by 30 cycles at 95°C, 54°C and 72°C for 30 s
each and ended with an elongation step at 72°C for
7 min.
Alleles were separated using SSCP [17]. SSCP is a sen-

sitive method that can distinguish minimal allele differ-
ences; it has been widely used in human genetics and is
popular in population genetics and evolutionary ecology
[11,20,29]. PCR products were denatured at 98°C for
10 min and immediately transferred to ice for snap-
cooling to produce single-strands and hinder reannealing.
The ssDNA was then mixed with loading dye and loaded
onto a non-denaturing 15% polyacrylamide gel according
to the manufacturer’s protocol and with the following
modifications: 12°C running temperature, pre-run for
5 min at 200 V maintained for 4 h at 100 V.
Gels were silver stained, scanned and processed with

Quantity One (Bio-Rad Laboratories Inc., CA, USA) to
align the individual band patterns. We counted bands with
the same mobility as the same alleles and each of these al-
leles was sequenced at least once from both directions,
and where possible twice, to confirm this assumption. Ap-
propriate bands were cut from the polyacrylamide gel,
eluted in Tris/borate/EDTA (TBE) buffer, and amplified
using the same protocol described above. PCR products
were gel purified and then sequenced.

Estimates of genetic variation
To measure the overall neutral genetic diversity per
population we used MLH [86], and mean microsatellite
d2 [87]. DRB sequences were revised manually using the
BIOEDIT Sequence Alignment Editor [88] and aligned
in GENEDOC version 2.6 [89]. We verified the sequence
identity through homology with the published MHC al-
leles of other species using BLAST from NCBI with a
cutoff E-value of 10-6. MEGA 5 [90] was employed to
construct a phylogenetic tree of the DRB alleles based
on the exon2 sequence, using the minimum evolutionary
criteria [91], and to calculate the relative rates of nonsy-
nonymous (dN) and synonymous (dS) substitutions ac-
cording to the model of Nei and Gojobory [91] with the
correction of Jukes and Cantor [92] for multiple hits. The
dN/dS rates were tested for significant differences with a
Z-test. Calculations were carried out separately for ABS
and non-ABS, assuming concordance with antigen bind-
ing sites in the human HLA class II molecule, DR1 [19].
MHC genetic diversity was described by the observed

heterozygosity and the allelic richness. As the observed
number of alleles in a sample is highly dependent on the
number of individuals sampled, we calculated the allelic
richness corrected in the different sample sizes using a
rarefaction index implemented in FSTAT [93]: thereby,
the expected number of alleles in each sub-sample is cal-
culated for the number of individuals present in the
smallest sample.
For both markers, differentiation across all populations

and between population pairs was tested using GenePop 4.0
[94] for microsatellites and Arlequin 3.0 [95] for MHC. In
addition, both global and pairwise estimate of FST were esti-
mated using Arlequin following Weir and Cockerham [96].
Observed and expected heterozygosity for both markers
were calculated by Arlequin. Linkage disequilibrium be-
tween pairs of loci and deviations from Hardy–Weinberg
equilibrium for each locus were also tested in Arlequin.

Statistical treatment
We used three measurements to describe the parasite
burden: 1) parasite prevalence (for individuals, presence/
absence of a given species; for populations, the percent-
age of the animals infected); 2) species richness, which
was defined as the number of all of the parasite species
present in one host; and 3) infection intensity, which
was estimated using nematode fecal egg counts (FEC =
log10 EPG; EPG: eggs/g feces).
Dissimilarities in parasite community composition be-

tween all host populations were assessed by calculating
Hellinger distances using the R library vegan [97]. Hellinger
distances are based on square-rooted proportional

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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abundances [98] and, therefore, reflect relative differ-
ences in parasite community composition. A permuta-
tional multivariate analysis of variance on Hellinger
distances was performed using the Adonis function in
vegan [99]. Statistical significance was obtained
through 1000 permutations of the data. This analysis
was then repeated for each pair of host populations
among MD or DWQ separately, applying a significance
level corrected for multiple comparisons (3 pairwise
comparisons, α = 0.017).
To investigate associations between multiple nematode

infestation and the gene constitutions considering both
type of markers on the population level, we used
GLMMs. Models were fitted for overall mean species
richness and overall mean parasite infection intensity.
The models for species richness were calculated using a
Poisson distribution and log-linear-link function. In the
mean infection intensity models we applied a Gaussian
error distribution with an identity link function. Owing
to the small number of populations (n = 6), and to avoid
colinearity, the four predictors of genetic diversity
(microsatellite MLH, microsatellite d2, MHC heterozy-
gosity, MHC alleles richness) were included in separate,
but otherwise identical, models.
In order to test for possible associations and interac-

tions between MHC gene and parasite loads, as well as
finding support for parasite-driven selection mechanisms
at the individual level, we also used GLMMs following
the methods of Froeschke and Sommer [28]. We took
(a) the prevalence (presence/absence) and (b) the infec-
tion intensity (FEC) data as response variables. For the
prevalence data, logistic regression models were applied
with a binomial error distribution and logit link func-
tion. For the log-transformed infection intensity data, we
used a Gaussian error distribution with an identity link
function. To analyze relationships between genetic con-
stitution (heterozygote advantage) and intestinal nema-
tode susceptibility, we included the MHC genotype
(homozygote or heterozygote) and microsatellite MLH
for each individual as fixed factors in our model. Hetero-
zygote host individuals and animals with a higher allele
divergence should be able to recognize a broader spec-
trum of parasites and thus potential lower prevalence and
FEC rates would be interpreted as an advantage. To test
the impact of specific MHC alleles (rare allele advantage
and fluctuating selection) on nematode burden, we con-
tinued with the three most abundant nematode (S.
obvelata, A. tetraptera and Trichostrongylidae family). As
predictors we included the presence/absence of specific
MHC alleles observed in more than five individuals as
fixed factors. Simplification carried out by removing vari-
ables in the order of non-significance derived the model:
Parasite load (prevalence or infection intensity) ~ specific
MHC allele (present or absent) + Sex + Body mass.
Negative associations may be interpreted as indicating al-
leles conferring resistance to the parasite species, whereas
positive associations indicate susceptibility to the parasite
species. To examine spatial variation in individual patho-
gen load and specific MHC alleles, the above analysis was
then repeated for each region (MD or DWQ) separately.
Because parasite load is probably influenced by individual
sex and body mass, we included them as explanatory vari-
ables in all of the above GLMM analyses. We included
‘population’ as a random factor in our models to consider
extra sources of variation in variances through the influ-
ences of different populations and, accordingly, geograph-
ical position of each individual.
Statistical analyses were performed using the R 2.14

statistical package [100]. We applied a modified false
discovery rate procedure [101] to estimate the critical
p value for the effect of MHC alleles. This procedure is an
alternative to the Bonferroni correction and regarded as
the best practical solution to the problem of multiple com-
parisons [102].
Additional file

Additional file 1: Table S1. MHC class II DRB alleles identified by the
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accession numbers.
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