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Abstract

Background: One of the most striking features of avian vision is the variation in spectral sensitivity of the short
wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS).
In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders.
While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The
great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and
decorate elaborate bower structures.

Results: The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning
sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C.
nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments,
allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early
passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of
403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no
effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS,
indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor.

Conclusions: Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms
similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution
suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more
precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are
an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type ancestor. The
re-evolution of UVS from a VS type pigment has not previously been predicted elsewhere in the vertebrate phylogeny.
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Background
Bowerbirds are a remarkable group of passerine birds in
which males build elaborate structures of plant material
adorned with coloured objects to attract females. These
displays are among the most striking examples of sexually
selected traits. Consequently, bowerbirds have become a
model system in visual ecology and evolutionary biology,
particularly with respect to the evolution of visual signals
[1-6]. Birds have a visual system well suited for colour de-
tection with four types of cone visual pigments that span a
wide range of the electromagnetic spectrum extending into
the ultraviolet (UV). UV based signals in particular can play
important roles in avian behaviours [7-9], especially in mate
choice in passerines [10,11] and parrots [12].
The first step in vision is the absorption of light by

visual pigments in the photoreceptor cells of the retina.
Visual pigments consist of an opsin protein covalently
bound to a light sensitive chromophore via a Schiff base
(SB) link. Absorption of a photon of light triggers a cis-trans
isomerization in the chromophore that induces subsequent
conformational changes in the opsin protein. This change
allows the visual pigment to bind and activate the down-
stream heterotrimeric G-protein, transducin, thus initiating
the visual transduction cascade in the photoreceptor
cell [13]. The wavelength of maximal absorbance of a
visual pigment (λmax) is determined by the interactions
between the opsin protein and its chromophore, via a
process known as spectral tuning [14].
The short-wavelength-sensitive (SWS1) pigments medi-

ate sensitivity to light in the violet to UV range. This
group of pigments exhibits the broadest range in spec-
tral sensitivity across vertebrates, and are generally divided
into two groups based on λmax: violet-sensitive (VS: λmax

388–435 nm) and UV-sensitive (UVS: λmax 355–380 nm)
[15]. In SWS1 pigments, spectral tuning mechanisms can
be quite complicated, and can differ across vertebrate
pigments [16-23]. However, among vertebrates, SWS1
spectral tuning mechanisms in birds appear to be fairly
unique and unusually straightforward. Mutagenesis studies
in a variety of birds indicate the most important site is 90,
with mutations at this site responsible for determining
whether a pigment absorbs maximally in the violet or UV
[17,18,21,24]. Phenylalanine (F) at site 86 appears to be a
second mechanism by which birds achieve UVS because it
is found in the SWS1 genes of some birds [25-27], and site-
directed mutagenesis studies indicate that it can blue shift
wavelength sensitivity in some avian VS-type SWS1 pig-
ments [28] as well as in other vertebrates [16,19,29,30], with
the exception of some primates [23]. However, the paucity
of mutagenesis studies on SWS1 pigments throughout the
diverse avian orders somewhat limits our abilities to extrapo-
late upon the roles of spectral tuning sites across all birds.
Here, we use site-directed mutagenesis and ancestral

reconstruction methods in order to characterize the
absorption spectra of ancestral passerine/parrot SWS1
pigments, and to investigate SWS1 spectral tuning
mechanisms using the great bowerbird pigment as a model
system. Until recently, the parrots and passerines were
thought to be divergent orders within landbirds, but in fact
have been found to be sister groups in a number of recent
studies [31-33], though this relationship is not always
recovered [34,35]. The relationship between passerines
and parrots is relevant to understanding the evolution
of UV/violet vision in birds because both groups are
thought to contain UVS due to the presence of C90
[17,36-38], raising the question of when UV sensitivity
may have arisen in these groups. Recent results indicate
some basal songbird lineages may have VS pigments
[39,40] and in fact, a variety of other basal passerine
lineages including some flycatchers have also been found
to possess S90, suggestive of VS pigments [41]. As one of
the basal passerine lineages whose ecology and behaviour
have been the subject of detailed study, the great bowerbird
(Chlamydera nuchalis) provides an ideal system with which
to study the function and evolution of avian vision. In
this study we not only isolate and characterize the SWS1
pigment from C. nuchalis as a VS-type opsin, we also
explore the function and evolution of recreated ancestral
SWS1 pigments in passerines and parrots. We present ex-
perimental evidence indicating that although passerines
and parrots evolved UVS by the same molecular mechan-
ism, the passerine ancestor and parrot/passerine ancestor
both had VS-type pigments, indicating UVS evolved inde-
pendently in these two groups. We also investigate spectral
tuning mutants of C. nuchalis SWS1, finding that λmax is
affected similarly by the mutations C86S, C86F and S90C
as in other avian SWS1 opsins, suggesting spectral tuning
in avian SWS1 pigments is unusually consistent compared
to other vertebrate groups.

Results
Great bowerbird SWS1 spectral tuning mutants
The sequenced C. nuchalis SWS1 gene was found to con-
tain amino acid residues C86 and S90, a combination
found in past sequencing-surveys of avian SWS1 opsins
[41,42], but one that has not been investigated in any
in vitro expression and mutagenesis experiments. The
expressed wild type bowerbird pigment was found to have
a VS-type absorption spectrum (λmax = 403 nm, Figure 1).
This lies within the range of other expressed VS-type
SWS1 avian opsins [17,18,28,43]. Mutating S90C in
bowerbird SWS1 resulted in a UVS pigment (363 nm),
with a 40 nm blue shift relative to wild type (Figure 2A). A
similar effect was found with the C86F mutant, which also
resulted in a UVS pigment (365 nm, Figure 2B). However,
the mutation C86S had no effect (Figure 2C). The double
mutant C86S/S90C had a λmax at 363 nm, identical to
the S90C single mutant (Figure 2D, Table 1). Homology
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Figure 1 UV-visible dark absorption spectrum of the wild type C. nuchalis SWS1. Estimated absorption maximum values (λmax) noted above
the dark spectrum. Inset, Dark-minus-acid bleached difference spectra.
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Figure 2 UV-visible dark absorption spectra of C. nuchalis SWS1 mutants. Dark spectra of (A) S90C, (B) C86F, (C) C86S, and (D) double
mutant C86S/S90C, all recorded at pH 6.6. Insets show dark-minus-acid difference spectra. Estimated λmax values indicated for each mutant.
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Table 1 Spectral absorbance characteristics for wild type
C. nuchalis SWS1 pigments, site-directed mutants, and
ancestral pigments

Pigment λmax
a (nm) Shift from C. nuchalis

wt pigment b (nm)

GBS1 wt 402.97 ± 0.22

S90C 363.05 ± 0.05 −40

C86S 403.05 ± 0.12 0

C86Fc 365.72 ± 1.10 −37

C86S/S90C 362.95 ± 0.26 −40

Parrot/Passerine Ancestor 402.93 ± 0.28 0

Passerine Ancestor 404.28 ± 0.28 0
a λmax values are given as mean ± standard deviation from at least three
different measurements of dark absorbance spectra per expression. b λmax

shifts from C. nuchalis wild type (wt) pigment are expressed as negative for
blue shifts. c λmax of single mutant C86F calculated from fitting difference
spectra of dark and acid denatured species.
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modeling studies of bowerbird SWS1 structure confirm
that there are only minor differences in side chain
orientation for both C86S and S90C; however for C86F
there is a large difference in side chain orientation, with
F much closer to the protonated Schiff base (Figure 3).
Due to the short-wavelength λmax of the bowerbird

SWS1 and its mutants, a number of assays were performed
in order to demonstrate a properly folded protein with
bound 11-cis retinal chromophore, and to further
characterize its function. In order to demonstrate a cova-
lently bound chromophore, SWS1 pigments regenerated
with 11-cis retinal were denatured in HCl, producing
absorbance peaks shifted to 440 nm (Figures 1 & 2, inset),
characteristic of denatured opsin bound to chromophore
[44]. All SWS1 pigments with λmax above 400 nm were
bleached with light to ~380 nm, characteristic of the
biologically active state of visual pigments, metarho-
dopsin II [45,46]. Finally, the wild type bowerbird
SWS1 pigment was found to react in the presence of
hydroxylamine (Figure 4), with a t1/2 = ~6 min, typical
of cone pigments [47,48].
Some of the pigments were occasionally found to have

small secondary absorbance peaks in the longwave arm
of the curve, which can have the effect of broadening
pigment absorbance curves. These have previously been
observed in wild type and mutant SWS1 pigments
expressed in solution [17,18,20,24,49-51]. This has also
been observed in blue shifted RH1 mutants with mutations
at site 90 [51-53]. In this study, experimental attempts
to narrow the absorption spectra, including the use of
TRIS phosphate buffers, exclusion of glycerol, decreasing
purification time and minimizing light and temperature ex-
posure, were unsuccessful, similar to previous experimental
studies [18,50,51,54].
In addition to SWS1, four other opsin genes were also

isolated from C. nuchalis: SWS2, RH2, and LWS, and
rod opsin (RH1) (Additional file 1: Figure S2). All opsin
genes were found to contain important structural charac-
teristics typical of functional visual pigments. Phylogenetic
analyses show these sequences cluster with expected visual
pigment families (Additional file 1: Figure S3).

Reconstructing passerine and parrot/passerine ancestral
SWS1 pigments
In order to investigate the evolution of UV sensitivity
in passerines and parrots, a combination of Bayesian and
maximum likelihood ancestral reconstruction methods were
used to infer the sequence of Helix 2 of SWS1 in the ances-
tors of passerines and parrots (Additional file 1: Table S4).
Reconstructed amino acid substitutions at major spectral
tuning sites were mapped on a landbird phylogeny (Figure 5).
Relative to site 90, less variation was found at sites 86
and 93, with a notable substitution, S86C, occurring at
the base of the passerine lineage. Interestingly, substitutions
at site 90 were found to occur multiple times throughout
the passerine phylogeny, and always involve a change from
S to C, suggestive of multiple shifts towards UV sensitivity
(but not the reverse). This finding is in disagreement with a
previous study proposing that the residue at site 90 has
transitioned back and forth between S and C multiple times
throughout passerine evolution [41]. Their results would
suggest that transitions between UV and violet pigments
are quite labile, whereas our results would imply more
constrained evolution.
SWS1 pigments for the ancestors of the passerines and

parrots were experimentally recreated in the background of
our C. nuchalis pigment. This was done for a number of
reasons. First, we were limited by current sequence data,
which only exists for Helix 2 for most bird SWS1 genes, as
all known spectral tuning sites are thought to be contained
in this helix. Second, as a basal passerine, C. nuchalis SWS1
differed from the reconstructed ancestral sequences at
specific sites in Helix 2, allowing us to generate the an-
cestrally reconstructed sequences using site-directed
mutagenesis methods. Third, our ability to make direct
functional comparisons between the ancestral pigments
and that of C. nuchalis allowed us to better interpret
the effects of particular amino acid substitutions. The
experimentally assayed, recreated ancestral SWS1 pig-
ments were both found to be VS pigments, absorbing
maximally in the VS at 403 nm (parrot/passerine ancestor)
and 404 nm (passerine ancestor, Figure 6). Both ances-
tral pigments were found not only to bind retinal, but
also to activate in response to light and denature in acid
(Figure 6, inset). The reconstructed nodes had high posterior
probability values across sites (Additional file 1: Table S4).
Reconstructions on an alternate topology favored by
previous visual pigment studies [41] did not find any
differences with our experimentally recreated sequences
(Additional file 1: Figure S4).



Figure 3 Homology modeling of C. nuchalis SWS1. Models are based on the bovine rhodopsin template, comparing the wild type structure
with mutations (A) C86F, (B) C86S, and (C) S90C. Wild type residues are indicated in black, mutant residues in red. The 11-cis retinal chromphore
is indicated in purple; with K296 in light blue, the site of chromophore attachment via a protonated Schiff base linkage. Estimated distances to
the protonated Schiff base are indicated along the dotted lines.
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Discussion
This study extends our understanding of SWS1 opsin
function and evolution by investigating evolutionary
changes that occurred in avian SWS1 genes. The SWS1
opsin of the great bowerbird C. nuchalis, a basal passerine
bird, was expressed along with a series of spectral tuning
mutants and ancestral passerine SWS1 pigments allowing
us to investigate spectral tuning mechanisms and identify
the evolution of UV/violet sensitivity in early passerines
and parrots. The C. nuchalis SWS1 opsin was found to
be a VS pigment, with a maximal absorbance of 403 nm,
which is in agreement with previous MSP studies identi-
fying a λmax of 404 nm [39]. However, our experimen-
tally recreated passerine ancestral SWS1 pigments were
also found to be VS, addressing a longstanding issue of
ancestral passerine SWS1 spectral tuning in previous
studies [25,28,41,55].

Evolution of UV/violet vision in passerines and parrots
Our finding that the passerine ancestor had a violet-type
SWS1 reaches slightly different conclusions in comparison
with a recent study suggesting that the passerine ancestor
was UVS [41], which was the first paper examining avian
SWS1 evolution that used a phylogeny in which passerines
and parrots were specified sister orders. Not only are the
predicted ancestral sequences different, but a VS-type λmax

in ancestral pigment was experimentally confirmed in our
study. While it is not entirely clear why our study reached
such different conclusions, there are a number of import-
ant differences. Our analysis included additional outgroup
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Figure 4 Hydroxylamine reactivity of the C. nuchalis wild type SWS1 pigment. Absorption spectra recorded t = 0 min after hydroxylamine
addition (black line), and t = 120 min (grey line), followed by light bleaching (broken line). Right: The absorbance values at 403 nm (broken line)
and 363 nm (black line) were plotted as a function of time after addition of hydroxylamine. Half-life for the formation of the retinal oxime in the
presence of hydroxylamine was obtained by fitting the plot to a single exponential function.
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sequences, and used maximum likelihood reconstruction
methods (as opposed to parsimony). Furthermore, in our
study the ancestral pigments were experimentally recreated
and functionally assayed. Finally, our phylogeny is based
on the current understanding of phylogenetic relation-
ships among landbirds that includes a recent revision of
Figure 5 SWS1 visual pigment evolution, with ancestrally reconstruct
Landbirds [31-33,40,56,80-87]. Experimentally reconstructed ancestral no
numbers provided in Additional file 1: Table S2.
the relationships among higher lineages [56-58], and there-
fore is somewhat different from that of Odeen et al. [41].
However, we did not find any differences in our reconstruc-
tions of the ancestral passerine SWS1 when we used a tree
with the relationships among higher passerines arranged
similar to their phylogeny, suggesting that the difference in
ed substitutions at sites 86, 90 & 93 mapped on a phylogeny of
des are shown along with measured λmax values. GenBank accession
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Figure 6 UV-visible dark absorption spectra of the (A) ancestral SWS1 pigment of passerines and parrots and (B) ancestral SWS1
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our findings from previous studies are probably due to
methodological differences, such as the use of maximum
likelihood reconstruction methods and/or the use of
additional outgroup lineages. (Odeen et al. [41] did note
that the inclusion of additional outgroup sequences re-
sulted in an ambiguous reconstruction of the passerine
ancestor even in their analyses.) Our results support
earlier studies that investigated the evolution of UV/violet
sensitivity in birds suggesting the passerine ancestor
had a VS type SWS1 [25,28,55], but these early studies do
not place passerines and parrots as sister orders. Because
the parrots are now thought to be closer to the basal pas-
serines than before, our results are more robust than they
would be if based upon the older tree.
Our findings, that UVS in passerines and parrots evolved

from VS ancestors, and that this occurred independently
in at least two lineages, are rather unusual with respect to
other vertebrate groups. The ancestral vertebrate state
is thought to have been UVS, with VS pigments evolving
independently in various lineages within fish, mammals,
and amphibians [16,22-24,28,29,50]. Birds are believed
to be an interesting exception where a switch to VS is
thought to have occurred in the ancestral avian pigment
with some descendants subsequently re-evolving UVS
[24,50]. Our identification of VS type pigments in both
passerine and parrot/passerine ancestors confirm this
hypothesis, and our ancestral reconstruction results
provide a more precise prediction of where these spectral
sensitivity shifts occurred. The re-evolution of UVS from
a VS type pigment has not previously been predicted
elsewhere in the vertebrate phylogeny. The reasons why
bird SWS1 pigments are an exception remain largely un-
known, but may be related to their unique spectral tuning
mechanisms among vertebrates.

Spectral tuning in C. nuchalis SWS1
The C. nuchalis VS pigment possesses an unusual residue
combination at the two spectral tuning sites known to
be most important in specifying UVS or VS in vertebrates:
C86/S90. This residue combination has been found in
a few passerine SWS1 opsins in past sequence-based
surveys [41,42], but its spectral relevance has not been
examined using mutagenesis experiments, which thus
far have only dealt with VS-type pigments with S86/S90,
in pigeon and chicken, [18,28] and UVS type with either
A86/C90 or C86/C90, in budgerigar and zebra finch,
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respectively [17,18,59]. Past mutagenesis studies of verte-
brate SWS1 pigments have shown the magnitude of λmax

shift caused by a given amino acid change can differ
significantly among pigments due to synergistic interac-
tions within and between transmembrane regions I-VII
[19,50,60,61]. Characterization of C. nuchalis SWS1
mutants was therefore carried out, as it may provide
new clarification of the mechanisms contributing to the
naturally occurring variation in avian SWS1 pigment spec-
tral sensitivity, particularly among the VS type pigments.
These mutants can also help clarify patterns of evolution
between VS and UVS visual systems in birds.
Our results showing that S90C shifts the C. nuchalis

SWS1 into the UV is consistent with previous studies
where similar shifts have been documented in the chicken,
pigeon, and the reverse in zebra finch, and budgerigar
[17,18,28]. In C. nuchalis, the effect of the double mutant
C86S/S90C was identical to that of the single S90C mutant.
Thus, in the presence of C90, C86 has no additional effect
on sensitivity. In other avian pigments, substitutions at
known spectral tuning sites also do not change λmax if
expressed with C90 [17,28]. Others have suggested that
the effect of C90 is so strong it prevents detection of any
subtler effects other residues might have [28]. In birds, all
in vitro expressed pigments, whether wild type or mutant,
with C90 have λmax ~360 nm. The exception is in chicken
where S90C only shifts λmax to 369 nm [18].
The mutation C86F in C. nuchalis also shifts λmax into

the UV. Unlike C90, which, as far as we know only has a
functional role in avian SWS1 opsins, F86 is an important
spectral tuning site across vertebrates where it confers
UVS in most pigments in which it occurs [16,19,29,30],
the exception being the aye-aye, which is VS despite
the presence of F86 [23]. It is, in fact, believed to be the
ancestral vertebrate state and substitutions from F86 are
responsible for the loss of UVS in many mammalian
lineages [16,19,22,23,29,30], and in ancient birds [21].
In C. nuchalis, C86 therefore plays an important role in
maintaining sensitivity in the violet range, as the replace-
ment of C86F shifts λmax into the ancestral UV state. F86
is also interesting because it has been suggested to be a
second mechanism by which birds achieve UVS: It is
found in the SWS1 genes of some birds including the
trogon, paleognaths and a few sandgrouses and motmots
[25-27], is capable of UV shifting VS pigments of pigeon
and chicken [28], and is responsible for UVS in fish and
most mammals [19,29,62]. Correspondingly, our mutagen-
esis results support the hypothesis that extant birds with
F86 are UVS, and, therefore, the supposition that there are
at least two mechanisms determining UVS in birds [28].
The expression of a wild type pigment with F86 would be
needed to confirm this hypothesis.
In contrast to the previous mutants, C86S did not

affect λmax in the C. nuchalis SWS1. This mutation was
previously suggested as contributing to the broad spec-
tral variation observed among VS type pigments [55,59],
which in birds range from 388 nm (pigeon) to 420 nm
(chicken) [28]. Site 86 is an important spectral tuning site
in other vertebrate SWS1 pigments, and S86C is capable of
shifting λmax into the UV in a hypothetical ancestral avian
SWS1 [21]. As with C. nuchalis SWS1, S86C barely shifts
λmax in the pigeon SWS1 [28], and mutation to serine at
site 86 has no effect on the budgerigar SWS1 [17]. There-
fore the residues responsible for this large variation in λmax

among VS pigments remain unknown. Altogether, these
studies indicate that the role of site 86 in avian SWS1 pig-
ments depends not only on the residue at that site, but also
on the background in which it is expressed. This is particu-
larly true of mammalian SWS1 pigments where the vari-
ation at site 86 is better characterized: in most mammalian
pigments the presence of F86 dramatically shifts λmax, into
the UV [16,19,29,30], but this is not always the case [23].

Implications for behavioural ecology
While higher passerine lineages with UV type pigments
are known to use UV signals in communication [9-11],
current evidence indicates no link between colouration
and spectral sensitivity in bowerbirds [39]. Here we have
shown that despite the fact males display UV reflecting
feathers and objects during courtship [3,63,64], C. nuchalis
does not possess a UV type SWS1 visual pigment. These
findings would seem to contradict evidence demonstrating
a strong link between spectral tuning and signal colouration
in other vertebrate groups, [65,66], and the belief that UV
type pigments offer a dramatic advantage by improving
sensitivity in this short wave range [67].
The general correlation between colouration and

sensitivity remains because birds with VS pigments can
perceive UV; SWS1 visual pigments absorb strongly
over most of the UV visible range [6], cone oil droplets
are effectively transparent to light in this range [68] and,
in most species, avian ocular media transmit most short
wavelength light [69]. The difference in UV sensitivity
between UVS, VS and the blue shifted bowerbird VS is
just a matter of degree. Nevertheless, while UV colour-
ation might be perceived by bowerbirds, its importance
in communication is not well understood. In the satin
bowerbird (Ptilonorhynchus violaceus) plumage UV re-
flectance is correlated with factors such as the intensity
of infection from blood parasites, feather growth rate, and
body size [63], but it is unrelated to mating success [64].
Given that C. nuchalis and other bowerbird ocular media

transmit more UV wavelengths than most other species
with VS-type visual pigments, they might represent a tran-
sitional link in the evolution from aVS to a UVS visual sys-
tem [39]. This hypothesis is supported by the comparatively
blue shifted SWS1 found in bowerbirds, which further aug-
ments UV sensitivity. Given the similarly blue shifted λmax
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of the ancestral SWS1 pigments, this hypothesized transi-
tional state might have originated in the ancestral passerine,
and be shared among other basal passerines as well. This
could also explain the unusually high number of shifts from
VS to UVS in this order. Further investigation into the evo-
lutionary history of ocular transmission would be useful to
clarify this possibility.
If an organism with a blue shifted VS pigment, like the

great bowerbird, has sufficient UV sensitivity, then the
adaptive advantage of a switch to UVS might not be as
large as it would be if it could perceive little UV or only
had the ancestral VS pigment. Aside from λmax, there
are a number of other structural and functional differ-
ences between VS and UVS opsins that may be related
to a deprotonated Schiff base linkage to the chromophore
[48,51,70-74]. These differences may have important con-
sequences for the evolution of UVS in birds and other
vertebrates. Therefore, it is possible that the wavelength
difference between UVS and VS type pigments might not
be the only, or the most important, functional difference
between them. Further biochemical and mutagenesis stud-
ies would be necessary to refine the functional differences
between these two opsin subtypes.

Conclusions
Our in vitro experiments suggest that spectral tuning in
C. nuchalis is likely mediated by mechanisms very similar
to those of other birds. This is unusual relative to spectral
tuning mechanisms within mammals, which vary con-
siderably among and within the major mammalian or-
ders. In addition, despite both parrots and passerines
sharing UV sensitivity and the same spectral tuning
mechanism the experimentally recreated ancestral pas-
serine and parrot/passerine SWS1 pigments were both
found to be maximally sensitive in the violet; this suggests
that UV sensitivity may have evolved independently in
passerines and parrots from a violet sensitive ancestor.
Moreover, our ancestral sequence reconstructions of
SWS1 in landbird evolution suggest that transitions
from VS to UVS are much more likely than the reverse.
Our ancestral reconstruction experiments allow for a
more precise prediction of where spectral sensitivity shifts
may have occurred, and provide an unusual example
where descendants have re-evolved UVS from a violet
type ancestor; the reverse being more common in most
vertebrates.

Methods
Opsin sequences
Birds were collected using cage traps or mist nets under
appropriate Australian (Queensland Parks and Wildlife
F1/000331/00/SAA, Australian Bird and Bat Banding
Scheme 2434,1310, Commonwealth Scientific, Industrial
and Research Organization (CSIRO) Ethics OB15/12, James
Cook University Ethics A562, United States Department of
Agriculture 47746, Australian Quarantine and Inspection
Station 200104468, Environment Australia PWS P20011711,
Department of Natural Resources Australia 1576) and
US permits and authorizations (UCSB IACUC #10-98-
555-1, USDA 47746). Birds were euthanized according
to these protocols. Retinas were preserved in RNA Later
(Invitrogen), and stored on ice in the field until they
could be transferred to −80 for long term storage. RNA
was extracted from retinal tissue using TRIzol Reagent
(Invitrogen), and a cDNA library was prepared with the
SMART cDNA Library Construction Kit (BD Biosciences).
Degenerate primers were designed to amplify fragments of
the opsin coding regions (Additional file 1: Table S1), with
3′ and 5′ ends of the genes isolated by RACE PCR. Purified
PCR products were cloned into pJET1.2 (Fermentas), and
sequenced from multiple clones. Site-directed mutagenesis
was performed using the QuikChange kit (Stratagene).
Blood samples of two individuals (“T + EB” & “BG/Z”)
found in the Lavarack Barracks military base in Townsville
City Queensland, Australia were preserved in Queen’s lysis
buffer (0.01 M Tris, 0.01 M NaCl, 0.01 M sodium EDTA,
and 1.0% n-lauroylsarcosine, pH 8.0) [75]. Genomic DNA
was extracted from these blood samples using the DNeasy
Blood and Tissue Kit (Qiagen). Introns and flanking
genomic regions were isolated using PCR with specific
primers on a genomic library created with the Genome
Walker kit (Clontech).

Expression & purification of wild type and mutant pigments
Full-length coding sequences of C. nuchalis wild type
pigments were amplified from cDNA, and cloned into the
p1D4-hrGFP II expression vector for transient expression
[76]. This vector has a C-terminal 1D4 epitope tag
that encodes the last nine amino acids of bovine RH1
[TETSQVAPA], and employs the CMV promoter to
drive transgene expression. Cultured HEK293T cells were
transiently transfected with the opsin-1D4 construct using
the Lipofectamine 2000 reagent (Invitrogen). Typically four
175 cm2 flasks were used per SWS1 expression procedure,
with one flask of similarly expressed bovine rhodopsin
as a control. Methods for purification of C. nuchalis SWS1
opsins were adapted from those of Starace & Knox [77].
Briefly, cells were harvested, washed with Harvesting Buffer
(50 mM HEPES ph 6.6, 140 mM NaCl, 3 mM MgCl2),
regenerated with 11-cis retinal chromophore, solubilized
(in 1% n-dodecyl-β-D-maltopyranoside detergent (DM)
with 20% (w/v) glycerol), and purified by batch immunoaf-
finity chromatography with the 1D4 monoclonal antibody
[78]. The UV-visible absorption spectra of purified visual
pigments were recorded at 21°C using a Cary 4000 dual
beam spectrophotometer (Agilent). For functional assays,
absorbance spectra were also measured after exposure
to light (either a 366 nm UV light illuminator for UVS
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pigments, or a 60-W lamp with 440 nm cutoff filter for
VS pigments), to hydrochloric acid (HCl; 100 mM), or
to hydroxylamine (NH2OH; 50 mM). To produce dif-
ference spectra, either the light or the acid-denatured
spectra were subtracted from the dark absorbance spectra.
To estimate λmax, the dark absorbance spectra were base-
line corrected and fit to a visual pigment template [73]. The
F86 mutant λmax was estimated by fitting the dark-acid dif-
ference spectrum [29], due to a perturbation in the long
wave arm of the dark spectrum. All amino acid numbering
in this manuscript is according to the bovine rhodopsin
amino acid sequence as a reference.

Ancestral sequence reconstruction
To reconstruct ancestral passerine SWS1 sequences, a
dataset of 83 SWS1 genes from passerines, parrots and
other related landbirds, as per Hackett et al. [31], was
assembled from GenBank for a region of Helix 2 that
encompasses all the known SWS1 spectral tuning sites
(Additional file 1: Table S2 and Figure S1). For the majority
of sequences, this region is the only portion of the SWS1
gene for which sequence data is available. The sequences
were aligned with our C. nuchalis sequence using PRANK
([79], Figure S1). For ancestral reconstruction, a topology
reflecting current understanding of landbird relationships
was used (Figure 5) [31-33,40,56,80-87]. This phylogeny
incorporates recent information that places passerines and
parrots as derived sister orders relative to other Landbird
orders [31-33], and includes a recent revision of the
relationships among higher passerine lineages [56-58].
This phylogeny is somewhat different from previous avian
SWS1 studies, therefore we also analyzed our data on an
alternate phylogeny (Additional file 1: Figure S4) similar
to that of Odeen et al. [41], in order to investigate the
robustness of our ancestral reconstructions.
For the ancestral sequence reconstruction (ASR),

a combination of empirical Bayesian and maximum
likelihood (ML) codon-based methods [88] were used
(PAML v4.3 [89]). Nested random sites codon models
were compared using likelihood ratio tests (LRTs) [90,91],
and the best fitting model, M7 [92], was used for the
ancestral sequence reconstruction (Additional file 1:
Table S3 and S4). Multiple runs were carried out with
different starting values to check for convergence in all
analyses. In experimentally resurrecting ancestral proteins,
focusing solely on the most probable ancestral sequence
can introduce biases in amino acid composition, which
may in turn alter the functional phenotype of a resurrected
protein [93,94]. We addressed this concern using a strategy
of weighted random sampling of ancestral sequences from
the posterior distribution, in order to avoid this bias
[94,95]. For the two ancestral nodes reconstructed, a
weighted sampling of 10,000 sequences from the posterior
distribution resulted in ancestral sequences that were
either identical (parrot/passerine ancestor, 100% identical),
or highly similar to (passerine ancestor, 83% or 8343
sequences out of 10,000 identical) the most likely an-
cestral reconstruction.

Homology modeling
The 3D structure of the C. nuchalis wild-type SWS1 was
inferred via homology modeling by Modeller [96], using
bovine rhodopsin (PDB code: 1U19, [97]) as template. Fifty
models were generated by optimizing the Modeller object-
ive function with the model with the lowest DOPE score
[98] selected for further assessment and visualization.
Model quality was checked using ProSA-web [99] to en-
sure the model and template structures have comparable
z-scores (an standardized indicator of a structure’s total
energy compared to that expected by random chance),
and by ProCheck [100], to ensure bond lengths and angles
do not have unusual stereochemical conformations. Simi-
lar procedures were followed for inferring 3D structures
of C86F, C86S and S90C mutants.

Additional file

Additional file 1: Table S1. Degenerate oligonucleotides for PCR
(numbering according to bovine rhodopsin). Table S2. Species names &
accession numbers for Landbird SWS1 data set used in ancestral
reconstruction analysis. Table S3. Likelihood scores of codon models
used for ancestral reconstruction. Table S4. Maximum likelihood
ancestral reconstruction of ancestral passerine/parrot, and ancestral
passerine SWS1 pigments, with posterior probabilities (numbering
according to bovine rhodo). Figure S1. Alignment of SWS1 opsin gene,
helix 2 from Landbirds used in ancestral reconstruction, highlighting sites
86, 90 & 93. Figure S2. Alignment of visual pigment sequences in C.
nuchalis. Figure S3. Phylogenetic relationships of the C. nuchalis opsin
genes with those of other vertebrates. Figure S4. Alternate Landbird
topologies used to confirm ancestral sequence reconstruction [101-108].
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