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Abstract

Background: Preterm birth (PTB), or birth before 37 weeks of gestation, is the leading cause of newborn death
worldwide. PTB is a critical area of scientific study not only due to its worldwide toll on human lives and economies,
but also due to our limited understanding of its pathogenesis and, therefore, its prevention. This systematic review and
meta-analysis synthesizes the landscape of PTB transcriptomics research to further our understanding of the genes and
pathways involved in PTB subtypes.

Methods: We evaluated published genome-wide pregnancy studies across gestational tissues and pathologies,
including those that focus on PTB, by performing a targeted PubMed MeSH search and systematically reviewing all
relevant studies.

Results: Our search yielded 2,361 studies on gestational tissues including placenta, decidua, myometrium, maternal
blood, cervix, fetal membranes (chorion and amnion), umbilical cord, fetal blood, and basal plate. Selecting only those
original research studies that measured transcription on a genome-wide scale and reported lists of expressed genetic
elements identified 93 gene expression, 21 microRNA, and 20 methylation studies. Although 30 % of all PTB cases are
due to medical indications, 76 % of the preterm studies focused on them. In contrast, only 18 % of the preterm studies
focused on spontaneous onset of labor, which is responsible for 45 % of all PTB cases. Furthermore, only 23 of the
10,993 unique genetic elements reported to be transcriptionally active were recovered 10 or more times in these 134
studies. Meta-analysis of the 93 gene expression studies across 9 distinct gestational tissues and 29 clinical phenotypes
showed limited overlap of genes identified as differentially expressed across studies.

Conclusions: Overall, profiles of differentially expressed genes were highly heterogeneous both between as well as
within clinical subtypes and tissues as well as between studies of the same clinical subtype and tissue. These results
suggest that large gaps still exist in the transcriptomic study of specific clinical subtypes as well in the generation of
the transcriptional profile of well-studied clinical subtypes; understanding the complex landscape of prematurity will
require large-scale, systematic genome-wide analyses of human gestational tissues on both understudied and
well-studied subtypes alike.
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Fig. 1 The tissues of pregnancy. Our systematic literature review
surveyed a total of 9 distinct gestational tissue types including 4 of
maternal origin (cervix, myometrium, decidua, and maternal blood;
shown in red), 4 of fetal origin (fetal blood, fetal membranes, umbilical
cord, and placenta; shown in blue), and 1 of mixed maternal and fetal
origin (basal plate; shown in purple)
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Background
In humans, gestation typically lasts 40 weeks; preterm
birth (PTB) is defined as birth before 37 completed
weeks of gestation and is the leading cause of newborn
death worldwide. More than 15 million babies are born
too soon every year and rates of PTB had been increas-
ing until 2006 when changes in obstetrical practices
regarding early cesarean sections led to a recent decrease
in deliveries before term [1]. Nevertheless, 10 % of preg-
nancies still end before 37 weeks across the world and
this high incidence of PTB is problematic because
premature babies are at higher risk for lifelong health
and developmental problems [2, 3]. For example, almost
half of all children born premature suffer from vision or
hearing loss and learning disabilities at some point in
their life [4, 5]. The combined medical costs stemming
from care during the labor and delivery process as well
as from care later in life are estimated to be near $26
billion annually [6].
PTB is a complex, multifactorial syndrome comprised of

multiple clinical subtypes, which often occur at different
gestational ages and can be defined as either ‘spontaneous’
or ‘medically indicated’ [7]. Medically indicated preterm
deliveries account for 30 % of PTB cases and are often
preceded by complications including preeclampsia (PE),
intrauterine growth restriction (IUGR), gestational dia-
betes mellitus (GDM), and chorioamnionitis [8]. The
remaining 70 % of PTB cases are idiopathic; 45 % is due
to the spontaneous onset of labor (sPTB) and the
remaining 25 % is due to the preterm premature rupture
of membranes (PPROM) [9–11]. Regardless of PTB sub-
type, however, current therapies are not successful in
prolonging time to birth once labor has been initiated and
the most effective therapy, progesterone supplementation,
is only effective in a small number of high-risk cases [12].
It is critical that we gain greater insight into the genes and
pathways that regulate birth timing in humans in order to
develop effective prevention and treatment strategies,
including for cases of sPTB.
A number of environmental risk factors have been

associated with sPTB including infection, nutrition,
socioeconomic status, and stress but the pathways
through which these risk factors act remain unclear [13].
Recent evidence from family, twin, and case–control
studies suggests that genetics also plays an important
role in birth timing, and the heritability of PTB is esti-
mated to be approximately 30 % [1, 6, 8]. Thus, PTB
tends to run in families and women who were born pre-
term are also more likely to deliver preterm themselves.
Interestingly, however, fathers born prematurely do not
appear to pass on this risk to offspring [1]. Furthermore,
one of the strongest predictors of PTB is previous pre-
term birth and, in subsequent pregnancies from the
same woman, birth timing tends to occur around the
same gestational age for each pregnancy [9, 14]. Candi-
date gene studies have targeted genes with known
biological roles potentially related to processes occurring
during pregnancy but, in general, teasing apart the com-
plex genetic architecture of pregnancy and PTB has
proved challenging.
Further complicating our understanding of PTB gen-

etic architecture are the numerous maternal and fetal
gestational tissues that must interact to facilitate partur-
ition [12, 15]. These tissues include decidua, myome-
trium, cervix and maternal blood originating from the
mother and villous placenta, fetal membranes (chorion
and amnion), umbilical cord, and fetal blood originating
from the fetus (Fig. 1). Furthermore, the basal plate is a
region at the maternofetal interface that is commonly
biopsied for the study of PTB and includes cells from
both the decidua and villous placenta. The decidua,
myometrium, and cervix act to house the fetus as well
as expel it during labor and delivery, the chorion and
amnion act as membranes separating the fetus from the
mother, and the umbilical cord allows for efficient nutrient
transfer. Together, these tissues share a general functional-
ity in the efficient maternofetal exchange of nutrients, gas,
and waste.
Although little is known about the complex etiology of

PTB, many studies have generated pregnancy-related
transcriptomes in various tissue types and pathologies.
Because of the diversity of tissues and clinical subtypes
involved as well as the large number of questions exam-
ined, few studies have attempted to synthesize any
dimension of the admittedly complex transcriptional
landscape of this multifactorial syndrome. To synthesize
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what is known about PTB transcriptomics, we analyzed
all published genome-wide studies of gestational tissues
(placenta, decidua, myometrium, maternal blood, cervix,
basal plate, fetal membranes, umbilical cord, and fetal
blood) in both healthy and diseased human pregnancies
to identify all statistically supported candidate genetic el-
ements in PTB subtypes.
Our meta-analysis identified 134 genome-wide studies

of pregnancy and PTB. The majority of PTB research fo-
cused on PE; very few studies were focused on sPTB
(18 %) even though sPTB accounts for 45 % of all PTB
cases. Moreover, there was limited overlap in the identity
of candidate genes across studies. In placenta (n = 53),
for example, 6,444 differentially expressed unique genes
were identified but only 2, LEP and FLT1, were present
in more than 10 gene expression studies. Similarly, in PE
studies (n = 27), 5,329 differentially expressed unique
genes were identified but only 13 were found in 5 or
more gene expression studies. The limited overlap of dif-
ferentially expressed genes across studies of the same tis-
sue or clinical subtype as well as the highly uneven
coverage of studies targeting highly prevalent clinical
subtypes suggest that larger-scale, systematic studies
aimed at understanding the transcriptional profiles of
the diverse clinical PTB subtypes and characterizing
their disease-relevant transcriptional differences will be
necessary to identify genes whose dysregulation contrib-
utes to this complex, multifactorial syndrome.

Results
A systematic review identified 134 transcriptomic studies
on 9 gestational tissues and 29 different phenotypes
Of the 2,361 studies identified in our PubMed search,
134 genome-wide transcriptomic studies in human ges-
tational tissue samples were, based on a number of se-
lection criteria, deemed eligible for systematic review
(Additional file 1) [16–133]. These 134 studies were
identified from a total of 116 distinct publications; this is
so because 14 publications reported multiple compari-
sons that were separated into 33 distinct studies for the
purpose of this analysis. Platform-wise, 127/134 (95 %)
were microarray studies, 4/134 (3 %) were bisulfite-
sequencing studies, and 3/134 (2 %) were RNA-
sequencing studies. All studies were published between
1999 and 2014, primarily in the journals Placenta and
The American Journal of Obstetrics and Gynecology. The
phenotypes examined in these studies were quite diverse;
14/134 (10 %) studies examined preterm pregnancies,
80/134 (60 %) term pregnancies, and 40/134 (30 %) both
preterm and term pregnancies. One non-clinical phenotype
(healthy pregnancies) and 28 distinct clinical phenotypes
were represented. Finally, 21/134 (16 %) were microRNA
studies, 20/134 (15 %) were methylation studies, and the
remaining 93/134 (69 %) were gene expression studies. A
total of 10,993 unique genetic elements were reported
to be transcriptionally active across all 134 studies
(Additional file 2), but only 23/10,993 (0.2 %) were
reported in 10 or more studies.
The 134 studies analyzed 9 distinct gestational tissues,

namely placenta, decidua, myometrium, maternal blood,
cervix, fetal membranes (chorion and amnion), umbilical
cord, fetal blood, and basal plate. The three most com-
mon tissues studied were placenta (82/134; 61 %), fetal
membranes (16/134; 12 %), and myometrium (17/134;
12 %), whereas each of the other six tissues was sampled
in 7 or fewer studies (Fig. 2).
The 134 studies analyzed 29 distinct phenotypes (Fig. 3).

11/134 (8 %) studies focused on healthy pregnancies,
while the remaining 123/134 (92 %) studies focused on
clinical phenotypes. The most common phenotypes studied
were PE (40/134; 30 %), labor (16/134; 12 %), and sPTB
(10/134; 7 %). Definitions for all phenotypes are provided in
Additional file 3.

PTB research focus does not reflect PTB subtype
epidemiological prevalence
To evaluate whether the proportion of transcriptomic
studies devoted on different PTB subtypes reflects their
clinical prevalence, we compared the frequencies of the
three major clinical etiologies (sPTB at 45 %, PPROM at
25 %, and medically indicated PTB at 30 %) to the fre-
quency of transcriptomic studies devoted to these etiolo-
gies (Fig. 4). We found that although only 30 % of all
PTB cases are due to medical indications, such as PE,
IUGR, or GDM, 41/54 (76 %) of the studies categorized
as preterm in our systematic review focused on them;
21/54 (39 %) of the preterm studies focused on PE alone.
In contrast, although sPTB is responsible for 45 % of all
cases, only 10/54 (18 %) of the preterm studies in our
systematic review studied this clinical subtype.

A meta-analysis of 93 gene expression studies across 9
distinct gestational tissues showed limited overlap of
candidate genes
To perform an aggregated meta-analysis, we focused on
the 93/134 gene expression studies. These 93 gene expres-
sion studies analyzed all 9 distinct gestational tissues,
namely placenta, decidua, myometrium, maternal blood,
cervix, fetal membranes (chorion and amnion), umbilical
cord, fetal blood, and basal plate. The three most common
tissues studied for differential gene expression were
placenta (53/93; 57 %), myometrium (17/93; 18 %), and
fetal membranes (11/93; 12 %), whereas each of the
other six tissues was sampled in 4 or fewer studies.
Genome-wide gene expression profiling studies of the
three most commonly studied gestational tissues, i.e.,
placenta, myometrium, and fetal membranes, identified
a total of 8,437 unique differentially expressed genes, of
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Fig. 2 The vast majority of genome-wide transcriptomic studies on gestational tissues have focused on the placenta. A targeted PubMed search
for genome-wide transcriptomic studies yielded a total of 134 studies focusing on 9 distinct gestational tissue types. Placental research accounted
for 61 % of all studies in the meta-analysis, followed by fetal membranes (12 %) and myometrium (12 %)
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which only 2,123 (25 %) were found in two or more
studies (Fig. 5, Additional file 4). This examination also
showed that only 23 candidate genes were differentially
expressed two or more times in studies of all three
tissues (Additional file 5). Among the genes present in
this overlap were interleukin 1 beta, a proinflammatory
cytokine shown to be involved in infection-related PTB
and PE, and superoxide dismutase 2, an antioxidant
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Fig. 3 Gestational tissue transcriptomic studies in term and preterm huma
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enzyme shown to be involved in oxidative stress associ-
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Although gene expression profiles are available for 29
distinct phenotypes, PTB research is dominated by
studies focused on select phenotypes of PTB
The 93 gene expression studies analyzed 29 distinct
phenotypes. From these studies, 5/93 (5 %) focused on a
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Fig. 4 Proportion of transcriptomic research does not correspond to PTB subtype prevalence. Although only 30 % of all PTB cases are due to
medical indications, such as PE, IUGR, or GDM, 76 % of the preterm studies in our systematic review focused on them. In contrast, only 18 % of
the studies focused on sPTB, even though this clinical subtype accounts for the majority (45 %) of PTB cases
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non-clinical phenotype (healthy pregnancies), with the
remaining 88/93 (95 %) focused on clinical phenotypes.
Among studies focused on clinical phenotypes, the three
most common phenotypes investigated were PE (27/93;
29 %), labor (15/93; 16 %), and IUGR (8/93; 9 %); each of
the other 26 clinical phenotypes was studied in 5 or fewer
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Fig. 5 Overlap of differentially expressed genes across tissues.
Differentially expressed genes present in two or more gene
expression studies categorized by tissue were compared across the
three most commonly studied (placenta, myometrium, and fetal
membranes). Out of 2,123 genes identified to be differentially expressed
in at least two studies, 23 genes were shared across all three tissues
studies. Genome-wide gene expression studies of the three
most commonly studied clinical phenotypes identified a
total of 7,730 unique genes, of which only 1,336 (15 %)
were present in two or more studies (Fig. 6, Additional
file 6). No candidate genes were found two or more times
in studies of all three phenotypes. Generally, overlap of
661 585

12

68

0

7 3

PE Labor

IUGR

Fig. 6 Overlap of differentially expressed genes across phenotypes.
Differentially expressed genes identified in two or more gene
expression studies categorized by phenotype were compared across
the most commonly studied (PE, labor, and IUGR). Out of 1,336
genes identified to be differentially expressed in at least two studies,
none were shared across all three phenotypes
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differentially expressed genes was more limited across
clinical phenotypes than across gestational tissues.

Overlap of differentially expressed genes identified across
PTB studies is limited
Studies of placenta, myometrium, and fetal membranes,
the three most commonly studied tissues, focused on a
total of 25 distinct phenotypes (Fig. 7a, Additional file 7).
The clinical phenotype studied, however, differed between
tissues, with PE dominating placental research (23/53
placental studies or 43 %), labor dominating myometrial
B
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tational tissue (fetal membranes) (Fig. 7b, Additional file 8).
To identify common differential gene expression
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Table 1 The most often recovered differentially expressed
genes in PE in placenta, labor in myometrium, and PPROM in
fetal membranes

PE in placenta

Entrez gene ID Official gene symbol # studies

3952 LEP 7

2321 FLT1 6

3623 INHA 6

3624 INHBA 6

2022 ENG 5

6647 SOD1 5

10148 EBI3 5

604 BCL6 4

1082 CGB 4

3972 LHB 4

10272 FSTL3 4

10544 PROCR 4

54210 TREM1 4

60676 PAPPA2 4

93659 CGB5 4

94115 CGB8 4

Labor in myometrium

Entrez gene ID Official gene symbol # studies

165 AEBP1 4

366 AQP9 4

861 RUNX1 4

2354 FOSB 4

3164 NR4A1 4

3576 IL8 4

3976 LIF 4

5054 SERPINE1 4
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expressed genes reported in studies of the same pheno-
type and tissue. The most studied phenotype-tissue
combinations were PE in placenta (n = 23), labor in myo-
metrium (n = 9), and PPROM in fetal membranes (n = 4)
(Fig. 7c, Table 1). Examination of PE in placenta studies
identified 16 genes that were present in 4 or more stud-
ies including LEP, a fat-regulating hormone commonly
shown to be differentially expressed in gestational tissues
of women with PE and HELLP Syndrome, and FLT1, a
growth factor known to be highly expressed in pre-
eclamptic placental trophoblast cells [21, 32, 44, 48, 53,
75, 80, 88, 94]. Examination of labor in myometrium
studies identified 15 genes that were present in 4 or more
studies including PTGS2, a cyclooxygenase involved in
inflammation and commonly upregulated in myometrium
during labor [18, 26, 40, 64, 66, 136, 139]. Finally, 6 genes
were present in 2 or more PPROM in fetal membranes
studies including IL8, a proinflammatory chemokine often
associated with PTB [36, 37, 55, 87, 92, 140].
To examine whether the sets of genes that were most

prevalent in each of the three tissue and phenotype pairs
(PE in placenta, labor in myometrium, and PPROM
in fetal membranes) disproportionally represented
particular functions, we examined whether any Gene
Ontology functional category was statistically signifi-
cantly enriched (p < 0.0001) in each of the three gene
sets (Additional file 9). Candidate genes identified in PE
in placenta studies were enriched for regulation of cell
death (GO:0010941) and apoptosis (GO:0042981), candi-
date genes identified in labor in myometrium were
enriched for wounding (GO:0009611) and inflammatory
response (GO:0006954), and candidate genes identified
in PPROM in fetal membranes were enriched for
immune system process (GO:0002376) and immune
response (GO:0006955).
5292 PIM1 4

5334 PLCL1 4

5743 PTGS2 4

6401 SELE 4

9123 SLC16A3 4

51129 ANGPTL4 4

117247 SLC16A10 4

PPROM in fetal membranes

Entrez gene ID Official gene symbol # studies

972 CD74 2

1117 CHI3L2 2

3576 IL8 2

7805 LAPTM5 2

6280 S100A9 2

23574 PRG1 2
Discussion
PTB is a complex, multifactorial syndrome with high preva-
lence worldwide, whose pathogenesis remains poorly
understood, especially for cases of early spontaneous labor.
To provide an overview as well as a synthesis of the current
landscape of PTB transcriptomics, we conducted an in-
depth systematic review of the literature as well as a meta-
analysis of 93 gene expression studies on a wide diversity of
gestational tissues and clinical phenotypes. Examination of
our results identifies two key findings. First, the corres-
pondence between PTB subtype prevalence and proportion
of transcriptomic research devoted to these subtypes is
weak. Second, the overlap between differentially expressed
genes identified in different studies is quite small, even on
studies aimed on the same phenotypes and tissues. Below,
we discuss the possible factors that underlie these two key
findings and their implications for research on PTB.



Table 2 Overlap of meta-analysis with previously identified PTB
biomarkers

Entrez gene ID Official gene symbol # studies

1392 CRH 11

6279 S100A8 10

3569 IL6 9

1082 CGB 9

2335 FN1 9

3553 IL1B 9

7124 TNF 6

5617 PRL 5

2810 SFN 4

6283 S100A12 4

2512 FTL 4

4318 MMP9 4

5443 POMC 2

174 AFP 1

4317 MMP8 0

308 ANXA5 0

3700 ITIH4 0

3558 IL2 0

6013 RLN1 0
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In general, transcriptomic studies on placental tissue
samples from women with preeclampsia dominate PTB
research. Furthermore, there are very few studies focus-
ing on sPTB, a subtype responsible for 45 % of all PTB
cases. Although genes commonly associated with PTB
clinical subtypes (i.e., LEP and FLT1) are identified in
many of the gene expression studies to be differentially
expressed, the overlap between the differentially
expressed genes identified across studies is generally very
limited. This is not surprising in comparisons between
tissues (Fig. 5) because these often involve examinations
of different clinical subtypes, although it does suggest
that there is little overlap in tissue-specific transcrip-
tional profiles of different clinical subtypes. Similarly, it
is not surprising that comparisons between clinical sub-
types do not show a high degree of overlap (Fig. 6) be-
cause these often involve examinations of different
tissues. Nevertheless, it should be noted that differen-
tially expressed genes with substantial overlap across
studies appear to be biologically meaningful. For ex-
ample, genes involved in hormone regulation (i.e., CGB,
CRH, INHA, and GH2), which have been previously
shown to be key in the maintenance of pregnancy, show
substantial overlap in preeclampsia studies. Genes in-
volved in inflammation (i.e., IL8), which have been previ-
ously shown to be dysregulated in PPROM and other
clinical PTB subtypes, are also identified to be differen-
tially expressed in multiple studies.
The observed minimal overlap between the differen-

tially expressed genes identified across studies focused
on the same tissue and clinical phenotype (Fig. 7) is pos-
sibly more serious. One potential explanation may be
the difficulty in obtaining appropriate controls important
in pregnancy research; comparing studies that differ with
respect to the presence of labor, gestational age, and fetal
sex is challenging, since all of these factors are thought
to influence the gene expression landscape in gestational
tissues. Even though matching of samples with respect
to all these factors is very challenging, the reporting of a
standard list of such factors as required metadata in
transcriptomic studies would facilitate further examin-
ation of their importance and likely influence on tran-
scriptomic profiles.
In addition to transcriptomics, several other systematic

reviews and meta-analyses have focused on identifying
biomarkers, usually proteins, that are associated with
PTB [141–143]. Overlapping 19 previously identified
common PTB biomarkers with the studies in our meta-
analysis indicates that most (12/19; 63 %) are replicated
in 4 or more studies (Table 2). Therefore, our compari-
son shows evidence of considerable overlap between
transcriptomic and proteomic studies in PTB. Further re-
search from both approaches is necessary, however, be-
cause our comparison also indicates that transcriptomics
and proteomics can target unique candidate genes and
proteins as well.
Furthermore, the recent publication of comprehensive

phenotyping tools necessitates the connection of evidence-
based phenotype knowledge with genomic data collection
in order to make more targeted conclusions [144]. It’s chal-
lenging to compare and contrast gene expression signatures
between distinct subtypes without knowing whether the
transcriptomes came from cases of sPTB due to maternal
stress, uterine distention, or another subtype. Therefore, a
greater focus needs to be placed on collecting the most
detailed meta-data available regarding sPTB diagnosis as
well as performing genome-wide studies of these newly
described sPTB subtypes.
Finally, it is important to note that different studies

follow different guidelines with respect to data avail-
ability. For example, some studies do not report the
full list of differentially expressed genes identified or
do not make them easily available for subsequent
analysis (e.g., reporting tables that contain differential
expression data on hundreds or thousands of genes in
PDF format), therefore limiting and biasing the data avail-
able for subsequent analyses. The publishing of the data
for all genes with differential expression above an explicit
significance threshold in an easily accessible format is
crucial in order to carefully analyze aggregated results and
draw meaningful conclusions.
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Conclusions
This study synthesizes all high-quality transcriptomic
studies on gestational tissues to examine the landscape of
PTB as well as to identify genes and genomic elements
associated with it. We found that highly prevalent PTB
subtypes, such as sPTB, are not well studied and that dif-
ferentially expressed genes identified in different studies
are often non-overlapping. Thus, the identification of the
genes whose dysregulation contributes to this complex
and multifactorial syndrome will require many more
large-scale, systematic studies aimed at understanding the
transcriptional profiles of these diverse clinical PTB
subtypes across gestational tissues and characterizing their
disease-relevant transcriptional differences.

Note Added in Proof
While this manuscript was in review, by studying the vari-
ation in the placental transcriptome of healthy humans,
Hughes and coworkers estimated that more than 90 % of
the observed transcriptomic variation is explained by vari-
ation within and between individuals [145]. These results
provide an alternative, yet complementary, explanation for
our finding that profiles of differentially expressed genes
were highly heterogeneous both between and within clin-
ical subtypes and tissues as well as between studies of the
same clinical subtype and tissue.

Methods
Search strategy
This systematic review and meta-analysis followed guide-
lines set by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (Additional files
10, 11 and 12) [146]. The electronic search was performed
on August 16, 2014 in PubMed with no restrictions to
identify all articles relating to differentially expressed or
methylated genes and microRNAs in human gestational
tissues. The search strategy was constructed based on
related MeSH terms:

“Pregnancy”[mh] AND “Humans”[mh] AND (“Gene
Expression Profiling”[mh] OR “Gene Expression
Regulation”[mh]) AND (“Placenta”[mh] OR
“Decidua”[mh] OR “Myometrium”[mh] OR “Cervix
Uteri”[mh] OR “Extraembryonic Membranes”[mh] OR
“Blood”[mh] OR “Plasma”[mh] OR “Umbilical
Cord”[mh])

Systematic review
We collected abstracts for all 2,361 studies identified
from this search and annotated eligibility based on 6
inclusion criteria:

1. Published in English
2. Full text available
3. Original research
4. Human gestational tissue samples
5. Genome-wide analysis
6. Candidate gene list assembled

134 studies met all 6 criteria and were included in the
systematic review. Furthermore, studies were excluded
when the study data was not accessible (the number of
gene candidates was reported but the list of candidate
genes was not), the study data was not reported (the
number of candidate genes was not reported and a list
of candidate genes was not provided), the data was un-
clear, there were no significant gene candidates, the
study was not genome-wide, the study was not human-
specific, the study was not relevant, the study was not
single-gene based (i.e., was focused on pathways or gene
sets), the study used data from proteomics, the study
was performed on cell line rather than in an in-vivo
tissue, the study’s supplement was not available, or when
the study’s tissue was collected before the third trimester
(Additional file 12).

Meta-analysis
Studies were included in our meta-analysis if they met
an additional 3 inclusion criteria:

1. Studied differential gene expression
2. Provided candidate gene list
3. DAVID ID conversion successful

116 references met all inclusion criteria and, due to
multiple comparisons or analyses in 14 of these refer-
ences, a total of 134 distinct studies were summarized
(Additional file 1). Of the 134 studies included in our
systematic literature review, 93 gene expression studies
met these criteria and were further analyzed. All differ-
entially expressed genes reported in these studies were
first extracted and then converted to Entrez ID format
using the DAVID online tool, selecting the smallest
Entrez ID number if multiple IDs mapped to single
genes. We extracted all reported significantly differen-
tially expressed genes based on each study’s significance
threshold for differential expression. Overlap was deter-
mined simply by the presence of the same gene in the
gene lists from different studies. DAVID was used to
assay functional enrichment according to Gene Ontology
categories. All analyses were performed using Python
and visualizations were performed using ggplot2 and
Circos [147, 148].

Additional files

Additional file 1: Summary of studies in systematic review.

http://www.biomedcentral.com/content/supplementary/s12920-015-0099-8-s1.xlsx
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Additional file 2: All reported candidate genomic elements.

Additional file 3: Phenotype definitions.

Additional file 4: Duplicated genes in well-studied gestational
tissues. Genes in 2 or more placenta studies or 2 or more myometrium
studies or 2 or more fetal membranes studies.

Additional file 5: Well-replicated genes in well-studied gestational
tissues. 22 genes in 2 or more placenta studies and 2 or more
myometrium studies and 2 or more fetal membranes studies.

Additional file 6: Duplicated genes in well-studied clinical phenotypes.
Genes in 2 or more PE studies or 2 or more labor studies or 2 or more
IUGR studies.

Additional file 7: Well-replicated genes in placenta, myometrium,
and fetal membranes. Genes in 5 or more placenta studies or 5 or
more myometrium studies or 5 or more fetal membranes studies.

Additional file 8: Well-replicated genes in PE, labor, and PPROM.
Genes in 5 or more PE studies or 5 or more labor studies or 2 or more
PPROM studies.

Additional file 9: GO enrichment. Enriched GO functional categories
for replicated genes in PE in placenta, labor in myometrium, and PPROM
in fetal membranes.

Additional file 10: PRISMA checklist.

Additional file 11: PRISMA flow chart.

Additional file 12: Excluded studies. All studies excluded from
systematic review.
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