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Abstract—Different from existing range-free algorithms in 

wireless sensor networks (WSN), a cooperative localization 

algorithm based on coverage optimization of actors 

(CLCOA) for wireless sensor and actor networks (WSAN) is 

proposed. It uses mobile actors instead of anchors in WSN. 

Firstly, the area of the unknown node is determined through 

the movement of positioning actors. Then this area 

decreases through iteration. When localization accuracy is 

satisfied, the centroid of this area is calculated and treated 

as the coordinate of the unknown node. Free actors adjust 

their positions through virtual force while locating actors 

work. Accordingly, actors’ coverage is optimized. Via 

simulation, it is proven that CLCOA has high locating 

accuracy with RSSI error and GPS error, and the 

introduction of virtual force improves actors’ coverage and 

locating speed. 

 

Index Terms—WSN; WSAN; Mobile Actors; Range-Free 

Localization; Virtual Force 

 

I. INTRODUCTION 

The development of WSAN is on the basis of WSN. 

WSAN consists of a group of sensor nodes and actor 

nodes, sensor nodes are used to acquire information from 

environment, and actors are responsible to change 

environment [1]. Different from WSN, WSAN can 

change the physical world. Since WSAN is proposed, 

many research points in this field have received great 

attention among researchers, including localization 

problem. Acquiring position imformation of sensor nodes 

is very important for many WSAN applications, because 

the sensed data without position information of sensor 

nodes is meaningless [2]. For instance, sensor nodes can 

get the motion area of hostile vehicle to make precise 

battle strategy in battlefield. Moreover, it assists in the 

management and operation of network. Currently, 

classification methods of WSN localization algorithms 

mainly include: range-based localization and range-free 

localization, distributed localization and centralized 

localization, absolute localization and relative 

localization, anchor-based localization and anchor-free 

localization. Because of the introduced actors, existing 

WSN localization algorithms cannot be used directly in 

WSAN. 

In this paper, we propose a cooperative localization 

algorithm based on coverage optimization of actors for 

wireless sensor and actor network (CLCOA). Positioning 

actors form a square area to localize sensor node while 

free actors adjust their positions by virtual force, so actors 

are well distributed and coverage is optimized. It 

guarantees that network events can be disposed in time, 

thus improving task execution efficiency of the network. 

CLCOA uses a few mobile actors instead of anchors in 

WSN to save the deployment cost, and this makes free 

actors well distributed by combining virtual force model. 

The remainder of the paper is organized as follows: 

Section 2 describes the related work. Section 3 presents 

CLCOA localization algorithm in detail. Simulation and 

analysis are discussed in Section 4. Finally, Section 5 

gives the conclusions. 

II. RELATED WORK 

Anchors are generally used to assist in localizing 

sensor nodes in WSN, which are aware of their location 

through GPS or manual deployment. Most commonly, 

according to whether distance is measured, WSN 

localization algorithms can be classified into two 

categories: range-based and range-free. Received signal 

strength indication (RSSI) [3], time of arrival (TOA) [3] 

and time difference of arrival (TDOA) [3] are typical 

measurement techniques. The majority of them have high 

demand for hardware, like installing special antenna for 

nodes, thus not fitting for large-scale network. Limited 

transmission distance of signal and non line-of-sight 

conditions might affect the distance estimates. In addition, 

these techniques use varieties of methods to reduce 

localization error, which leads to a large number of 

computing and communication overheads [4]. Range-free 

solutions [3-5] include centroid algorithm, approximate 

point in triangulation test (APIT), convex position 

estimation, and distance vector hop (DV-Hop). They 

require no additional hardware and have low costs. But 

the accuracy is relatively low, and their performance 

depends on the network topology [6]. 

Since WSN localization algorithms can’t be simply 

transplanted to WSAN, localization in WSAN has 

become a key problem to solve. Some progress has been 

made in research of localization in WSAN so far. An 
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efficient cooperative localization scheme (ECLS), which 

is an event-driven method, is proposed by Han P et.al [7]. 

It only localizes the position of the node detecting the 

wanted event and uses actors with unconstrained resource 

to assist in localizing sensor nodes. Therefore, energy 

consumption of the system can be effectively reduced. It 

is theoretically simple and uses RSSI to measure distance. 

But there are also some inevitable shortages for RSSI, 

like unstable signal, low accuracy and so on. The 

algorithm proposed by Giacomo G [8] is the first 

semi-distributed protocol featuring asynchronous 

sleep/awake schedules. It organizes the sensors near each 

actor by means of a discrete polar coordinate system. 

Each sensor is localized when both the corona and sector 

coordinates are acquired. Based on range-free method, 

the algorithm belongs to the class of coarse-grained 

localization protocols, so the accuracy cannot be 

guaranteed. Mustafa I A et.al [9] presents a solution for 

mobile sensor nodes with the goal of monitoring the 

Amazon River. Using a multi-hop approach, it is scalable 

and is fit for the large-scale network. The drawback is the 

initial weight value of sensor has a great effect on 

accuracy, and localization accuray will decrease as the 

value goes up. In order to localize the mobile sensor 

nodes relative to the actors, a novel Timing-based Mobile 

Sensor Localization (TMSL) algorithm is introduced [10]. 

It uses TOA to estimate distance. The most distinguished 

is that it requires no time synchronization among the 

sensor nodes or with the actors. In TMSL, propagation 

time of the beacons is computed via a special time model. 

However, excessively detailed time division leads to high 

computation complexity. An event driven localization 

scheme based on the RSSI range measuring for dynamic 

WSAN is proposed [11], and it is just similar to RSSI. 

But the accuracy of RSSI can’t meet high demand in 

WSAN. So it can be concluded that original RSSI is not 

suitable for WSAN localization. Localization techniques 

based on semidefinite programming are researched in 

[12]. Novel algorithms are respectively proposed in 

range-based and range-free mode. Here, locating 

problems are translated into convex optimization, and 

many mathematic formulas are used to compute. 

Moreover, via simulation experiments, they are proven to 

have high locating accuracy and computing complexity. 

ADAPTPLACDVDIST [13] is proposed for localizing 

nodes in NLOS environment, which is a class of DV-Hop. 

It moves the localizers in each of the multi-hop chains, 

thus minimizing the multi-hop distance between the 

references and the node. The drawback is that the 

solution requires large number of localizers and its 

localization accuracy depends on the number of localizers 

in each chains.  

Existing WSAN localization algorithms may cause 

uneven distribution of actors during localization. The 

density of actors may be too close or sparse in local area, 

so actors may not react to the reported event in other 

areas in time. These problems can be well solved by 

virtual force. Initially, virtual force is used to make robots 

avoid barriers, and then used in distribution optimization 

of network [14]. At present, virtual force model is 

introduced to the research on nodes localization and 

coverage in WSN. In [15], a distributed actor deployment 

algorithm for maximum connected coverage (DA
2
MC) in 

WSAN is proposed. This paper proves that regular six 

polygon can be used to achieve maximum coverage with 

least waste. DA
2
MC moves actor nodes by virtual 

repelling force to extend their coverage while maintaining 

sensor-actor connectivity. In [14], a multi-hops 

localization algorithm based on virtual force for WSN is 

proposed. The number of beacon messages accepted by 

unknown node is used as a parameter of the force 

calculation. By optimizing the network distribution, it is 

more reasonable to calculate and select the correction 

value. A coverage algorithm based on virtual grids area 

density is proposed in [16], and particular swarm 

optimization (PSO) localization algorithm is further 

improved to realize effective coverage of sensor nodes 

while improving the localization accuracy. 

To solve the problems above, CLCOA is proposed to 

realize localization in WSAN. It uses a few mobile actors 

instead of anchors, and overcomes the shortcomings of 

range-free location algrithoms in WSN, which seriously 

depend on density of anchors. For example, it avoids 

erroneous judgments in APIT, and is better than DV-Hop 

in the respect of computing and communication. As to [7] 

and [11], they just make improvements or combine other 

algorithms based on RSSI, however, the thought of area 

iterative refinement in CLCOA are obviously better in 

localization accuracy. The algorithm in [9] is similar to 

DV-Hop, and static actors make its applications limited. 

Instead, CLCOA uses mobile actors. In addition, CLCOA 

refers to the thought of virtual force in [14-16], during 

locating sensor nodes, it makes actors well distributed 

and optimizes coverage. Accordingly, localization time 

and overhead are reduced. 

III. DEFINITION OF VIRTUAL FORCE 

We assume that sensor nodes are static and 

resource-limited. They are responsible to monitor the 

network area and report the event to actor nodes. Actor 

nodes, which are mobile and powerful, take related action 

according to the reported data. Actor nodes are also 

equipped with GPS and aware of their positions at any 

time. In addition, actor nodes are classified into two 

categories: positioning actors and free actors.  

A. Virtual Force Model 

Actor nodes can be classified into two categories 

according to whether or not they take part in localizing 

the sensor node: 

 ap: positioning actors 

 af: free actors 

Since ap take part in localizing the sensor node, their 

virtual force are ignored. We assume that virtual force 

only acts on af from ap and af. The force shows up as 

vectorial repelling force or attractive force, and the 

magnitude of force is related to the types of nodes and the 

distance between them. 

So if node j exerts a force on node i, ijF  can be 

confirmed by formula (1): 
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 (1) 

In the above formula, kr_p, kr_f, ka_p and ka_f are virtual 

force coefficients which conform to kr_p>kr_f and ka_p>ka_f, 

dij is the distance between the two nodes, rth is distance 

threshold, and rc is the one hop communication radius. If 

dij≤rth, ijF  shows up as the repelling force. And if 

rth<dij≤rc, ijF  shows up as the attractive force. 

Otherwise, 
ijF =0. 

The calculated force 
iF  is the vectorial addition of 

these virtual forces, and can be expressed as formula (2): 

 i ij

i j

F F


  (2) 

B. Adjustment of Node Position 

Each node moves to a new position according to iF , 

the new coordinates can be computed as follows: 
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In the above formulas, Fx and Fy are components of iF  

in X-axis and Y-axis, Smax is the maximum range that 

the actor can move at every time, Fth is virtual force 

threshold, and the actor will not move if iF <Fth. 

IV. PROPOSED SCHEME 

In this part, a cooperative localization algorithm based 

on coverage optimization of actors for WSAN is 

proposed. Fig. 1 presents the main process of CLCOA. 

Detailed steps of this scheme will be discussed as 

follows. 

A. Design of CLCOA 

1) Classification of Actor Nodes 

The sensor node S starts to send a request, and then 

selects 5 actor nodes which firstly reply to take part in 

localizing. These actor nodes are set to ap, ap={A0, A1, A2, 

A3, A4}, and other actors are set to af. Each actor node 

keeps a neighbor table to record the coordinates of its 

neighbor nodes. 

2) Formation of Square Area 

 

Figure 1.  Flowchart of CLCOA 

ap form a square area through movement, which makes 

sensor S in this square area. The process is: actor A0 

firstly moves close to sensor S, and in the course of 

moving, it discontinuously sends RF signal to sensor S. 

Sensor S computes received signal strength [17-18], and 

it sends a feedback signal to actor A0 when signal strength 

meets the threshold a, which is to say, the distance 

between two nodes is very small, and 

RSSI(das)≥a>RSSI(Rs). When actor A0 receives the signal, 

it stops moving. 

Actor A0 stops and broadcasts its position information 

(X0, Y0). Actor A1, A2, A3 and A4 adjust their positions 

according to (X0, Y0) and broadcast their current 

coordinates, thus forming a square area as shown in Fig.2. 

Moreover, expecting coordinates of these four actors can 

be computed as formulas (5-8). 

Sensor node S starts a request for localization 

Select five actors as ap, other actors are set to af 

Each actor node establishes a neighbor table 

ap form a square area 

through movement 

af compute virtual force and 

move to a new position 

Decrease the square area 

The square is small enough 

af compute virtual force again 

and readjust their positions 

Calculate the centroid of the square as coordinates of S 

ap degrade to af; all actors compute virtual force 

and adjust their positions 

Stop 
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Figure 2.  Positional relationship of ap 

 
11 1 0 0( , ) ( , )A as asX Y X d Y d    (5) 

 
22 2 0 0( , ) ( , )A as asX Y X d Y d    (6) 

 
33 3 0 0( , ) ( , )A as asX Y X d Y d     (7) 

 
44 4 0 0( , ) ( , )A as asX Y X d Y d    (8) 

3) Redistribution of Free Actors 

Through the above steps, ap forms a square which the 

length of a side is 2das, ensuring that sensor S must be in 

it. At the same time, af compute virtual force according to 

steps (1-2) and move to a new position. So actors in the 

network are redeployed. 

4) Decreasing Square Area Through Iteration 

Sensor S further judges the subregion. The method is 

that sensor S receives RF signals from actor A1, A2, A3 

and A4, and records these signals to compare. The rule is 

as follows: 

If RSSI1 is the maximum value and RSSI3 is the 

minimum value, then sensor S is in region 1 

If RSSI2 is the maximum value and RSSI4 is the 

minimum value, then sensor S is in region 2 

If RSSI3 is the maximum value and RSSI1 is the 

minimum value, then sensor S is in region 3 

If RSSI4 is the maximum value and RSSI2 is the 

minimum value, then sensor S is in region 4 

If sensor S is on the boundary, signal strength from the 

two actors in two sides is equal in theory. At this moment, 

the judgement of subregion has no effect on localization, 

so it can be processed randomly. 

After the subregion is confirmed, sensor S sends RF 

signal to A0. For example, sensor S confirms that it is in 

region 2, and it sends a signal to A0. After A0 receives the 

signal, it computes the center coordinate of region 2. 

Then, it moves to this position and broadcasts its current 

coordinates. After receiving coordinates information from 

A0, actor A1, A2, A3 and A4 compute new coordinates 

according to formulas (9-13), adjust their positions and 

broadcast current coordinates. At this moment, ap move 

to new position, and af compute virtual force again and 

readjust their positions.  
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In the above formulas, (xAi, yAi),i=0,1,2,3,4 is the expecting 

coordinates of actor Ai, (Xi, Yi),i=0,1,2,3,4 is the current 

coordinate of actor Ai, di is the length of a side of the 

current square, and i is the current number of iteration. 

By repeating the above steps to judge the subregion of 

sensor S, the square area can be reduced to a small range 

through iteration. When the square is small enough, the 

iteration stops and the centroid of the square is calculated 

and treated as coordinates of sensor S. 
5) Coverage of Actors Based on Virtual Force 

After localization is finished, ap degrade to af. All 

actors compute virtual force again according to formulas 

(1-2) and adjust their positions. It makes actors well 

distributed in the network. 

B. Implementation Mechanism 

In reality, errors caused by actors’ moving will affect 

the accuracy of CLCOA. To solve this problem, slope 

correction mechanism and position adjustment 

mechanism are proposed to optimize actors’ moving. 

(1) Slope correction mechanism 

During localization, each actor always needs to move 

from its current coordinate to the expecting coordinate. 

Assume that the expecting coordinate is (Xn, Yn), the 

current coordinate is (X0, Y0), we can obtain that the slope 
kn=(Yn-Y0)/(Xn-X0), and the distance 

2 2

0 0( ) ( )n nD X X Y Y    . The actor just need to 

move D along kn. However, errors of movement may lead 

to difference between the real coordinate and the 

expecting coordinate, which is difficult to avoid. 

Therefore, CLCOA periodically corrects the slope in the 

1148 JOURNAL OF NETWORKS, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

app:ds:%20%20centroid


course of movement. That is to say, the slope is 

recalculated once the actor moves some distance. So if 

error exists, the slope is corrected. Next, slope correction 

is discussed in detail. 

The number of correction is computed as 

2 2

0 0( ( ) ( ) )n nNum k Y Y X X b      , where both k 

and b are constants, in which k is a coefficient related to 

the distance and b is the minimum distance to adjust the 

slope. Moreover, both of them should be set according to 

the real condition. Num should be rounded down if it is a 

decimal. 

Let (Xi, Yi) be the coordinate of the actor after the ith 

move. Di is the distance that the actor moves at the ith 

time, and it can be computed as 

2 2

1 1( ) ( ) / ( ( 1))i n i n iD X X Y Y Num i       , 

1,2...i Num . Let ki be the slope after the ith move, and 

ki can be computed as 
0 0( ) / ( )i i ik Y Y X X   . The 

actor corrects ki after it moves Di.   is an angle that 

represents the difference between ki and kn, and it can be 

expressed as arctan arctani nk k   . If    , in 

which   is the threshold of angle, ki must be corrected 

or else the actor will go on moving along ki. 

(2) Position adjustment mechanism 

After the actor moves to (Xn, Yn), position adjustment 

is started to adjust coordinate of the actor. Here, we limit 

the error range to a radius of error R, as shown in Fig.3. If 

only the real coordinate of the actor is within the radius of 

(Xn, Yn), the error can be ignored, and then the actor stops 

moving. 

radius of error  R

expecting coordinate 

(Xn,Yn)

position after 

move

position before 

move  
Figure 3.  Illustration of radius of error 

V. SIMULATION AND ANALYSIS 

In this section, simulation experiments implemented in 

Java are used to evaluate the performance of CLCOA. 

The environment is as follows: Intel Core 2 Duo 

processor, 1GB of RAM, Windows XP, and Eclipse as 

compiler. The scenario is in a field of 500m×500m and 

200 sensors and several actors are randomly deployed. 

Sensors are static and communication range is 20m. 

Actors are mobile and the speed is 10m/s. 

Communication range of actors are initially set to 50m. 

Four simulation experiments are conducted to verify 

the algorithm validity. Experiment 1 evaluates the impact 

of RSSI threshold a, number of actors Na, communication 

range of actors Ra, virtual force threshold Fth and virtual 

force coefficient kr_p on CLCOA. As the four virtual force 

coefficients are related and only kr_p is considered here, 

experiment 2 verifies the impact of virtual force model 

introduced on performance. Experiment 3 compares the 

performance of CLCOA with centroid algorithm [5]. 

Experiment 4 compares the performance of CLCOA with 

the localizing method of single actor. The method of 

single actor means the data acquired from GPS receiver 

on the actor, which is close to the sensor, is treated as the 

coordinate of the sensor. The results are the average of 

multiple experiments. 

A. Performance Evaluation Index 

We design four evaluation indexes to evaluate the 

performance of CLCOA.  

1) Average localization error 

Average localization error [19] can be expressed as 

follow: 

 1

( ) ( )
n

i i i i

i

x xr y yr

n
 

  




 (14) 

where ( , )i ixr yr  is the real coordinate of the ith sensor, 

( , )i ix y  is the coordinate calculated by CLCOA of the 

ith sensor, and n is the number of sensors. 
2) Average Localization Time 

Average localization time can be expressed as: 

 
_t network

t
n

  (15) 

where t_network is the total runtime of the network, n is 

the number of sensors that finish localization within 

t_network. Localization time includes time of movement, 

transmission time and processing time.  
3) Average Localization Overhead 

Average localization overhead can be expressed as: 

 
_o total

o
n

  (16) 

where o_total is the total overhead that sensors cost to 

finish localization within t_network, and n is the number 

of sensors. Here, we count the number of packets to 

represent the overhead.  

4) Coverage of Actors 

Coverage of actors can be expressed as: 

 1

n

i

i

A

c
A

 [14] (17) 

where Ai is the coverage of the ith actor and A is the 

network area.  

B. Simulation Experiment 1 

The impact of a, Na and other parameters on the 

performance of CLCOA are analyzed in this part. If not 

mentioned, the parameters take default values in the 

following experiments as below: a=-70dBm, Na=14, 

Ra=50m, Fth=0.01, kr_p=0.5, kr_f=0.8×kr_p, ka_p=0.02, 

ka_f=0.016. 

1)  The Impact of a 
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Fig. 4-Fig. 7 show the impact of a on ε, t, o and c.  
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Figure 4.  Impact of a on average localization error 
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Figure 5.  Impact of a on average localization time 
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Figure 6.  Impact of a on average localization overhead 
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Figure 7.  Impact of a on coverage of actors 

It can be observed that   decreases as the value of a 

increases, and the slope of curve gradually decreases in 

overall, which means the speed of decreasing slows down. 

When a equals to 68dBm, ε is about 2.252m. There is a 

growing tendency for t and o in overall, and this means 

decrease of ε causes growth of t and o. When a equals to 

-68dBm, t is 676s and o is 1248 packets. c changes little 

and fluctuates between 21% and 26%. 

With the increasing of a, actor A0 needs to moves more 

close to sensor S, which leads to growing time and 

overhead, and the initial square is smaller, so ε decreases. 

2) The impact of Na 
Fig. 8-Fig. 11 show the impact of Na on ε, t, o and c.  
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Figure 8.  Impact of Na on average localization error 
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Figure 9.  Impact of Na on average localization time 

10 12 14 16 18 20
600

800

1000

1200

1400

1600

1800

2000

2200

Number of actors

A
v
er

ag
e 

lo
ca

li
za

ti
o
n
 o

v
er

h
ea

d

CLCOA

 

Figure 10.  Impact of Na on average localization overhead 

It can be observed that ε changes little as the value of 

Na increases and fluctuates between 1.9m and 2.7m. 

When Na equals to 18, ε is about 1.920m. There is a 

declining tendency for t and o in overall. When Na equals 

to 20, t is 278s and o is 1003 packets. c increases and the 

slope starts to decrease when Na is more than 14, which 

means the increasing speed of c slows down.  
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Figure 11.  Impact of Na on coverage of actors 

With the increasing of Na, the number of selectable 

actors to localize increases, which realizes concurrently 

localizing for multiple sensors. So t and o decreases. 
3) The Impact of Ra 
Fig. 12-Fig. 15 show the impact of Ra on ε, t, o and c. 
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Figure 12.  Impact of Ra on average localization error 
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Figure 13.  Impact of Ra on average localization time 
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Figure 14.  Impact of Ra on average localization overhead 
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Figure 15.  Impact of Ra on coverage of actors 

It can be observed that ε varies within 1m as the value 

of Ra increases. There is a declining tendency for t and o 

in overall. When Ra equals to 100m, t is 674s and o is 

1436 packets. c obviously increases and when Ra equals 

to 100m, c is 63.85%. 

As Ra increases, packets are less forwarded, so t and o 

are reduced.  
4) The Impact of Fth 

Fig. 16-Fig. 19 show the impact of Fth on ε, t, o and c. 

It can be observed that ε and c change little as the 

value of Fth increases. There is a growing tendency for t 

and o. When Fth equals to 0.01, t is 794s and o is 1522 

packets. 

As Fth increases, actors are less apt to move, which 

more easily leads to close distribution of actors in local. 

At this moment, if a sensor in sparse area starts a request, 

it will cost more time and overhead for actors to move 

close to the sensor and localizing it.  
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Figure 16.  Impact of Fth on average localization error 
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Figure 17.  Impact of Fth on average localization time 
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Figure 18.  Impact of Fth on average localization overhead 
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Figure 19.  Impact of Fth on coverage of actors 

5) The Impact of kr_p 

Fig. 20-Fig. 23 show the impact of kr_p on ε, t, o and c. 
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Figure 20.  Impact of kr_p on average localization error 
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Figure 21.  Impact of kr_p on average localization time 

It can be observed that ε and c change little as the 

value of kr_p increases and both of them fluctuate within 

certain range. When kr_p equals to 0.5, ε is 2.398m and c 

is 22.89%. There is a declining tendency for t and o. 

When kr_p is more than 0.7, t and o take on slightly 

inverse increasing. 

As kr_p increases, the computed virtual force increases, 

which is benefit to distribution of actors. So t and o are 

reduced. However, fixed Fth and constrains the moving of 

actors, so t and o will not shrink all the way back.  
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Figure 22.  Impact of kr_p on average localization overhead 
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Figure 23.  Impact of kr_p on coverage of actors 

TABLE I.  PERFORMANCE EVALUATION INDEX BEFORE VIRTUAL 

FORCE MODEL IS INTRODUCED 

localization 

error 

localization 

time 

localization 

overhead  

coverage of 

actors 

1.720m 377s 478 17.95% 
0.566m 628s 703 11.59% 

0.640m 110s 240 11.53% 

1.204m 260s 407 13.27% 

3.314m 635s 741 9.56% 

0.141m 278s 397 11.45% 

0.510m 6186s 6299 9.15% 

4.205m 408s 513 8.05% 

2.433m 693s 800 11.95% 

0.849m 1890s 1983 15.22% 

0.447m 368s 501 12.91% 

3.981m 1210s 2100 11.71% 

4.909m 440s 564 15.52% 

2.550m 805s 921 17.77% 

6.004m 118s 218 12.33% 

10.842m 705s 762 14.19% 

3.114m 63s 178 14.23% 

2.195m 1937s 4018 14.42% 

4.610m 905s 936 11.24% 

3.106m 1332s 1356 11.76% 
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TABLE II.  PERFORMANCE EVALUATION INDEX AFTER VIRTUAL 

FORCE IS INTRODUCED 

localization 

error 

localization 

time 

localization 

overhead 

coverage of 

actors  

2.440m 316s 850 22.90% 

0.412m 408s 1114 24.52% 

1.676m 418s 1930 22.71% 

0.806m 105s 448 25.22% 

1.007m 831s 1800 22.80% 

0.583m 1265s 2278 27.95% 

2.553m 329s 936 25.61% 

0.943m 271s 803 25.57% 

2.923m 1630s 3116 25.61% 

1.131m 307s 1000 24.16% 

0.632m 517s 1336 17.80% 

0.618m 555s 1244 22.80% 

1.246m 109s 536 24.65% 

4.642m 303s 765 17.59% 

4.070m 89s 454 23.61% 

1.600m 464s 1136 23.36% 

1.000m 233s 611 18.43% 

6.080m 669s 1558 23.12% 

2.518m 2038s 3910 24.62% 

5.073m 470s 1127 23.42% 

TABLE III.  PERFORMANCE COMPARISON BEFORE AND AFTER 

VIRTUAL FORCE MODEL IS INTRODUCED 

index before after  

ε 

t 
o 

c 

2.867 m 

967s 
1205 

12.79% 

2.097 m 

566 s 
1347 

23.32% 

C. Simulation Experiment 2 

Experiment 2 compares the performance before and 

after virtual force model is introduced. Results of 20 

times experiments under the two conditions are provided 

in both Table I and Table II. And statistic data calculated 

on this basis are provided in Table III. Table I and Table 

II show that variation of localization error obviously 

decreases after virtual force is introduced, however, 

maximum error reaches 10.842m without virtual force.  

It can be observed from Table III that after virtual 

force is introduced, ε decreases from 2.867m to 2.097m, 

and t decreases from 967s to 566s. o increases slightly. c 

obviously increases and is about twice before virtual 

force is introduced. 

Since virtual force is introduced, free actors compute 

virtual force and adjust their positions after each iteration. 

It makes all actors well distributed and improves actors’ 

coverage. Meanwhile, the decrease of distance between 

actors effectively reduces errors caused by moving, thus 

decreasing localization error and time. Each actor keeps a 

neighbor table to compute virtual force, which increases 

localization overhead. 

D. Simulation Experiment 3 

Experiment 3 compares the performance of CLCOA 

with centroid algorithm. Centroid algorithm is a 

representative of range-free technology. Here, we have 

made some changes to centroid algorithm to make it 

adapt to our scenario. Values of parameters in 

experiments are set as below: Na=14, Ra=50m. 
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Figure 24.  Average localization error 
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Figure 25.  Average localization time 
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Figure 26.  Average localization overhead 
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Figure 27.  Coverage of actors 

Fig. 24-Fig. 27 show comparison of CLCOA and 

centroid algorithm in ε, t, o and c. 
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As shown in Fig. 24, ε of CLCOA is much less than 

that of centroid algorithm. Because in CLCOA the area of 

the unknown node decreases through iteration, the 

calculated centroid is more accurate. 

It can be observed from Fig. 25 and Fig. 26 that both t 

and o of centroid algotithm are more than that of CLCOA. 

When a=-78dBm, the values of t in these two algorithms 

are 1802s and 292s respectively. In CLCOA, just one 

actor directly communicates with the unknown node 

during movement, thus the overhead is less. 

It can be obtained from Fig. 27 that coverage of actors 

in CLCOA is greater compared with centroid algorithm. 

CLCOA introduces virtual force to make actors 

well-distributed, so the coverage is optimized.  

E. Simulation experiment 4 

Experiment 4 compares the performance of CLCOA 

with the localizing method of single actor. Results of 20 

times experiments with the two methods are provided in 

Table IV-Table VI. Here, only two indexes (localization 

error and time) are considered. Two group comparison 

data calculated on this basis are provided in Table VII 

and Table VIII. 

TABLE IV.  PERFORMANCE EVALUATION INDEX OF CLCOA 

localization error localization time  

2.440m 316s  

0.412m 408s  

1.676m 418s  

0.806m 105s  

1.007m 831s  

0.583m 1265s  

2.553m 329s  

0.943m 271s  

2.923m 1630s  

1.131m  307s 

0.632m 517s  

0.618m 555s  

1.246m 109s  

4.642m 303s  

4.070m 89s  

1.600m 464s  

1.000m 233s  

6.080m 669s  

2.518m 2038s  

5.073m 470s  

Table V and Table VI show that the localizing method 

of single actor is very unstable and both localization error 

and localization time fluctuate greatly. Maximum 

localization time is 58006s in Table V, whereas the worst 

case in Table VI is 18.720m. 

Statistics on the data in Table IV and Table V are 

provided in Table VII. It can be observed that under 

approximate condition of ε, t of CLCOA is 536s, whereas 

t is 10495s in the localizing method of single actor. 

Statistics on the data in Table IV and Table VI are 

provided in Table VIII. It can be observed that under 

approximate condition of t, ε of the two methods are 

2.009m and 8.711m respectively. 

The localizing method of single actor approximately 

judges distance by RSSI. The signal is unstable and easily 

affected by the environment. So under approximate 

condition of t, ε is greater than it in CLCOA. Moreover, 

the single actor adjusts direction and distance through 

signal strength to move close to the sensor. So under 

approximate condition of ε, t of this method is much 

more than it in CLCOA. 

TABLE V.  PERFORMANCE EVALUATION INDEX OF THE 

LOCALIZING METHOD OF SINGLE ACTOR-1 (A=-45DBM) 

localization error localization time 

2.061m 3599s 

1.414m 3426s 

3.780m 50914s 

1.749m 11475s 

1.082m 181s 

2.332m 58006s 

1.664m 3792s 

1.789m 15576s 

2.563m 3505s 

1.769m 15440s 

2.563m 2410s 

2.508m 5823s 

2.500m 1246s 

1.860m 3140s 

3.821m 7436s 

1.985m 7619s 

3.590m 5457s 

1.836m 2640s 

1.546m 5111s 

1.700m 3120s 

TABLE VI.  PERFORMANCE EVALUATION INDEX OF THE 

LOCALIZING METHOD OF SINGLE ACTOR-2 (A=-45DBM) 

localization time localization error  

153s 0.906m 

167s 7.140m 

23s  18.720m 

3556s 5.070m 

319s 12.985m 

344s 10.730m 

63s 2.631m 

215s 8.832m 

2525s 15.232m 

44s 12.687m 

199s 6.768m 

758s 8.223m 

324s 6.546m 

549s 9.402m 

121s 7.034m 

386s 12.907m 

64s 7.654m 

268s 5.941m 

106s 5.771m 

586s 9.044m  

TABLE VII.  COMPARISON OF T UNDER APPROXIMATE CONDITION OF 

Ε 

index CLCOA the localizing method of single actor  

ε 2.009 m 2.206m 

t 536s 10495s  

TABLE VIII.  COMPARISON OF Ε UNDER APPROXIMATE CONDITION 

OF T 

index CLCOA the localizing method of single actor  

t 536s 538s 

ε 2.009m 8.711m  

F. Summary 

In summary, a has the greatest impact on ε, ε decreases 

as the value of a increases, and other parameters have 

little impact on ε. Both Ra and Na have a great impact on c, 
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and the former is more obvious. c increases from 22.89% 

to 63.85% as the value of Ra increases from 50m to 100m. 

All parameters have impact on t and o to varying degrees. 

t and o increase as the value of a and Fth respectively 

increases, whereas t and o decrease as the value of Na, Ra 

and kr_p. In addition, the introduced virtual force model 

makes ε and t decrease, but makes c and o increase. 

In addition, compared with the localizing method of 

single actor and centroid algorithm, performance of 

CLCOA is better whether in localization error or time. 

VI. CONCLUSION 

Based on realizing localization in WSAN, the 

proposed CLCOA further optimizes distribution of actors 

in the network through introduced virtual force model. In 

range-free mode, CLCOA uses mobile actors instead of 

anchors in WSN to save deployment cost. In addition, 

compared with complex measurement techniques, 

CLCOA is simple and requires no additional hardware. 

The introduction of virtual force makes free actors well 

distributed while localizing. It guarantees that network 

events can be disposed in time, thus improving task 

execution efficiency of the network. Via simulations, it is 

proven that the performance of CLCOA has improved 

after virtual force model is introduced, and compared 

with the localizing method of single actor and centroid 

algorithm, CLCOA has better locating performance. Our 

future work is research on range-based localization in 

WSAN, and combines TOA with time synchronization to 

realize time-based sensor localization. 
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