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Abstract—A target-oriented visual saliency detection model 

for optical satellite images is proposed in this paper. This 

model simulates the structure of the human vision system 

and provides a feasible way to integrate top-down and 

bottom-up mechanism in visual saliency detection. Firstly, 

low-level visual features are extracted to generate a 

low-level visual saliency map. After that, an attention shift 

and selection process is conducted on the low-level saliency 

map to find the current attention region. Lastly, the original 

version of hierarchical temporal memory (HTM) model is 

optimized to calculate the target probability of the attention 

region. The probability is then fed back to the low-level 

saliency map in order to obtain the final target-oriented 

high-level saliency map. The experiment for detecting 

harbor targets was performed on the real optical satellite 

images. Experimental results demonstrate that, compared 

with the purely bottom-up saliency model and the VOCUS 

top-down saliency model, our model significantly improves 

the detection accuracy. 

 

Index Terms—Visual Salience; Target-Oriented; 

Hierarchical Temporal Memory 

 

I. INTRODUCTION 

With the development of remote sensing technology, 

optical satellite images have been widely used for target 

detection, such as harbors and airports. In recent years, 

high spatial resolution satellite images provide more 

details for shape, texture and context [1]. However, data 

explosion for high resolution remote sensing images, 

brings more difficulties and challenges on fast image 

processing. Visual saliency detection aims at quickly 

identifying the most significant region of interest in 

images by means of imitating the mechanism of the 

human vision system (HVS). In this way, significant 

regions of interest can be processed with priority by the 

limited computing resource, thus substantially improving 

the efficiency of image processing [2]-[3]. 

There are two models for HVS information processing, 

namely, bottom-up data driven model and top-down task 

driven model. Bottom-up model often acts as the 

unconscious visual processing in early vision and is 

mainly driven by low-level cues such as color, intensity 

and oriented filter responses. Currently, many bottom-up 

saliency models have been proposed for computing 

bottom-up saliency maps, by which we can predict 

human fixations effectively. Several bottom-up models 

are based on the well known biologist saliency model by 

Itti et al [4]. In this model, an image is decomposed into 

low-level feature maps across several spatial scales, and 

then a master saliency map is formed by linearly or 

non-linearly normalizing and combining these maps. 

Different from the biological saliency models, some 

bottom-up models are based on mathematical methods. 

For instance, Graph-based Visual Saliency (GBVS) [5] 

formed a bottom-up saliency map based on graph 

computations; Hou and Zhang [6] proposed a Spectral 

Residual Model (SRM) by extracting the spectral residual 

of an image in spectral domain; Pulsed Cosine Transform 

(PCT) based model [7] extended the pulsed principal 

component analysis to a pulsed cosine transform to 

generate spatial and motional saliency. 

Although the bottom-up saliency models are shown to 

be effective for highlighting the informative regions of 

images, they are not reliable in target-oriented computer 

vision tasks. When apply bottom-up saliency models in 

optical satellite images, due to the lack of top-down prior 

knowledge and highly cluttered backgrounds, these 

models usually respond to numerous unrelated low-level 

visual stimuli and miss the objects of interest. In contrast, 

top-down saliency models learn from training samples to 

generate probability maps for localizing the objects of 

interest, and thus produce more meaningful results than 

bottom-up saliency models. A well-known top-down 

visual saliency model is Visual Object detection with a 

CompUtational attention system (VOCUS) [8], which 

takes the rate between an object and its background as the 

weight of feature maps. The performance of VOCUS is 

influenced by object background. Although it performs 

well in nature images, it does not work reliably in the 

complicated optical satellite images. Recently, several 

top-down methods have been proposed based on learning 

mappings from image features to eye fixations using 

machine learning techniques. Zhao and Koch [9]-[10] 

combined saliency channels by optimal weights learned 

from eye-tracking dataset. Peters and Itti [11], Kienzle et 

al. [12] and Judd et.al. [13] learned saliency using scene 

gist, image patches, and a vector of features at each pixel, 

respectively. 

It is established that top-down models achieve higher 

accuracy than bottom-up models. However, bottom-up 

models often take much lower computational complexity 

due to only taking into account of low-level visual stimuli. 

In this case, an integrated method of combining 
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bottom-up and top-down driven mechanisms is needed to 

get benefits from both types of mechanisms. 

How to effectively integrate bottom-up and top down 

driven mechanisms is still an unsolved problem for the 

visual saliency detection. According to the mechanism of 

HVS, this paper proposes a target-oriented visual saliency 

detection model, which is based on the integration of both 

the two driven mechanisms. The proposed model consists 

of three parts, namely pre-attention phase module, 

attention phase module and post-attention module. Firstly, 

a low-level saliency map is quickly generated by the 

pre-attention phase module to highlight the regions with 

low-level visual stimuli. Then the attention phase 

conducts an attention shift and selection process in the 

low-level saliency map to find the current attention 

region. After obtaining the attention region, a target 

probability of the region evaluated by the post-attention 

module is fed back to the low-level saliency map to 

generate a high-level saliency map where the suspected 

target regions are emphasized meanwhile the background 

interference regions are suppressed. The main 

contributions of this paper are: 

A new method is presented for combining top-down 

and bottom-up mechanisms, i.e. revising the low-level 

saliency map with target probability evaluation so that the 

attention regions containing suspected targets are 

enhanced, meanwhile inhibiting the non-target regions. 

An effective method for focus shift and attention 

region selection is proposed to focus on the suspected 

target regions rapidly and accurately. 

The original HTM model is improved in several 

respects including the input layer, the spatial module and 

the temporal module, leading to a robust estimation of the 

target probability. 

This paper is structured as follows: Section II describes 

the framework of the proposed model. The details of the 

three parts i.e. pre-attention phase module, attention 

phase module and post-attention module are presented in 

Section III, IV and V, respectively. Experimental results 

are shown in Section VI. Finally, we give the concluding 

remarks in Section VII. 

II. FRAMEWORK OF THE PROPOSED MODEL 

A new model is presented to simulate HVS attention 

mechanism, and composed of three functional modules, 

namely, pre-attention phase module, attention phase 

module and post-attention phase module, as shown in Fig. 

1. The pre-attention phase is a bottom-up data driven 

process. It is employed to extract the lower features to 

form the low-level saliency map. According to principles 

of winner takes all, adjacent proximity and inhibition of 

return [4], the attention phase module carries out the 

focus of attention shift on the low-level saliency map and 

proposes a self-adaptive region growing method to 

rationally select the attentions regions. The post-attention 

phase is a top-down data driven process, and its major 

function is to apply the HTM model [14]-[15] to evaluate 

the target probability of the selected attention regions. 

The probability is then multiplied with the corresponding 

attention region on the low-level saliency map, thus a 

high-level saliency map which is more meaningful to 

locate objects of interest is generated. 

III. PRE-ATTENTION PHASE 

In this phase, we first extract several low-level visual 

features to give rise to feature maps, and then we 

compute saliency map for each feature map using the 

PCT-based attention model. Finally, saliency maps are 

integrated to generate the low-level saliency map. The 

block diagram of the pre-attention phase is shown in Fig. 

2. 

A. Feature Extraction 

If a region in the image is salient, it should contain at 

least one distinctive feature different from its 

neighborhood. Therefore, visual features of the image 

should be extracted first. For this, we extract three 

traditional low-level visual features, i.e. color, intensity 

and orientation. 

1) Color and intensity: HSI color space describes a 

color from the aspect of hue, saturation and intensity, 

more consistent with human visual features than RGB 

color space. Hence, we transfer the original image from 

RGB to HIS in order to obtain the color feature map H , 

S  and the intensity feature map I : 
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2) Orientation: Artificial targets in optical satellite 

images generally possess obvious geometrical 

characteristics. Therefore, orientation feature is crucial to 

identify the artificial targets. Here we adopt Gabor filters 

)135,90,45,0( k

oooo  to extract the orientation 

feature. The kernel function of a 2-D Gabor wavelet is 

defined as: 
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where ),(z yx  denotes the pixel position, and the 

parameter   determines the ration between the width 

of Gaussian window and the length of wave vector. We 

set 47   in the experiment. Four orientation 

feature maps can be obtained by convoluting the intensity 

feature map I  with 
k

 : 

 )()()( zzIzO
kk   (3) 
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Figure 1.  The framework of the proposed model 

B. The Generation of the Low-Level Saliency Map 

Recently, many effective approaches for saliency 

detection have been proposed. Here we employed 

PCT-based attention model because of its good 

performance in saliency detection and fast speed in 

computation [7]. According to the PCT model, the feature 

saliency map FS  of a given feature map F  can be 

calculated as: 
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where )(C  is the 2-D discrete cosine transform and 

)(1 C  is its inverse transform. G  is a 2-D low-pass 

filter. We apply linear weighted method to integrate the 

feature maps. Due to the lack of priori information, the 

weight of each feature map is set to N1  ( N is the 

number of feature maps, here 7N ) and the low-level 

saliency map lowS  can be obtained as: 
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IV. ATTENTION PHASE 

Attention phase provides a set of attention regions so 

that the significant area of interest can be processed with 

priority in the post-attention phase. This phase includes 

two parts, namely, the focus of attention shift and the 

attention region selection. 

A. Focus of Attention Shift 

According to principles of winner takes all, adjacent 

proximity and inhibition of return, an un-attended pixel, 

of the highest salience and closest to the last focus of 

attention on the low-level saliency map, is chosen as the 

next focus of attention, which is based on the following 

formula: 

 

 
















 






otherwise

focusedbeenhasyx
yxB

pyypxxyxD

yxB

yxDyxS
pypx

tt

low

yx

tt

1

  ),(0
),(

)()(),(

),(

),(),(
maxarg,

2
1

22

,

11

 (6) 

where ）（ tt pypx ,  is the location of the current focus of 

attention, ）（ 11,  tt pypx  is the location of the next 

focus of attention, )(D  serves as the adjacent 

proximity, i.e. areas close to the current focus of attention 

will be noticed with priority, )(B  serves as the 

inhibition of return, i.e. the noticed areas will not 

participate in the focus shift. 
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Figure 2.  Block diagram of the pre-attention phase 

B. Attention Region Selection 

Different from the attention region selection with fixed 

size in Itti’s model [4], the attention region in this 

research is identified by a self-adaptive region growing 
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method: taking the focus of attention as seed point, the 

region growing is conducted by computing the saliency 

difference between the current growing area and its 

surrounding areas according to a given step-size sequence. 

Once the difference tends to be decreasing, the growth 

will be terminated. Finally, the minimum area-enclosing 

rectangle of the growing area is deemed to the attention 

region. Here we define iR  as the growing area obtained 

in each growth, in  as the number of pixels in iR , iA  

as the saliency difference between iR  and its 

surrounding area. Given a step-size sequence 

]),0[( TiNi  , where T  denotes the maximum times 

of growing, the algorithm for the self-adaptive region 

growing is as Algorithm 1. 
Algorithm 1 Self-adaption region growing 

Input: ( [0, ])iN i T , 
0 { }R f , where f  is the present focus of 

attention; 
0 1n  ; 1i  . 

Iteration: 

while not reach the maximum growing time do 

Initialize 
iR  and 

in : 
1i in n  ;

1i iR R  . 

while do 

produce a new growing point p : arg max  ( )
j

j
p

p S p , where 

jp A , A is the adjacent pixel set of 
iR , ( )jS p is the saliency of 

jp . 

update 
iR  and : { , }i iR R p ;

1 1i in n   . 

end while 
Calulate : 

1

1 1( ) ( )
j i j i

i j i j i

p R p R

A S p N S p N


 

 

    when 
1iA

 tends to 

decrease, the growth is  

terminated: 

if then 
the growth is terminated. 

else 

1i i  ; growth continues. 

end if 

end while 

Output: 

the minimum area-enclosing rectangle of . 

V. POST-ATTENTION PHASE 

In the post-attention phase, we optimize the original 

version of the HTM model [14] to estimate the target 

probability of attention regions. The probability is then 

fed back to the low-level saliency map, and finally the 

target-oriented high-level saliency map is generated. 

A. The Optimization of HTM  

HTM model is the newest layering network model that 

imitates the structure of the new human neocortex [14]. 

HTM model takes time and space factors which depict 

samples into account in order to tackle with ambiguous 

rule of inference, presenting strong generalization ability. 

Thus, it has been gradually highlighted in the field of 

pattern recognition [16]-[19]. 

Different from most HTM-based applications [15]-[18] 

which apply the pixel’s grayscale as the input layer of 

HTM, in this research, the low-level visual features 

extracted in the pre-attention phase are taken as the input 

layer for the purpose of improving the precision of the 

model. Fig. 3 shows the structure of our HTM model, 

where the notes in the second layer conduct the learning 

and reasoning of the low-level visual features, meanwhile, 

the notes above the third layer conduct the learning and 

reasoning of the spatial position relationships. Notes in 

different layers use the same mechanism to conduct the 

learning and reasoning process, and they have the same 

node structure which is formed by a spatial module and a 

temporal module. 

1) Spatial module: The main function of spatial 

module is to choose the quantization centers of the input 

samples, that is, to select a few representative samples in 

the sample space. These centers should be carefully 

selected to ensure that the spatial module will be able to 

learn a finite quantization space from an infinite sample 

space. It is assumed that the learned quantization space in 

the spatial module of a node is ],...,,[ 21 nqqqQ  , 

where iq  is quantization center and N  is the number 

of the existing centers. All the Euclidean distances d  

between these centers are calculated and their sum S  is 

considered as a distance metric of the quantization space:  

 
N

i

N

j

ji qqdS ),(  (7) 

when a new input sample cq  appears in the node, we 

first add cq  to Q , and the distance increment inc  

caused by cq  can be calculated as follows: 

 
N

i

ci qqdinc ),(  (8) 

The change rate of the distance increment Sinc  is 

then examined against a given threshold  . If 

Sinc , cq is retained in Q  otherwise, cq  is 

removed from Q . This algorithm ensures that input 

samples which contain substantial information will be 

considered as new quantization centers, whereas those 

which do not contain representative information will be 

discarded. 

The learning of the spatial module is stopped when the 

added quantization centers are sufficient to describe the 

sample space. In practice, the learning is completed when 

the rate of adding new centers falls bellow a predefined 

threshold. 

2) Temporal module: The temporal module proposed 

in [14] is suitable in applications where the input samples 

have obvious time proximity such as video images. 

However, the input images for training the HTM model 

rarely share any amount of time correlation in our 

research. Therefore, instead of the time adjacency matrix 

proposed in [14], we exploit a correlation coefficient 

matrix C  to describe the time correlation between 

different samples. We adopt Pearson’s coefficient as the 
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Figure 3.  The proposed HTM network structure 

measure of correlation. The NN   correlation matrix, 

which contains the Pearson’s correlation coefficients 

between all pairs of centers, is calculated as follows: 
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where E  is the expected value operator, q  and q  

denotes the mean and the standard deviation of the 

respective quantization center, respectively. The larger 

the absolute value of correlation is the stronger the 

association between the two centers. 

A temporal grouping procedure is then utilized to 

separate the quantization space Q  into highly correlated 

coherent subgroups. The major advantage of replacing 

the time adjacency matrix with the correlation coefficient 

matrix is that it enables the grouping procedure to be 

irrelevant with the temporal sequence of sample images, 

so as to improve the precision of the model. 

In [14], a computationally efficient greedy algorithm is 

introduced to the temporal grouping procedure. The 

algorithm is briefly described as follows: 

Select the quantization center with the greatest 

connectivity. 

Find the M  quantization centers with greatest 

connectivity to the selected quantization center, and 

create a new group for the M  centers. 

Repeat step 1 and step 2 until all quantization centers 

have been assigned. 

The greedy algorithm requires the groups to be disjoint, 

i.e., no quantization center can be part of more than one 

group. However, in real applications, rarely groups can be 

clearly identified. Some quantization centers usually lie 

near the boundaries of two of more groups. As a result, 

The greedy algorithm can lead to ambiguity because the 

quantization centers are forced to be member of only one 

group. To overcome shortcomings of the greedy 

algorithm, here we propose a fuzzy grouping algorithm 

that allows quantization centers to be member of different 

groups according to the correlation. 

We define a gq nn   matrix PQG  ( qn  and gn  

is the numbers of quantization centers and groups, 

respectively), in which element [ , ] ( | )i jPQG i j p q g  

denotes the conditional probability of quantization 

centers iq  given the group jg . ],[ jiPQG  can be 

obtained as follows: 
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where )(p  is the prior probability of quantization 

centers. ],[ jiPQG  shows the relative probability of 

occurrence of coincidence iq  in the context of group 

jg , by which we design the fuzzy grouping algorithm, as 

described bellow: We first use the greedy algorithm to 

generate a initial grouping solution; then the groups with 

less than a given threshold tn  centers are removed 

because they often bring limited generalization; the 

quantization centers grouped by the greedy algorithm are 

expected to be the most representative for the group, 

however, other centers not belonging to the group could 

have high correlation to centers in the group, we allow a 

center iq  to be added to a group jg  if ],[ jiPQG  

is high. The fuzzy grouping algorithm is shown in 

Algorithm 2. 

B. The Generation of High-Level Saliency Map 

The low-level saliency map predicts interesting 

locations merely based on bottom-up mechanism. By 

means of introducing top-down mechanism to obtain 

more meaningful results, simultaneously inspired by [14], 

we multiply the probability (estimated by the HTM 

model) with the according attention region on the 

low-level saliency map to generate a high-level saliency 

map. By this way, the suspected target regions are 

emphasized in the high-level saliency map meanwhile the 

background interference regions are suppressed. 

Assuming tR  is the present attention region, tP  is the 
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estimated probability of tR , Let lowhigh SS 0 , the 

current high-level saliency map high
tS  can be obtained 

as follows: 
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where high
tS 1  is the corresponding high-level saliency 

map of the last attention region. 
Algorithm 2 The fuzzy grouping algorithm 

1. Create initial groups using the greedy algorithm. 

2. Remove groups with less than 
tn  (a given threshold)  

quantization centers. 

3. Compute the matrix PQG , each element [ , ]PQG i j  is 

calculated according to equation(10). 

4. for each 
iq  do 

for each jg  do 

if [ , ]PQG i j  (we set 0.8   in the experiment) then 

j j ig g q   

end if 

end for 

end for 

VI. EXPERIMENT AND DISCUSSION 

To verify the effectiveness of our model, the 

experiment for detecting harbor targets is performed on 

the real optical satellite images. There are 50 images used 

in the experiment, all from Google Earth. Each image 

contains 1 to 5 harbor targets. A total of 187 targets are 

involved in the experiment, and 30 are chosen as the 

training samples of HTM model. Related parameters in 

the experiment are set as follows: 

The step-size sequence is set according to the size 

range of targets as: 

}5050,4545,4040,3535

,3030,2525,2020,1515,1010,1{



N
 

The threshold value of Sinc  is set to 0.08 according 

to experiences, the learning of the spatial module is 

completed when the rate of adding new centers falls 

below 0.2, i.e. for every 10 new input vectors, when less 

than 2 new centers are added, the learning procedure 

should be stopped. 

The focus of attention transition is stopped when the 

transition times reach 20. 

A. Accuracy Evaluation of the Optimized HTM 

The original version of HTM [14] was implemented 

for benchmarking against the optimized HTM. Both 

versions used a 5-level network structure with the input 

images of size 128 by 128 pixels. Firstly, the efficiency 

of the original HTM and the optimized HTM were 

examined. Then the input layer, spatial module and 

temporal module of the original HTM was replaced 

individually by the optimized version, and the resulting 

efficiency was examined. The results are shown in 

TABLE I. 

Obviously, the optimized HTM shows much better 

performances than the original HTM and both the 

improvement in the input layer, spatial and temporal 

module results in higher accuracy than the original 

version. 

The efficiency of the HTM could be further increased 

with the utilization of a stronger classifier in the top layer 

[15]. Therefore, we applied Support Vector Machine 

(SVM) to estimate the probability in the top layer to get 

higher accuracy results. To further verify the 

effectiveness of the optimized HTM, a single SVM 

classifier with a dimensionality reduction process via 

Principal Component Analysis (PCA) was used as a 

reference. TABLE II shows the detection accuracy of the 

original HTM+SVM, the optimized HTM+SVM and 

SVM+PCA. Obviously, by using a stronger classifier in 

the top layer, both the original HTM and the optimized 

HTM achieve higher accuracy than SVM+PCA. 

TABLE I.  DETECTION ACCURACY OF THE ORIGINAL HTM AND 

THE OPTIMIZED HTM 

 
Detection rate of 

test set (%) 

Detection rate of 

train set (%) 

Original HTM 72.51 81.63 

Original HTM with feature 

maps 
77.42 85.17 

Original HTM with the 

proposed spatial module 
75.12 83.42 

Original HTM with the 

proposed temporal module 
79.74 87.94 

Optimized HTM 81.34 89.28 

TABLE II.  DETECTION ACCURACY OF ORIGINAL HTM+SVM, THE 

OPTIMIZED HTM+SVM AND SVM+PCA 

 
Detection rate of test 

set (%) 

Detection rate of train 

set (%) 

Original 

HTM+SVM 
76.73 84.67 

Original HTM 
+SVM 

85.81 92.48 

SVM+PCA 71.57 82.79 

B. Saliency Detection Performance 

Three methods are compared for accuracy evaluation, 

including the low-level saliency map with the bottom-up 

mechanism only, VOCUS, and the proposed model. Fig. 

4 shows an experiment result and it can be seen that: 1) 

the location of most harbors is significant on the 

low-level saliency map. However, the most significant 

regions are not harbors but other ground objects. 2) focus 

of attention is shifted according to the order of the 

declining intensity of significance. Moreover, the 

selection of attention regions shows self-adaption (see Fig. 

5 for an example), which is more consistent with the HVS 

mechanism compared with the option of fixed size. 3) In 

post-attention phase, the suspected target attention 

regions on the low-level saliency map are enhanced while 

the non-target regions are inhibited. 4) our model 

performs better than VOCUS for it is more efficient to hit 

target regions. 

Fig. 6 shows the performance curve of the three 

methods. The proposed model presents higher detection 

precision than the other two methods, and can hit more 

than 75% targets under 25% saliency ratio. 

JOURNAL OF MULTIMEDIA, VOL. 9, NO. 2, FEBRUARY 2014 307

© 2014 ACADEMY PUBLISHER



1O
2O 3O
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H S I

(a) ground truth image (b) feature maps

(c) low-level saliency map with the first 5 focus shifts. 
Target is hit in the 2th time.

(d) VOCUS saliency map with the first 5 focus shifts.
Targets are hit in the 2th, 4th and 5th time.

(e) high-level saliency map with the first 5 focus shifts.
All Targets are hit in the first 4 shifts. The probability of the 5 
attention regions, in sequences, is 0.77, 0.86, 0.73, 0.69, 0.21.  

Figure 4.  Experiment results of low-level saliency map, VOCUS and high-level saliency map. 

 

Figure 5.  The self-adaption region growing of the first focus in Fig. 
4(c). The growth is terminated in the downward inflection point 

(marked as a red triangle in the figure). 

In order to further assess the precision of our model, 

we introduce three definitions: 1) hit number: the rank of 

the focus that hits the target in order of saliency; 2) 

average hit number: the arithmetic mean of the hit 

numbers of all targets 3) detection rate: the ratio between 

the hit target number in the precious 10 focus shifts and 

the total target number. The accuracy analysis of the three 

approaches is expressed in TABLE III and Fig. 7. 

It can be seen from the experiment results that due to 

the introduction of top-down mechanism, VOCUS and 

our method are better than the low-level saliency map 

with bottom-up mechanism only. At the same time, our 

approach is excellent to VOCUS. This is mainly because 

the top-down procedure of VOCUS only takes the weight 

of lower feature into consideration while that of our 

approach applies HTM model comprehensively took 

account of the lower features and spatial location 

relationship, possessing more effective target orientation. 

 

Figure 6.  The performance curve of low-level saliency map, VOCUS 
and high-level saliency map. Saliency ratio is the ratio between the size 

of saliency area and of the total image. 

TABLE III.  AVERAGE HIT NUMBER AND DETECTION RATE OF THE 

THREE METHODS. 

 
Low-level 
saliency map 

VOCUS 
The proposed 
model 

Average hit number 11.67 8.46 3.75 

Detection rate (%) 18.82 37.1 73.12 
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Figure 7.  The number of targets hit in focus shifts. The total hit target number in the precious 10 focus shifts of the three methods is 35, 69, 136, 

respectively. It is obviously that our model can hit more targets in the first few focus shifts. 

VII. CONCLUSION 

In this paper we propose a novel target-oriented visual 

saliency detection model. Inspired by the structure of the 

human vision system, we build the model with three 

functional modules, i.e., pre-attention phase module, 

attention phase module and post-attention phase module. 

In the pre-attention phase module, a low-level bottom-up 

saliency map is generated to locate attention regions with 

low-level visual stimuli. In the attention phase module, 

we propose an effective method for focus shift and 

attention region selection to focus on the suspected target 

regions rapidly and accurately. In the post-attention phase, 

the original HTM is optimized in several respects 

including the input layer, the spatial module and the 

temporal module, leading to a robust probability 

estimation. Experimental results demonstrate that our 

model presents higher detection precision, compared with 

models of both low-level bottom-up saliency map and 

VOCUS model. It is proved that the proposed model 

provides a feasible way to integrate top-down and 

bottom-up mechanism in visual saliency detection. 
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