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Abstract—To efficiently cope with the high dimensionalities 
and complex nonlinear variations of face images in face 
recognition task, a novel manifold adaptive kernel local 
Fisher discriminant analysis algorithm is proposed in this 
paper. The core idea of this algorithm is as follows: First, 
the local manifold structure of the face image is modeled by 
a nearest neighbor graph. Then, an original input kernel 
function is deformed with respect to the local manifold 
structure. Finally, the resulting manifold adaptive kernel 
function is incorporated into the kernel local Fisher 
discriminant analysis(LFDA) method, which leads to the 
manifold adaptive kernel LFDA(MAKL) algorithm for face 
recognition. Experimental results on three popular face 
databases show that the proposed algorithm performs much 
better than other related algorithms. 
 
Index Terms—face recognition, local Fisher discriminant 
analysis, manifold learning, kernel function 
 

I.  INTRODUCTION 

During the past two decades, face recognition has 
received a lot of attention because of its wide application 
in many fields[1-4], such as identity authentication, 
information security, surveillance, human–computer 
interface, and so on. However, a major challenge of face 
recognition is that the captured face image data often lies 
in a high-dimensional space,ranging from several 
hundreds to thousands. Due to the consideration of the 
curse of dimensionality, a common way to cope with this 
problem is to use dimensionality reduction techniques. 
Dimensionality reduction could effectively avoid the 
“curse of dimensionality”, improve performance and 
computational efficiency of pattern classification, 
suppress noise, and alleviate storage requirement[5]. 
Therefore, the dimensionality reduction-based face 
recognition algorithm has attracted growing atttention in 
the computer vision and pattern recognition fields. 

The most representative dimensionality reduction 
algorithms include principal component analysis (PCA) 

and linear discriminant analysis (LDA)[6]. PCA projects 
the data points into a lower dimensional subspace, in 
which the sample variance is maximized. It computes the 
eigenvectors of the sample covariance matrix and 
approximates the original data by a linear combination of 
the leading eigenvectors. PCA is optimal for 
reconstruction but is not optimal for discrimination. 
Unlike PCA is unsupervised, LDA is a supervised 
dimensionality reduction algorithm. LDA searches for the 
project axes on which the data points of different classes 
are far from each other while requiring data points of the 
same class to be close to each other. LDA encodes 
discriminatory information by finding directions that 
maximize the ratio of between-class scatter to within-
class scatter. While these two algorithms have yielded 
impressive results on face recognition, they may fail to 
detect the underlying manifold structure as they are 
designed for discovering only the global Euclidean 
structure for face representation and recognition[7-9]. 

Recently, a number of research efforts have shown that 
the face images possibly lie on a nonlinear submanifold 
hidden in the image space, and face representation is 
fundamentally related to the problem of manifold 
learning[9-12]. Given a set of high-dimensional data 
points, manifold learning takes the local structure 
information into account, aiming to directly discover an 
intrinsically low-dimensional manifold space embedded 
in the ambient space. The most well-known manifold 
learning algorithms include Isomap[13], LLE[14], and 
Laplacian Eigenmap(LE)[15]. Isomap aims at finding a 
Euclidean embedding such that Euclidean distances in 

n�  can provide a good approximation to the geodesic 
distances on M  . The basic idea of LLE is that the data 
points might reside on a nonlinear submanifold, but it 
might be reasonable to assume that each local 
neighborhood is linear. The Laplacian Eigenmap(LE) is 
based on spectral graph theory, it aims to preserve the 
similarities of the neighboring points. Despite the success 
of applying these manifold learning algorithms to many 
fields, they are defined only on the training data points 
but cannot be used for embedding new test data points.  
Therefore, they are not suitable for face recognition. To 
tackle the out-of-sample problem, locality preserving 
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projection (LPP)[16] obtains the face subspace by finding 
the optimal linear approximations to the eigenfunctions of 
the Laplace Betrami operator on the manifold. While LPP 
has attained reasonably good performance in face 
recognition, it is an unsupervised dimensionality 
reduction algorithm and does not take the valuable label 
information into account. Therefore, LPP might not be 
optimal in discriminating face images with different 
semantics which is the ultimate goal of face recognition. 
More recently, a new manifold learning algorithm called 
local Fisher discriminant analysis(LFDA)[17] is proposed 
for dimensionality reduction. By effectively combining 
the merits of LDA and LPP, LFDA maximizes between-
class separability and preserves within-class local 
structure at the same time. Although LFDA has achieved 
reasonably good performance by integrating both local 
manifold structure and label information simultaneously, 
it is still a linear algorithm in nature. So LFDA may fail 
to discover the intrinsic manifold structure when the face 
image space is highly nonlinear. 

In this paper, we proposed a novel manifold adaptive 
kernel dimensionality reduction algorithm for face 
recognition. By using a data-dependent norm on 
reproducing kernel Hilbert space (RKHS)[18], we can 
warp the structure of the RKHS to reflect the underlying 
geometry of the face image data. The traditional local 
Fisher discriminant analysis(LFDA) can then be 
performed in the manifold adaptive kernel space. We 
discuss how to kernelize the LFDA which gives rise to 
nonlinear manifold adaptive kernel LFDA algorithm for 
face recognition. 

The remainder of the paper is organized as follows. 
Section II gives a brief review of the LFDA algorithm. 
Our manifold adaptive kernel LFDA algorithm for face 
recognition is introduced in Section III. The experimental 
results are presented in Section IV. Finally, we provide 
some concluding remarks and suggestions for future work 
in Section V. 

II.  BRIEF REVIEW OF LFDA 

LFDA is a recently proposed linear dimensionality 
reduction algorithm[17]. It is based on locality preserving 
projection and explicitly considers the class label 
information of the data space. LFDA aims to reduce the 
dimensionality of multimodal labeled data approximately 
by maximizing between-class separability and preserving 
the within-class local structure at the same time. LFDA 
encodes discriminatory information by finding the 
transformation matrix such that nearby data pairs in the 
same class are made close and the data pairs in different 
classes are separated from each other; far apart data pairs 
in the same class are not imposed to each other. 

Given a set of face images 
{ }1 2, , , p

nx x xΧ = ⊂L � belonging to c classes, the 

number of face images in the ith class is in  satisfying 

1

c
ii

n n
=

=∑ . Let A  be an affinity matrix defined on the 

data points. The objective function of LFDA is as follows: 
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where ( )bS  and ( )wS  denote the local between-class 
scatter matrix and local within-class scatter matrix, 
respectively, ( )b

ijW and ( )w
ijW  denote the weight matrices 

of the local  between-class adjacency graph and local  
within-class adjacency graph, respectively, ic is the class 

label of the data point ix , and { }1, 2, ,l c∈ L  is the 

class label. ijA  is the heat kernel weight. 

( )2

e , if is among the nearest neighbor of
or is among the nerest neighbor of .

0, otherwise.

i jx x t

i j

j iij

x r x
x r xA

− −⎧
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⎪
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  (6) 

The justification for such choice and the setting of 
parameter can be referred to [15]. 

As can be seen from (1), by preserving the local 
geometric structure, LFDA aims to look for a 
transformation matrix V such that the data pairs in the 
same class are made close and the data pairs in different 
classes are separated from each other. Finally, the optimal 
V ’s are the eigenvectors corresponding to the maximum 
eigenvalue of the generalized eigenvalue problem: 

( ) ( )b wS V S Vλ=                                   (7) 
Therefore, the problem of LFDA is converted into the 

leading eigenvectors of ( )( ) ( )1w bS S
−

. For face 

recognition, a problem arises that the matrix ( )wS  cannot 
be guaranteed to be nonsingular since the number of 
available samples is smaller than the dimensionality of 
the samples. In this case, one can first apply PCA to 
remove the components corresponding to zero 
eigenvalues. 

While LFDA has shown its promising results on many 
classification tasks, linear method fail to deliver good 
performance when face patterns are subject to large 
variations in illumination, facial expression and pose 
variations, which results in a highly complex nonlinear 
distribution. The limited success of LFDA algorithm 
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should be attributed to its linear nature. As a result, it is 
reasonable to assume that a better solution to this inherent 
nonlinear problem could be achieved using kernel-based 
nonlinear methods. 

III.  MANIFOLD ADAPTIVE KERNEL LFDA 

In order to solve nonlinear problems, the conventional 
LFDA can be generalized to its nonlinear version with 
kernel trick[19], namely kernel LFDA. The kernel trick 
first maps the input data into an implicit feature space 
F with a nonlinear mapping, and then the data are 
analyzed in F . The kernel trick has been demonstrated 
to be able to effectively represent complicated nonlinear 
relations of the input data, and recently kernel-based 
nonlinear dimensionality reduction algorithms have been 
received more attention. Therefore, such a nonlinear 
generalization is meaningful in the sense that a kernelized 
LFDA would generally achieve better accuracy, and relax 
the restriction of LFDA being only a linear 
dimensionality reduction scheme. In this section, we will 
describe our manifold adaptive kernel LFDA design 
approach which is fundamentally based on LFDA and 
manifold adaptive kernel. We begin with a description of 
kernel LFDA. 

A.  Kernel LFDA 

Let ( ): px x Fϕ ϕ∈ → ∈�  be a nonlinear 

mapping from the input space p�  to a feature space F , 
the idea behind kernel LFDA is to perform a traditional 
LFDA in the feature space F  instead of the input space 

p� .Then the face image data matrix in F  can be 
denoted as ( ) ( ) ( ) ( )1 2, , , nx x x xϕ ϕ ϕ ϕ= ⎡ ⎤⎣ ⎦L . In 

implementation, the feature vector does not need to be 
computed explicitly, while it is just done by computing 
the inner product of two vectors in F  with a kernel 
function ( ),k ⋅ ⋅ : 

( ) ( ) ( )1 2 1 2, ,k x x x xϕ ϕ=                    (8) 

Let ( )bS  and ( )wS  be the local between-class and 
within-class scatter matrices in the feature space F , 
respectively. We have 
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Let U  be the projective function in the feature space 
F , performing LFDA in F means maximizing the local 
between-class scatter ( )bS  and minimizing the local 

within-class scatter ( )wS . So the corresponding objective 
function (1) in the feature space is 

( )

( )arg max
bT

opt wT
U

U S UU
U S U

=                        (11) 

which can be solved by the generalized eigenvalue 
problem: 

( ) ( )b wS U S Uλ=                              (12) 
Because the eigenvectors are linear combinations of 
( )ixϕ , there exist coefficient iα  such that 
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and the corresponding generalized eigenvalue problem is: 
( ) ( )b wKL K KL Kα λ α=                           (15) 

where K  is the kernel matrix ( ),ij i jK k x x=  , ( )bL  

and ( )wL  are defined as: 
( ) ( ) ( )b b bL D W= −                               (16) 
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where ( )bD  and ( )wD  are both diagonal matrices, and 
their entries are column sums of ( )bW  and ( )wW , 
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So the problem of kernel LFDA is converted into 

finding the leading eigenvectors of ( )( ) ( )1w bKL K KL K
−

, 

each eigenvector α  gives a projective function U  in the 
feature space. For a new data point x , its projection onto 
U  in the feature space F can be calculated by 

( ) ( ) ( )

( )
1

1

, ,

,

n

i i
i
n

i i
i

U x x x

k x x

ϕ α ϕ ϕ

α
=

=

=

=

∑

∑
               (18) 

For face recognition, a problem arises that the matrix 
( )wKL K  and ( )bKL K cannot be guaranteed to be 

nonsingular. In this case, we may first apply PCA to 
remove the components corresponding to zero 
eigenvalues. 

B.  Data-Dependent Manifold Adaptive Kernel 
Since different kernel functions will produce different 

constructions of implicit feature space, identifying the 
appropriate kernel function for a given dataset is essential 
to all kernel-based learning techniques. For face 
recognition, it has shown that the face images possibly 
reside on a nonlinear submanifold. However, the 
nonlinear structure captured by the data-independent 
kernels such as the Gaussian kernel, polynomial kernel 
and Sigmoid kernel, may not be consistent with the 
intrinsic manifold structure which has been shown very 
useful for improving the learning performance by many 

JOURNAL OF MULTIMEDIA, VOL. 7, NO. 6, DECEMBER 2012 389

© 2012 ACADEMY PUBLISHER



previous researches[20]. To further improve the learning 
performance of kernel LFDA, in the following we discuss 
how to incorporate the manifold structure into the 
construction process of kernel function which leads to a 
data-dependent manifold adaptive kernel function. 

Let L  be a linear space with a positive semi-definite 
inner product(quadratic form) and let :S H L→  be a 
bounded linear operator. We define H%  to be the space of 
functions from H  with the modified product 

, , ,
H H L

f g f g Sf Sg= +%                  (19) 

It has been proved that H%  is still a RKHS[18]. 
Given the data points 1, , nx xL , let : nS H → � be 

the evaluation map 

( ) ( ) ( )( )1 , ,
T

nS f f x f x= L                 (20) 

Denote ( ) ( )( )1 , ,
T

nf f x f x= L , note that 

f L∈ , thus we have 

, , T
L

Sf Sf f f f Mf= =                   (21) 

where M is a positive semi-definite matrix. 
Given an input kernel function k , and denote 

( ) ( )( )1, , , ,x nk k x x k x x= L . It can be shown that the 

reproducing kernel k%  in H%  is 

( ) ( ) ( ) 1, , T
x zk x z k x z k I MK Mk−= − +%        (22) 

where I is an identity matrix, and K  is the kernel matrix 

( ),ij i jK k x x= in H . The key issue now is the choice 

of M , so that the deformation of the kernel induced by 
the data-dependent norm, is motivated with respect to the 
underlying geometry of the data. 

As suggested in [15], the manifold structure can be 
modeled by a nearest-neighbor graph which preserves the 
local structure of the face image space. Let G  denote a 
nearest-neighbor graph with n nodes, the ith node 
corresponds to the face image ix . The graph Laplacian 

matrix L is defined as L D W= − , where 

{1, if and areadjacent
0, otherwise

i j
ij

x xW =             (23) 

and D  is a diagonal matrix given by ii ijj
D W=∑ . 

The graph Laplacian provides the following smoothness 
penalty on the graph: 

( ) ( )( )2

, 1
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2

n
T

i j ij
i j

f Lf f x f x W
=

= −∑            (24) 

Finally, by setting M L= , we can obtain the 
following manifold adaptive kernel: 

( ) ( ) ( ) 1, , T
x zk x z k x z k I LK Lk−= − +%         (25) 

In short, the key idea of manifold adaptive kernel is to 
construct a data-dependent norm on Reproducing Kernel 
Hilbert Spaces (RKHS), which can warp the structure of 

the RKHS to reflect the underlying geometry of the data. 
When an input kernel is deformed according to the 
manifold structure, the resulting kernel may be able to 
achieve better performance than the original input kernel. 

C.  The Manifold Adaptive Kernel LFDA Algorithm 
After calculating the manifold adaptive kernel 

matrix K% : ( ),ij i jK k x x= %%  in terms of (25), we can 

employ the manifold adaptive kernel to find the optimal 
projection of kernel LFDA in the new RKHS H% . Let us 
replace kernel matrix K  in (15) with the deformed 
kernel matrix K% , we obtain 

( ) ( )b wKL K KL Kα λ α=% % % %                           (26) 
Therefore, for a new testing face image x , the feature 

vector extracted from the new RKHS is derived as 

( )
1

,
n

i i
i

x y k x xα
=

→ =∑ %                         (27) 

where y  is the lower-dimensional representation of the 
face image x . 

We summarize our manifold adaptive kernel LFDA 
algorithm (MAKL) as follows: 

1) PCA processing: We project the face images ix  
into the PCA subspace by throwing away the 
components corresponding to zero eigenvalue. 

2) Calculate the original input kernel matrix K : 

( ),ij i jK k x x= . 

3) Construct a r nearest-neighbor G  with weight 
matrix W  defined in (23), and compute the 
graph Laplacian L D W= − . 

4) Calculate the manifold adaptive kernel 
matrix K% : ( ),ij i jK k x x= %%  according to (25). 

5) Find α  by solving the generalized eigenvalue 
problem in (26), and obtain the low-dimensional 
feature vector of high-dimensional face image 
data via (27). 

Once we get lower-dimensional feature representations 
of the original face images with the manifold adaptive 
kernel LFDA algorithm, face recognition becomes a 
pattern recognition task. The traditional classifier 
algorithms can be applied to identify different face 
images in the reduced semantic space. In this paper, we 
apply the nearest-neighbor classifier for its simplicity, 
and the Euclidean metric is used as our distance measure. 

IV.  EXPERIMENTAL RESULTS 

In this section, to investigate the performance of our 
proposed manifold adaptive kernel LFDA algorithm 
(MAKL) for face recognition, we compare it with the 
kernel PCA algorithm (KPCA)[21], the kernel LDA 
algorithm(KLDA)[22], the kernel LPP algorithm (KLPP) 
[16], and the local Fisher discriminant analysis algorithm 
(LFDA)[17], four of the most representative 
dimensionality reduction algorithms for face recognition. 
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Note that the three algorithms KLPP, LFDA and 
MAKL need to construct an adjacent graph on the face 
images. In the following experiments, we use the same 
adjacent graph for these three algorithms and the nearest 
neighbor number is set to be 7. For the kernel function 
selection of the KPCA, KLDA and KLPP algorithms, we 
adopted the popular Gaussian kernel function. 

( )
2

2, exp
2

x y
k x y

σ

⎛ ⎞−
= ⎜− ⎟

⎜ ⎟
⎝ ⎠

                    (28) 

where the value for σ  was set to be 0.5 multiplied by the 
average of pairwise distances in the training data. For fair 
comparison, we also set the original input kernel function 
of MAKL algorithm to the above Gaussian kernel 
function. In addition, KLDA, KLPP, LFDA and MAKL 
algorithms involve a preceding PCA stage to void the 
singularity problem, we keep 98% data energy in the 
PCA stage. 

Our empirical study on face recognition was conducted 
based on three benchmark databases: the Olivetti 
Research Laboratory (ORL), Yale, and CMU PIE face 
database. In all the experiments, preprocessing to locate 
the faces was applied. All the original face images are 
manually aligned by fixing the locations of two eyes, 
cropped and then resized to 32 32×  pixels, with 256 
gray levels per pixel. Each face image is represented by a 
1024-dimensional vector in the image space. Some 
sample face images after preprocessing of the three 
databases are shown in Fig.1-Fig.3. To perform face 
recognition, we first obtain the face subspace with 
dimensionality reduction algorithms. Then, the new face 
image to be identified is projected into the face subspaces. 
Finally, the nearest neighbor classifier is adopted to 
identify the new face image, where the Euclidean metric 
is used as the distance measure. 

The ORL face database (http://www.uk.research. 
att.com /facedatabase.html) contains 400 images of 40 
individuals, some images were captured at different times 
and have different variations including expression (open 
or closed eyes, smiling or nonsmiling) and facial details 
(glasses or no glasses). A random subset with five images 
per individual was taken to constitute the training set, and 
the rest images of the database make up the testing set. 
The Yale database (http://cvc.yale.edu/projects/yalefaces/ 
yalefaces.html) contains 165 front view face images of 15 
individuals, the images demonstrate variations in lighting 
condition, facial expression (normal, happy, sad, sleepy, 
surprised, and wink). A random subset with six images 
per individual was taken to form the training set, and the 
rest images of the database was considered as testing set. 
The CMU PIE face database contains 68 subjects 41368 
face images as a whole[23], the face images were 
captured by 13 synchronized cameras and 21 flashes, 
under varying pose, illumination, and expression. We use 
a subset of 5 near front poses (C05, C07, C09, C27, and 
C29) and illuminations indexed as 08 and 11 is used, thus 
each person has ten images, within the ten face images 
for each individual in our experiment, a random subset 
with five images per individual was used to form the 

training set, and the rest of the database was considered to 
be the testing set. In order to obtain steady results, these 
trials were independently conducted ten times and the 
average accuracy was reported. 

The recognition results are shown in Table I- Table III. 
The recognition accuracy rates versus the reduced 
dimensions on the tree face databases are shown in Fig.4-
Fig.6. As can be seen, the main observations from the 
performance comparisons include: 

1) Our proposed MAKL algorithm consistently 
outperforms the KPCA, KLDA, KLPP and 
LFDA algorithms, which demonstrate that 
MAKL can effectively utilize the data-
dependent manifold adaptive kernel function for 
face recognition. 

2) The KPCA algorithm performs poorly. This is 
probably because KPCA is unsupervised 
learning method and does not encode valuable 
discrimination information. 

3) The KLDA algorithm performs comparatively 
to the KLPP algorithm. This demonstrates that 
it is hard to evaluate whether local manifold 
structure or class label information is more 
important. 

4) Although the LFDA algorithm outperforms 
KPCA, KLDA and KLPP algorithms by using 
both local manifold structure and class label 
information, it is still a linear algorithm and is 
inadequate to describe the nonlinear face image 
space due to the high variability of the image 
content and style. Therefore, it performs worse 
than the kernel-based MAKL algorithm. 

V.  CONCLUSIONS 

We have introduced a novel dimensionality reduction 
algorithm for face recognition called Manifold Adaptive 
Kernel LFDA(MAKL). Unlike most of traditional 
dimensionality reduction algorithms which seek the data-
independent nonlinear structure of the face image space, 
our proposed algorithm explicitly considers both the 
intrinsic manifold structure and discriminative 
information. Experiments on three face databases 
demonstrate the effectiveness of the proposed algorithm. 
Since the proposed MAKL algorithm is a general 
nonlinear dimensionality reduction algorithm for high-
dimensional data, we plan to apply the algorithm to video 
and audio classification in the future. 

APPENDIX A  FIGURE(1-6) AND TABLE (I-III) 

 

 
Figure 1.  Face image examples of the ORL database. 

 

 
Figure 2.  Face image examples of the Yale database. 
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Figure 3.  Face image examples of the PIE database. 

 

 
Figure 4.  Accuracy rate versus reduced dimensionality on 

the ORL database. 

 

 
Figure 5.  Accuracy rate versus reduced dimensionality on 

the Yale database. 

 

 
Figure 6.  Accuracy rate versus reduced dimensionality on 

the PIE database. 

 
 

 

TABLE I.   
PERFORMANCE COMPARISONS ON THE ORL DATABASE 

Algorithms Dimension Recognition rate 

KPCA 65 91.5% 

KLDA 39 93.3% 

KLPP 35 94.6% 

LFDA 30 96.8% 

MAKL 26 98.2% 

 

TABLE II.   
PERFORMANCE COMPARISONS ON THE YALE DATABASE 

Algorithms Dimension Recognition rate 

KPCA 43 79.4% 

KLDA 14 88.7% 

KLPP 30 90.2% 

LFDA 36 92.6% 

MAKL 28 96.5% 

 

TABLE III.   
PERFORMANCE COMPARISONS ON THE PIE DATABASE 

Algorithms Dimension Recognition rate 

KPCA 160 89.3% 

KLDA 67 95.7% 

KLPP 120 96.1% 

LFDA 85 96.8% 

MAKL 68 98.4% 
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