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Abstract
Background: Microarray techniques are one of the main methods used to investigate thousands
of gene expression profiles for enlightening complex biological processes responsible for serious
diseases, with a great scientific impact and a wide application area. Several standalone applications
had been developed in order to analyze microarray data. Two of the most known free analysis
software packages are the R-based Bioconductor and dChip. The part of dChip software
concerning the calculation and the analysis of gene expression has been modified to permit its
execution on both cluster environments (supercomputers) and Grid infrastructures (distributed
computing).

This work is not aimed at replacing existing tools, but it provides researchers with a method to
analyze large datasets without any hardware or software constraints.

Results: An application able to perform the computation and the analysis of gene expression on
large datasets has been developed using algorithms provided by dChip. Different tests have been
carried out in order to validate the results and to compare the performances obtained on different
infrastructures. Validation tests have been performed using a small dataset related to the
comparison of HUVEC (Human Umbilical Vein Endothelial Cells) and Fibroblasts, derived from
same donors, treated with IFN-α.

Moreover performance tests have been executed just to compare performances on different
environments using a large dataset including about 1000 samples related to Breast Cancer patients.

Conclusion: A Grid-enabled software application for the analysis of large Microarray datasets has
been proposed. DChip software has been ported on Linux platform and modified, using
appropriate parallelization strategies, to permit its execution on both cluster environments and
Grid infrastructures. The added value provided by the use of Grid technologies is the possibility to
exploit both computational and data Grid infrastructures to analyze large datasets of distributed
data. The software has been validated and performances on cluster and Grid environments have
been compared obtaining quite good scalability results.
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Background
During the last years, genomics and proteomics have
deeply changed the scientific approach to the study of the
molecular basis of cells and tissues behaviors both in
physiological and pathological conditions, giving a new
comprehensive view to the research community.

As the interest on these fields has been more and more
increasing, innovative and more suitable technologies
have been developed. At present, one of the most promis-
ing and reactive fields is certainly the microarray technol-
ogy, which has had, so far, a great scientific impact and a
wide application area. In fact, several types of micorarrays
have been developed and proposed, each focused on a
specific type of analysis, from genetic screening to pro-
teomics and from biological research to diagnostics.

Through the comparison of genomic profiles it is possible
to study gene expression differences among cross-corre-
lated conditions, thus understanding their meaning.
Thanks to the microarray technology a large number of
genes may be investigated at the same time to find which
are differentially expressed on a certain cell type. Quanti-
tative researchers have proposed a variety of methods for
handling probe-level data from Affymetrix® oligonucle-
otide arrays. Such methods employ different procedures
for adjusting background fluorescence, normalizing data,
incorporating information from "mismatch" probes, and
summarizing probe sets.

Even if microarrays are a powerful instrument, studies on
these data are often conditioned by technological limits,
thus decreasing their capabilities. The most relevant limi-
tation concerns the analysis of large datasets. In fact this
kind of analysis requires long computational times rather
than the availability of specific hardware. A huge availa-
bility of memory and computational power is required for
analyzing microarrays and often researchers cannot suc-
ceed in performing their studies because of the impossi-
bility to access suitable resources.

Several tools and algorithms had been developed in order
to analyze microarray data, all of them consisting in stan-
dalone applications. Two of the most known free analysis
software packages are the R-based Bioconductor and
dChip [1,2].

This work is not aimed at replacing those systems, but it
provides researchers with a new method to analyze large
datasets without any hardware or software constraints, by
simply using a common web browser. To reach this aim,
dChip software has been modified by using appropriate
parallelization strategies, to permit its execution on both
cluster environments and Grid infrastructures, exploiting
existing computational and storage capabilities. Since

dChip is a wide application containing a large number of
functionalities, this work is related to the computation
and the analysis of gene expression.

Implementation
The goal of this work is focused on the design and devel-
opment of a tool for the analysis of gene expression to be
included in a more general Grid-enabled software applica-
tion for the analysis of microarray data. As an added value,
the use of Grid technologies makes it possible to exploit
both computational and data Grid infrastructures to ana-
lyze large datasets of distributed data.

DChip, an existing analysis tool for Microarray experi-
ments, was originally a free and open source Windows
application. Starting from the original source code (dChip
2005 version), several versions of the software have been
implemented, in order to fit different kinds of resources
[see Additional file 1]:

• standalone Linux version

• parallel cluster implementation

• parallel Grid implementation

The execution is supported on 64 bit computers too.

With regard to the user interface, as a first release, the
application was implemented in a command line version
to permit the execution on remote computing elements.
Two input files are used: the first one contains specific
options for the execution; the second one contains the list
of the microarray files used for the analysis. As a second
step, in order to simplify the use of above mentioned
dChip versions, the executables have been integrated
within a biomedical portal [3,4] which provides a simple
graphical user interface to run the application. Such a por-
tal integration allows unpractised users to store their
experimental data on a complex storage system and access
distributed data and services in a transparent way. Further-
more users can easily run the application from any com-
puter or location with only Internet connection, without
loosing time in installation and maintenance procedures.
Moreover, users can use the software through a simple
web interface and launch their analyses taking advantage
of the possibility to orchestrate different portal services in
a workflow strategy. Thanks to the ease of the web inter-
face, users are not required to know technical dChip
details.

The new software version has been designed to be modu-
lar, i.e. the original software has been divided into several
independent modules, each performing a different part of
the analysis. This approach has allowed to improve (i)
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optimization, by implementing the most appropriate par-
allelization strategy for each part of the analysis and (ii)
scalability, by replacing in a transparent way one or more
modules with other, more powerful, ones or with mod-
ules providing different functionalities. The application
has been structured in three different modules that have
to be executed sequentially (Figure 1):

• module 1: opening, reading and normalization of CEL
files

• module 2: computation of expression levels

• module 3: filtering, extraction and clustering of differen-
tially expressed genes

Each of them has been designed as a standalone program
working in an independent way. Data and overall infor-
mation are moved through the modules using CSV
(Comma Separated Values) file format. The final output is
composed of three main files containing respectively: the
expression values in an R compatible format, the list of
the differentially expressed genes and the cluster tree.

Using large datasets, long execution times and great com-
putational efforts are required. Parallelization strategies
are necessary to improve performances and to allow the
analysis of a large number of arrays in a short time. A first
accurate analysis of dChip algorithm revealed the possi-
bility to parallelize both the first and the second module
that implement the most data intensive algorithms from a
computational point of view. The applied parallelization
does not affect the original algorithms of dChip but it is
related to a data access strategy. Since the algorithms for
normalization and expression calculation work in differ-
ent ways, two different parallelization approaches have
been adopted.

The normalization algorithm is based on the invariant set
method. It works by processing each array separately with
a baseline chosen as the median intensity array. Therefore

the Module 1 has been parallelized according to the
number of microarrays. Each parallel execution opens a
restricted number of files, normalizes them against the
baseline and writes the related CSV output files.

DChip algorithms concerning the calculation of gene
expression (PM only and PM/MM methods) work in a dif-
ferent way, since they need all genes from all microarrays
to work. So the Module 2 has been parallelized into a
number of executions, each reading all CVS files of all nor-
malized arrays but performing the calculation only on a
restricted group of genes. The execution results of each
subset are then merged and the output thus containing
the expression levels of all data is produced.

The third module reads the CSV file containing the gene
expression values and allows to perform the filtering over
genes, the extraction of differentially expressed genes and
some clustering operations by using the dChip unmodi-
fied algorithms.

Two different modalities of parallel execution are availa-
ble: with or without MPI (Message Passing Interface)
libraries. The second approach allows the execution on
environments not supporting MPI technology, but
requires specific scripts for the management, the submis-
sion and the monitoring of parallel jobs.

Finally the code has been modified to enable the submis-
sion to the Grid infrastructure. For this purpose the gLite
[5] middleware has been considered. In order to allow to
read and to write files on remote and distributed storage
elements, GFAL API [6] has been used. In this way it is
possible to access data, reading the whole files, or a part of
them, directly where they are stored without moving them
to Grid elements that actually run the calculation. Thanks
to a Public Key Infrastructure (PKI) [7], which provides
X.509 certificate based authentications, this solution
allows to preserve user privacy and data security.

Results and discussion
An application able to perform the computation and the
analysis of gene expression on large datasets of microar-
rays has been developed using dChip algorithms. In
details, concerning pre-analysis, the invariant-set method
has been used for normalization and PM-MM difference
model or PM-only models can be chosen for genes expres-
sion calculation. Original dChip functionalities like filter-
ing, differentially expressed genes (compare samples)
discovery and clustering are provided by Module 3. Cus-
tomized analyses can be performed by setting specific
parameters inside the input file.

By modifying the Makefile with the appropriate options it
is very easy to obtain different versions of the application

Organization of dChip in different modulesFigure 1
Organization of dChip in different modules. A graphi-
cal representation of developed dChip modules is shown. 
The original software was divided into three different mod-
ules concerning respectively (i) normalization, (ii) expression 
values computation, (iii) filtering, differentially expressed 
genes extraction and clustering.
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depending on the kind of infrastructure chosen for the
analysis: standalone Linux, MPI or Grid-enabled versions.

Starting from the developed application different tests
have been performed in order to validate results and com-
pare performances obtained on different infrastructures.
To this goal, tests have been divided into two different cat-
egories:

• Validation Tests

• Performance Tests

Validation Tests
In order to validate the results obtained with the devel-
oped software, a small dataset coming from a published
study [8] has been used for the analysis. The considered
case study concerns the comparison of results obtained
from separated analyses of HUVEC (Human Umbilical
Vein Endothelial Cells) and Fibroblasts, derived from
same donors, treated with Interferon-α (INF-α), to the
purpose of identifying interferon's effects on transcrip-
tome of endothelial cells.

The dataset is divided in two parts with the following fea-
tures:

• ChipType: Affimetrix GeneChip HU-133A

• Origin: HUVEC, Human Umbilical Vein Endothelial
Cells

• Genes: 22283

• Dataset dimension: 103 MB

• Number of microrarrays: 10

• ChipType: Affimetrix GeneChip HU-133A

• Origin: FB, Human Umbilical Fibroblasts

• Genes: 22283

• Dataset dimension: 54.3 MB

• Number of microrarrays: 5

The datasets are both composed by baseline and experi-
ment arrays (respectively untreated and treated with INF-
α) and for each of them the following steps, according to
the original analysis, have been performed:

• Normalization: Invariant-set method

• Model-based expression: PM Only model [9,10]

• Extraction of differentially expressed genes: fold change
with threshold 2.

As a first test, microarrays have been analyzed using both
original and modified versions of dChip (standalone
Linux version, parallel and grid-enabled). The same
options have been set in all tests in order to compare final
results.

Tables 1 and 2 and Figures 2 and 3 represent the mean val-
ues of gene expressions, computed respectively on the
baseline and experiment arrays on HUVEC data, coming
from developed and original dChip versions. We notice
that all the new dChip versions give the same results.
There is a really small difference between Windows and
Linux versions of dChip. This is probably due to the dif-
ferent approximations between compilers on Windows
and Linux platforms. However, these little differences do
not affect the global final result that can be considered
pretty much the same.

As a second test, the same analysis has been performed by
using R/Bioconductor software using both GCRMA [11]
and RMA [12] algorithms and results have been compared
with the previous obtained with dChip.

This comparison is principally for completeness purposes
since the dataset was published with results coming from
an R/Bioconductor analysis.

Although there are currently many different methods for
processing and summarizing probe level data from
Affymetrix oligonucleotide arrays, R/Bioconductor and
dChip are two of the most popular methods that consist-
ently produce the best agreement between oligo array and
RT-PCR data for medium and high intensity genes
[13,14]. It is known that often expression values com-
puted with dChip and RMA algorithms show similar
results, while results are different for GCRMA.

Tables 3 and 4 and Figures 2 and 3 show the comparison
between dChip Linux and R/Bioconductor results
obtained on the former data. It's observable that dChip
and RMA present similar trends conversely to GCRMA
results.

Ultimately, results of the entire analysis related to differ-
ences between HUVEC and FB are illustrated. We have
found that using all dChip developed versions, in
HUVEC, 239 genes were up-regulated (> 2-fold increase)
by IFN, including genes involved in the host response to
RNA viruses, inflammation, and apoptosis. Interestingly,
35 genes showed a > 4-fold higher induction compared
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Table 1: Comparison of baseline arrays results using all dChip implementations

probe set Gene Name Linux Cluster Grid Windows

33304_at interferon stimulated gene 20 kDa 284.20 284.20 284.20 284.02
823_at chemokine (C-X3-C motif) ligand 1 47.16 47.16 47.16 47.09

200606_at desmoplakin (DPI, DPII) 97.68 97.68 97.68 97.64
202269_x_at guanylate binding protein 1 220.40 220.40 220.40 220.36
202270_at guanylate binding protein 1 152.16 152.16 152.16 152.31

202687_s_at tumor necrosis factor member 10 188.82 188.82 188.82 189.00
202688_at tumor necrosis factor member 10 334.35 334.35 334.35 334.48
202748_at guanylate binding prot 2, interf-inducible 247.40 247.40 247.40 247.66
202869_at 2',5'-oligoadenylate synthetase 1 209.99 209.99 209.99 209.87

203148_s_at tripartite motif-containing 14 203.86 203.86 203.86 203.81
203153_at interferon-induced protein 84.72 84.72 84.72 84.89

203236_s_at lectin, galactoside-binding, soluble, 9 277.38 277.38 277.38 277.33
203595_s_at retinoic acid- and interferon-inducible prot 296.66 296.66 296.66 296.56
204070_at retinoic acid receptor responder 3 95.42 95.42 95.42 95.26
204439_at chromosome 1 open reading frame 29 50.84 50.84 50.84 50.74
204533_at chemokine (C-X-C motif) ligand 10 97.55 97.55 97.55 97.53

204769_s_at transporter 2, ATP-binding cassette 241.98 241.98 241.98 241.99
204972_at 2'-5'-oligoadenylate synthetase 2 61.14 61.14 61.14 61.07
204994_at myxovirus (influenza virus) resistance 2 63.91 63.91 63.91 63.85
205660_at 2'-5'-oligoadenylate synthetase-like 113.84 113.84 113.84 113.87
206271_at toll-like receptor 3 92.93 92.93 92.93 92.72

206503_x_at promyelocytic leukemia 288.58 288.58 288.58 288.80
206553_at 2'-5'-oligoadenylate synthetase 2 55.00 55.00 55.00 55.03

207375_s_at interleukin 15 receptor, alpha 230.35 230.35 230.35 230.40
207928_s_at glycine receptor, alpha 3 1.15 1.15 1.15 0.95
208012_x_at SP110 nuclear body protein 291.32 291.32 291.32 290.87
208392_x_at SP110 nuclear body protein 155.09 155.09 155.09 155.13
208436_s_at interferon regulatory factor 7 259.61 259.61 259.61 259.68
209546_s_at apolipoprotein L, 1 493.11 493.11 493.11 492.97
209969_s_at signal transd and activator of transcription 1 241.42 241.42 241.42 241.65
210029_at indoleamine-pyrrole 2,3 dioxygenase 99.88 99.88 99.88 99.70
210163_at chemokine (C-X-C motif) ligand 11 27.88 27.88 27.88 27.81

210797_s_at 2'-5'-oligoadenylate synthetase-like 83.82 83.82 83.82 83.70
210846_x_at tripartite motif-containing 14 38.65 38.65 38.65 38.51
211013_x_at promyelocytic leukemia 292.75 292.75 292.75 292.74
211122_s_at chemokine (C-X-C motif) ligand 11 40.68 40.68 40.68 40.83
213261_at KIAA0342 gene product 135.93 135.93 135.93 135.74

213716_s_at secreted and transmembrane 1 120.94 120.94 120.94 120.72
213797_at vipirin 74.26 74.26 74.26 74.25
214038_at chemokine (C-C motif) ligand 8 47.63 47.63 47.63 47.56
214059_at interferon-induced protein 44 68.26 68.26 68.26 68.22

214329_x_at ESTs 338.08 338.08 338.08 338.22
218400_at 2'-5'-oligoadenylate synthetase 3 242.05 242.05 242.05 242.01
219011_at pleckstrin homology domain 139.71 139.71 139.71 139.58
219364_at likely ortholog of mouse D11lgp2 92.46 92.46 92.46 92.17
219593_at peptide transporter 3 105.99 105.99 105.99 106.00
219684_at 28 kD interferon responsive protein 71.72 71.72 71.72 71.69
219691_at hypothetical protein FLJ20073 85.39 85.39 85.39 85.33
219863_at cyclin-E binding protein 1 212.87 212.87 212.87 212.73
220104_at likely ortholog of rat zinc-finger antivir prot 86.64 86.64 86.64 86.58

221087_s_at apolipoprotein L, 3 211.18 211.18 211.18 242.92
221371_at tumor necrosis factor member 18 258.60 258.60 258.60 258.67

221653_x_at apolipoprotein L, 2 286.52 286.52 286.52 286.22
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Table 2: Comparison of experiment arrays results using all dChip implementations

probe set Gene Name Linux Cluster Grid Windows

33304_at interferon stimulated gene 20 kDa 2244.54 2244.54 2244.54 2246.75
823_at chemokine (C-X3-C motif) ligand 1 303.39 303.39 303.39 303.30

200606_at desmoplakin (DPI, DPII) 459.07 459.07 459.07 459.40
202269_x_at guanylate binding protein 1 3651.44 3651.44 3651.44 3654.06
202270_at guanylate binding protein 1 2282.05 2282.05 2282.05 2283.43

202687_s_at tumor necrosis factor member 10 2133.03 2133.03 2133.03 2131.72
202688_at tumor necrosis factor member 10 3309.36 3309.36 3309.36 3311.57
202748_at guanylate binding prot 2, interf-inducible 1007.71 1007.71 1007.71 1007.97
202869_at 2',5'-oligoadenylate synthetase 1 3112.07 3112.07 3112.07 3112.08

203148_s_at tripartite motif-containing 14 1774.94 1774.94 1774.94 1773.47
203153_at interferon-induced protein 6863.81 6863.81 6863.81 6853.83

203236_s_at lectin, galactoside-binding, soluble, 9 1540.56 1540.56 1540.56 1540.34
203595_s_at retinoic acid- and interfer-inducible prot 2144.76 2144.76 2144.76 2144.24
204070_at retinoic acid receptor responder 3 314.03 314.03 314.03 314.49
204439_at chromosome 1 open reading frame 29 1982.76 1982.76 1982.76 1980.53
204533_at chemokine (C-X-C motif) ligand 10 3018.77 3018.77 3018.77 3015.67

204769_s_at transporter 2, ATP-binding cassette 971.37 971.37 971.37 973.42
204972_at 2'-5'-oligoadenylate synthetase 2 2173.07 2173.07 2173.07 2172.05
204994_at myxovirus (influenza virus) resistance 2 2312.15 2312.15 2312.15 2312.96
205660_at 2'-5'-oligoadenylate synthetase-like 2793.93 2793.93 2793.93 2792.91
206271_at toll-like receptor 3 905.37 905.37 905.37 905.16

206503_x_at promyelocytic leukemia 910.07 910.07 910.07 909.93
206553_at 2'-5'-oligoadenylate synthetase 2 873.65 873.65 873.65 873.49

207375_s_at interleukin 15 receptor, alpha 1114.76 1114.76 1114.76 1114.91
207928_s_at glycine receptor, alpha 3 2.37 2.37 2.37 2.65
208012_x_at SP110 nuclear body protein 2436.07 2436.07 2436.07 2435.94
208392_x_at SP110 nuclear body protein 842.89 842.89 842.89 842.75
208436_s_at interferon regulatory factor 7 3397.64 3397.64 3397.64 3397.97
209546_s_at apolipoprotein L, 1 2170.99 2170.99 2170.99 2170.16
209969_s_at signal transd and activator of transcription 1 1642.44 1642.44 1642.44 1642.01
210029_at indoleamine-pyrrole 2,3 dioxygenase 814.88 814.88 814.88 814.71
210163_at chemokine (C-X-C motif) ligand 11 2400.30 2400.30 2400.30 2400.22

210797_s_at 2'-5'-oligoadenylate synthetase-like 2210.17 2210.17 2210.17 2210.97
210846_x_at tripartite motif-containing 14 139.55 139.55 139.55 139.69
211013_x_at promyelocytic leukemia 891.32 891.32 891.32 892.07
211122_s_at chemokine (C-X-C motif) ligand 11 2835.46 2835.46 2835.46 2829.05
213261_at KIAA0342 gene product 598.16 598.16 598.16 598.27

213716_s_at secreted and transmembrane 1 1844.02 1844.02 1844.02 1846.77
213797_at vipirin 4883.14 4883.14 4883.14 4882.36
214038_at chemokine (C-C motif) ligand 8 209.79 209.79 209.79 209.81
214059_at interferon-induced protein 44 417.94 417.94 417.94 418.01

214329_x_at ESTs 2344.63 2344.63 2344.63 2348.62
218400_at 2'-5'-oligoadenylate synthetase 3 1695.06 1695.06 1695.06 1694.47
219011_at pleckstrin homology domain 462.15 462.15 462.15 462.03
219364_at likely ortholog of mouse D11lgp2 828.68 828.68 828.68 830.36
219593_at peptide transporter 3 1005.54 1005.54 1005.54 1006.65
219684_at 28 kD interferon responsive protein 792.34 792.34 792.34 793.37
219691_at hypothetical protein FLJ20073 1068.37 1068.37 1068.37 1068.61
219863_at cyclin-E binding protein 1 2329.30 2329.30 2329.30 2332.30
220104_at likely ortholog of rat zinc-finger antivir prot 547.91 547.91 547.91 548.08

221087_s_at apolipoprotein L, 3 1547.18 1547.18 1547.18 1570.80
221371_at tumor necrosis factor member 18 821.30 821.30 821.30 820.92

221653_x_at apolipoprotein L, 2 1495.00 1495.00 1495.00 1496.70
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with human fibroblasts. Obviously, because the results of
the published study had been obtained using GCRMA
algorithm, they are not exactly the same of dChip's. These
show 175 genes up-regulated by IFNs in HUVEC and 41
genes with a > 5-fold higher induction compared with
human fibroblasts. However it's interesting to notice that
quite similar results have been found.

In particular (Table 5) we have found that CXCL11
(chemokine (C-X-C motif) ligand 11) is selectively
induced by IFN-α along with other genes associated with
angiogenesis regulation, including CXCL10, TRAIL, and
guanylate-binding protein 1.

Performance Tests
These tests, although far from any biological meaning,
have the only purpose of comparing performances using
a large dataset on different environments. In details sev-
eral application tests have been performed on both cluster
and Grid environments using different values of paralleli-
zation rate and final results have been compared.

In order to create a large data set for testing purposes, the
on-line public repository GEO [15] has been used. A data-
set of 1000 HG-U133A Breast Cancer microarrays has
been made available. It shows the following features:

• ChipType: Affimetrix GeneChip HU-133A

• Origin: Breast Cancer

• Genes: 22283

• Dataset dimension: ~12 GB

• Number of microrarray: 1000

The performance results have been obtained by calculat-
ing the average of the execution times of three independ-
ent executions of the application on the same dataset.

The tests on the cluster environment have been performed
using the MPI implementation of dChip on
Michelangelo, the LITBIO project cluster [16] dedicated to

Trend of (mean) expression values of baseline HUVEC arrays using R/Bioconductor and dChip algorithmsFigure 2
Trend of (mean) expression values of baseline HUVEC arrays using R/Bioconductor and dChip algorithms. A 
graphical representation of results presented on Table 1 and 3 is shown. It's worth noting that dChip versions results are over-
lapped and they have a similar trend compared to RMA algorithm.
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bioinformatics applications requiring great computa-
tional efforts.

Grid tests have been performed using the gLite middle-
ware on the BIOMED Virtual Organization [17] of the
EGEE (Enabling Grids for E-sciencE) infrastructure [18].
In this case data had been previously uploaded on several
remote and distributed storage elements and have been
analyzed submitting more parallel jobs through oppor-
tune strategies.

Concerning Grid tests, a not-MPI parallel implementation
has been used, because MPI jobs are unstable on the gLite
middleware, at the present time. More parallel jobs can be
submitted and monitored using ad hoc scripts.

Two kinds of test have been carried out: (i) scalability on
the number of parallel jobs, (ii) scalability on the number
of microarrays.

As a first test, a subset of 100 microarrays has been ana-
lyzed to compare the performances of the two parallel
modules in changing the parallelization rate, both on
cluster and grid implementation. In detail, four tests have

been run using respectively 5, 10, 15 and 20 parallel jobs.
By comparing results, we can observe that Module 1 has a
better scalability (Figures 4A and 5A) due to the different
parallelization strategy adopted. In fact, while in the first
module there is a reduction in time for all the three execu-
tion steps (file opening, normalization and output writ-
ing), in the Module 2 (Figures 4B and 5B) we have a
reduction only for gene expression calculation whereas
file opening and output writing remain constant. Through
the comparison of cluster and Grid executions we can
notice that this trend is approximately the same in both
conditions. Eventually, the speedup ratio (S(N) = T(1)/
T(N), where T(1) is the execution time on a single proces-
sor and T(N) the execution time on N processors), has
been calculated for the cluster tests with the purpose to
estimate the parallelization efficiency. As shown in Table
6, it is worth noting that for 100 microarrays the paralleli-
zation has a quite good result up to 15 parallel jobs.

As a second test, the whole 1000 microarrays dataset has
been analyzed on the Grid, by running the parallel dChip
version using 10 parallel jobs, in order to investigate the
trend of performances according to the dataset dimen-
sions. In Figure 6 we can see the results concerning respec-

Trend of (mean) expression values of experiment HUVEC arrays using R/Bioconductor and dChip algorithmsFigure 3
Trend of (mean) expression values of experiment HUVEC arrays using R/Bioconductor and dChip algorithms. 
A graphical representation of results presented on Table 2 and 4 is shown. It's worth noting that all dChip versions results are 
overlapped and they have a similar trend compared to RMA algorithm.
Page 8 of 15
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Table 3: Comparison of baseline arrays results using R/Bioconductor and dChip implementation

probe set Gene Name GCRMA RMA dChip Linux

33304_at interferon stimulated gene 20 kDa 203.01 284.72 284.20
823_at chemokine (C-X3-C motif) ligand 1 4.93 66.60 47.16

200606_at desmoplakin (DPI, DPII) 12.38 97.36 97.68
202269_x_at guanylate binding protein 1 250.15 192.46 220.40
202270_at guanylate binding protein 1 220.16 131.76 152.16

202687_s_at tumor necrosis factor member 10 75.06 104.00 188.82
202688_at tumor necrosis factor member 10 464.46 316.93 334.35
202748_at guanylate binding protein 2, interferon-inducible 409.70 305.82 247.40
202869_at 2',5'-oligoadenylate synthetase 1 5.81 75.13 209.99

203148_s_at tripartite motif-containing 14 38.57 96.29 203.86
203153_at interferon-induced protein 7.75 58.02 84.72

203236_s_at lectin, galactoside-binding, soluble, 9 146.27 176.17 277.38
203595_s_at retinoic acid- and interferon-inducible protein 50.34 169.34 296.66
204070_at retinoic acid receptor responder 3 16.93 90.63 95.42
204439_at chromosome 1 open reading frame 29 5.06 39.15 50.84
204533_at chemokine (C-X-C motif) ligand 10 4.16 76.22 97.55

204769_s_at transporter 2, ATP-binding cassette 50.42 180.53 241.98
204972_at 2'-5'-oligoadenylate synthetase 2 4.97 56.39 61.14
204994_at myxovirus (influenza virus) resistance 2 3.85 74.62 63.91
205660_at 2'-5'-oligoadenylate synthetase-like 3.64 101.76 113.84
206271_at toll-like receptor 3 5.82 46.99 92.93

206503_x_at promyelocytic leukemia 114.42 292.54 288.58
206553_at 2'-5'-oligoadenylate synthetase 2 19.89 90.71 55.00

207375_s_at interleukin 15 receptor, alpha 17.48 219.39 230.35
207928_s_at glycine receptor, alpha 3 8.48 14.27 1.15
208012_x_at SP110 nuclear body protein 122.80 250.06 291.32
208392_x_at SP110 nuclear body protein 8.20 94.29 155.09
208436_s_at interferon regulatory factor 7 45.15 138.04 259.61
209546_s_at apolipoprotein L, 1 69.01 158.61 493.11
209969_s_at signal transducer and activator of transcription 1 142.29 210.42 241.42
210029_at indoleamine-pyrrole 2,3 dioxygenase 5.07 105.59 99.88
210163_at chemokine (C-X-C motif) ligand 11 7.94 22.10 27.88

210797_s_at 2'-5'-oligoadenylate synthetase-like 6.44 80.66 83.82
210846_x_at tripartite motif-containing 14 9.07 34.13 38.65
211013_x_at promyelocytic leukemia 161.42 279.82 292.75
211122_s_at chemokine (C-X-C motif) ligand 11 7.12 23.88 40.68
213261_at KIAA0342 gene product 10.03 120.40 135.93

213716_s_at secreted and transmembrane 1 8.37 220.23 120.94
213797_at vipirin 4.70 33.70 74.26
214038_at chemokine (C-C motif) ligand 8 8.16 39.84 47.63
214059_at interferon-induced protein 44 7.65 46.42 68.26

214329_x_at ESTs 104.51 62.56 338.08
218400_at 2'-5'-oligoadenylate synthetase 3 25.02 128.86 242.05
219011_at pleckstrin homology domain 5.92 81.93 139.71
219364_at likely ortholog of mouse D11lgp2 4.44 81.92 92.46
219593_at peptide transporter 3 3.52 129.28 105.99
219684_at 28 kD interferon responsive protein 3.66 55.44 71.72
219691_at hypothetical protein FLJ20073 48.86 66.73 85.39
219863_at cyclin-E binding protein 1 8.03 64.18 212.87
220104_at likely ortholog of rat zinc-finger antiviral protein 18.28 70.07 86.64

221087_s_at apolipoprotein L, 3 204.63 272.26 211.18
221371_at tumor necrosis factor member 18 98.32 354.34 258.60

221653_x_at apolipoprotein L, 2 60.81 153.69 286.52
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Table 4: Comparison of experiment arrays results using R/Bioconductor and dChip implementation

probe set Gene Name GCRMA RMA dChip Linux

33304_at interferon stimulated gene 20 kDa 3196.51 2268.74 2244.54
823_at chemokine (C-X3-C motif) ligand 1 94.32 199.31 303.39

200606_at desmoplakin (DPI, DPII) 346.10 472.57 459.07
202269_x_at guanylate binding protein 1 9812.82 4339.89 3651.44
202270_at guanylate binding protein 1 6437.35 2278.30 2282.05

202687_s_at tumor necrosis factor member 10 2156.88 1550.21 2133.03
202688_at tumor necrosis factor member 10 7854.88 3398.70 3309.36
202748_at guanylate binding protein 2, interferon-inducible 2345.96 1250.53 1007.71
202869_at 2',5'-oligoadenylate synthetase 1 3531.07 2325.40 3112.07

203148_s_at tripartite motif-containing 14 2521.04 1435.02 1774.94
203153_at interferon-induced protein 15412.19 8556.41 6863.81

203236_s_at lectin, galactoside-binding, soluble, 9 1711.84 847.55 1540.56
203595_s_at retinoic acid- and interferon-inducible protein 2012.55 2181.61 2144.76
204070_at retinoic acid receptor responder 3 211.37 292.39 314.03
204439_at chromosome 1 open reading frame 29 3293.52 2515.21 1982.76
204533_at chemokine (C-X-C motif) ligand 10 3827.84 3009.14 3018.77

204769_s_at transporter 2, ATP-binding cassette 351.22 608.05 971.37
204972_at 2'-5'-oligoadenylate synthetase 2 2566.06 1918.87 2173.07
204994_at myxovirus (influenza virus) resistance 2 1879.30 1864.21 2312.15
205660_at 2'-5'-oligoadenylate synthetase-like 2757.19 3007.87 2793.93
206271_at toll-like receptor 3 572.08 560.92 905.37

206503_x_at promyelocytic leukemia 737.59 913.65 910.07
206553_at 2'-5'-oligoadenylate synthetase 2 315.50 323.83 873.65

207375_s_at interleukin 15 receptor, alpha 438.00 1020.22 1114.76
207928_s_at glycine receptor, alpha 3 8.43 14.61 2.37
208012_x_at SP110 nuclear body protein 4220.13 2720.23 2436.07
208392_x_at SP110 nuclear body protein 347.25 510.43 842.89
208436_s_at interferon regulatory factor 7 2270.19 2097.07 3397.64
209546_s_at apolipoprotein L, 1 1379.27 915.53 2170.99
209969_s_at signal transducer and activator of transcription 1 3157.23 2027.40 1642.44
210029_at indoleamine-pyrrole 2,3 dioxygenase 833.17 1133.97 814.88
210163_at chemokine (C-X-C motif) ligand 11 4702.03 2094.38 2400.30

210797_s_at 2'-5'-oligoadenylate synthetase-like 3022.68 2622.26 2210.17
210846_x_at tripartite motif-containing 14 20.39 70.48 139.55
211013_x_at promyelocytic leukemia 952.73 861.97 891.32
211122_s_at chemokine (C-X-C motif) ligand 11 6782.66 2521.40 2835.46
213261_at KIAA0342 gene product 184.92 481.56 598.16

213716_s_at secreted and transmembrane 1 924.99 1132.93 1844.02
213797_at vipirin 9384.39 4037.25 4883.14
214038_at chemokine (C-C motif) ligand 8 131.65 153.26 209.79
214059_at interferon-induced protein 44 460.99 417.83 417.94

214329_x_at ESTs 1651.68 566.67 2344.63
218400_at 2'-5'-oligoadenylate synthetase 3 1914.27 2042.07 1695.06
219011_at pleckstrin homology domain 33.03 216.27 462.15
219364_at likely ortholog of mouse D11lgp2 23.39 211.10 828.68
219593_at peptide transporter 3 678.07 754.28 1005.54
219684_at 28 kD interferon responsive protein 678.29 651.96 792.34
219691_at hypothetical protein FLJ20073 1761.43 914.96 1068.37
219863_at cyclin-E binding protein 1 2191.56 1844.42 2329.30
220104_at likely ortholog of rat zinc-finger antiviral protein 500.61 427.62 547.91

221087_s_at apolipoprotein L, 3 1873.08 1325.73 1547.18
221371_at tumor necrosis factor member 18 787.94 1269.50 821.30

221653_x_at apolipoprotein L, 2 520.21 609.52 1495.00
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Table 5: induction of IFN-α on HUVEC respect to Human Fibroblasts

probe set Gene Name HUVEC/FB fold change increment

33304_at interferon stimulated gene 20 kDa 3.61
823_at chemokine (C-X3-C motif) ligand 1 8.88
200606_at desmoplakin (DPI, DPII) 4
202269_x_at guanylate binding protein 1, interferon-inducible 3.17
202270_at guanylate binding protein 1, interferon-inducible 3.79
202687_s_at tumor necrosis factor (ligand) superfamily, member 10 5.37
202688_at tumor necrosis factor (ligand) superfamily, member 10 12.49
202748_at guanylate binding protein 2, interferon-inducible 4.55
202869_at 2',5'-oligoadenylate synthetase 1, 40/46 kDa 6.69
203148_s_at tripartite motif-containing 14 3.34
203153_at interferon-induced protein with tetratricopeptide repeats 1 3.18
203236_s_at lectin, galactoside-binding, soluble, 9 (galectin 9) 6.49
203595_s_at retinoic acid- and interferon-inducible protein (58 kD) 3.67
204070_at retinoic acid receptor responder (tazarotene induced) 3 5.09
204439_at chromosome 1 open reading frame 29 5.53
204533_at chemokine (C-X-C motif) ligand 10 16.73
204769_s_at transporter 2, ATP-binding cassette, sub-family B (MDR/TAP) 5.04
204972_at 2'-5'-oligoadenylate synthetase 2, 69/71 kDa 12.99
204994_at myxovirus (influenza virus) resistance 2 (mouse) 3.71
205660_at 2'-5'-oligoadenylate synthetase-like 3.5
206271_at toll-like receptor 3 3.06
206503_x_at promyelocytic leukemia 3.38
206553_at 2'-5'-oligoadenylate synthetase 2, 69/71 kDa 9.08
207375_s_at interleukin 15 receptor, alpha 4.1
207928_s_at glycine receptor, alpha 3 4.52
208012_x_at SP110 nuclear body protein 3.11
208392_x_at SP110 nuclear body protein 5.67
208436_s_at interferon regulatory factor 7 4.09
209546_s_at apolipoprotein L, 1 4.15
209969_s_at signal transducer and activator of transcription 1, 91 kDa 4.17
210029_at indoleamine-pyrrole 2,3 dioxygenase 8
210163_at chemokine (C-X-C motif) ligand 11 76.55
210797_s_at 2'-5'-oligoadenylate synthetase-like 12.49
210846_x_at tripartite motif-containing 14 4.91
211013_x_at promyelocytic leukemia 3.5
211122_s_at chemokine (C-X-C motif) ligand 11 19.03
213261_at KIAA0342 gene product 3.97
213716_s_at secreted and transmembrane 1 7.2
213797_at Vipirin 5.06
214038_at chemokine (C-C motif) ligand 8 3.57
214059_at interferon-induced protein 44 4.58
214329_x_at ESTs, Weakly similar to cytokine receptor-like factor 2 3.88
218400_at 2'-5'-oligoadenylate synthetase 3, 100 kDa 4.6
219011_at pleckstrin homology domain containing, family A member 4 4.28
219364_at likely ortholog of mouse D11lgp2 3.92
219593_at peptide transporter 3 4.54
219684_at 28 kD interferon responsive protein 6.4
219691_at hypothetical protein FLJ20073 4.46
219863_at cyclin-E binding protein 1 7.68
220104_at likely ortholog of rat zinc-finger antiviral protein 5.39
221087_s_at apolipoprotein L, 3 5.47
221371_at tumor necrosis factor (ligand) superfamily, member 18 3.67
221653_x_at apolipoprotein L, 2 3.77

The induction of IFN-α on HUVEC respect to Human Fibroblasts is shown. In particular the up-regulated HUVEC genes with fold induction more 
then 3 higher compared with Fibroblast's are shown. The genes associated with angiogenesis induction are marked with bold text. As we expected, 
results show that CXCL11 gene is the most discriminator.
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tively the Module 1 and Module 2 executions. Cluster
performances show better results than the Grid ones.

Actually the great advantage for researchers in using Grid
is the possibility to store a large amount of data, to run
complex algorithms and to access all data shared by Grid
virtual communities, using remote resources.

This feature has a great relevance especially for small lab-
oratories or for researchers that, due to the high cost of
producing microarray data, cannot perform analyses
using large datasets (a necessary condition to get better
results). The access to a Grid environment makes it possi-
ble to get access to all the datasets made available by the
community and to perform more accurate analyses.

Scalability on cluster environment by increasing parallelization rateFigure 4
Scalability on cluster environment by increasing parallelization rate. The different scalability of dChip MPI version 
run on LITBIO cluster using 100 microarrays respectively for (A) module 1 (normalization), (B) module2 (model-based expres-
sion computation) is shown. In particular the mean execution times coming from three independent executions of respectively 
5, 10, 15 and 20 parallel jobs are represented.

Scalability on Grid environment by increasing parallelization rateFigure 5
Scalability on Grid environment by increasing parallelization rate. The different scalability of dChip Grid version run 
within BIOMED Virtual Organization using 100 microarrays respectively for (A) module 1 (normalization), (B) module2 
(model-based expression computation) is shown. In particular the mean execution times coming from three independent exe-
cutions of respectively 5, 10, 15 and 20 parallel jobs are represented.
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As previously said, the Grid provides several advantages
related to security aspects as well. Using the Grid certifi-
cate-based authentication data are safe from possible
attacks to privacy and security.

Finally, the integration of this application into a Grid-ena-
bled portal provides a simple graphical user interface to
run the application. In this way, researchers do not need
any particular hardware or software installed locally but
only a web connection to the portal.

Actually, besides the cost of producing data, another rele-
vant issue concerns the analysis of large datasets using
standalone applications running on local hardware. The
use of such applications implies the existence powerful
computers available locally, and, often, this is not possi-
ble, even in large laboratories. The previously explained

analysis related to 1000 microarrays is an example of
experiment that could not be performed using standalone
applications, even on the most recent powerful comput-
ers.

Our solution resolves this problem and provides users
with a web-based service able to launch more analyses in
a parallel way, easily monitoring the status of executions
directly from the portal.

Conclusion
A scalable way to analyze large microarray datasets has
been presented. To do that, we have ported existing tools
to High Performance and Grid Computing environments.
dChip software has been ported on Linux platforms and
modified, by using appropriate parallelization strategies,
to permit its execution on both cluster environments and

Table 6: Mean execution times and speedup ratio analysing 100 microarrays on cluster environment

1 job 5 job 10 job 15 job 20 job

Module 1 285 sec 63.80 sec 35.20 sec 26.40 sec 25.65 sec
Module 2 344 sec 81.60 sec 58.00 sec 44.47 sec 39.55 sec
Module 1+2 629 sec 145.40 sec 93.20 sec 70.87 sec 65.20 sec

speedup ratio module 1 4.47 8.09 10.79 11.11
speedup ratio module 2 4.22 5.93 7.74 8.69
speedup ratio module 1+2 4.33 6.75 8.88 9.65

The table shows the mean execution times coming from three different execution of dChip MPI version run on LITBIO cluster using respectively 1, 
5, 10, 15, 20 parallel jobs to compute the expression values of 100 microarrays. To estimate the parallelization efficiency, the speedup ratio (S(N) = 
T(1)/T(N), where T(1) is the execution time on a single processor and T(N) the execution time on N processors) was calculated.

Scalability on Grid environment by increasing microarrays' numberFigure 6
Scalability on Grid environment by increasing microarrays' number. The different scalability on microarray's number 
of dChip Grid version run within BIOMED Virtual Organization using 10 parallel jobs respectively for (A) module 1 (normaliza-
tion), (B) module2 (model-based expression computation) is shown. In particular the mean execution times coming from three 
independent executions to analyse respectively 50, 100, 500 and 1000 microarrays are represented.
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Grid infrastructures. The added value provided by the use
of Grid technologies is the possibility of exploiting both
computational and data Grids infrastructures to analyze
large datasets of distributed data. The software has been
successfully validated through the comparison with the
original standalone Windows version of dChip. Perform-
ance tests were performed in order to investigate the
improvements on performances related to the adopted
strategies for parallelization. Moreover these tests have
been used to compare cluster and Grid performances too.
As result we found that parallelization gives quite good
results in terms of execution times, especially for the first
module. Furthermore we found that Grid executions have
longer execution times rather than cluster ones. But it is
worth noting that the relevance related to the use of Grid
computing for the presented application is principally
focused on the opportunity of sharing data. This is done
through different research groups and exploiting distrib-
uted computational resources rather than on the improve-
ment of performances.

Availability and requirements
• Project name: grid-dChip

• Project home page: http://www.bio.dist.unige.it/down
load/public/bioSoft/dChip/download_form

A web-portal version of the software is accessible within
the LITBIO portal.

• Operating system(s): Linux

• Programming language: C++

• Other requirements: MPICH2 library (cluster version)

• License: GNU GPL
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