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Abstract—When dynamic network exhibits extremely 

complex behavior and keeps on changing all the time, the 

energy efficiency is the most important key-point of routing 

algorithm. Many empirical measurements are inadequate to 

represent dynamic networks. However, the quotient space 

theory is an in-depth treatment of hierarchical problem 

solving, and powerful abilities of representation with 

different granularities. In this paper, we present a novel 

approach based on quotient space theory to reduce the 

computation complexity of routing algorithm in the 

dynamic network. Firstly, we analyze the structure of 

dynamic network and use community-based multi-granular 

representation to represent the network. Then we develop a 

routing algorithm based on multi-granular spaces. Finally, 

we compare the proposed algorithm with several alternative 

methods and the results show that our algorithm clearly 

outperforms the comparison methods in the road network. 

 

Index Terms—Quotient Space Theory; Granular 

Computing; Multi-Granularity; Network Structure Analysis; 

Network Routing 

 

I. INTRODUCTION 

Real-world social systems have been modeled and 

studied as networks. Each vertex of the network 

corresponds to an individual object of the system and the 

edge symbolizes the interaction between these individual 

entities. e.g. Internet, World Wide Web, online social 

network (Facebook, Twitter), and intelligent trans-

portation system. Dynamic route guidance systems help 

to tackle many social network transportation problems, 

such as vehicle navigation. On-line route guidance is one 

of the most desirable features in intelligent transportation 

system. Dynamic route guidance systems compute and 

provide routes with minimum travel time by taking into 

account the rapid changes in the network traffic 

conditions. 

In the computer literature, dynamic route guidance is 

known as the shortest path problem. The shortest path 

problem remains a well-researched area and there are 

number of algorithms to solve it such as Dijkstra’s 

algorithm, Floyd algorithm, A* algorithm and their many 

improved variants [1,2]. However, in dynamic route 

guidance systems the optimal route between two vertices 

needs to be computed in a fast and efficient manner. 

Empirical results indicate that the computation time 

becomes unacceptable when the scale of the network 

becomes large. It makes the most conventional routing 

algorithms unsuitable when applied directly to dynamic 

networks. At one extreme, all pairs of shortest paths are 

precomputed and stored in a distance table and routing 

process is reduced to lookup the table. However, this 

would require a large amount of storage space for a 

network, and this isn’t suit to a dynamic network. So, a 

better approach would be to pre-compute and store some 

helpful hints. It would be used later to help narrow down 

the search space and improve the search efficiency [3]. 

Hierarchical strategy has proven to be very effective in 

road navigation system [4]. 

An alternate approach forms a hierarchical abstraction 

for route finding. Hierarchical routing algorithms tend to 

restrict the route computation to some small networks, 

which are subsets of the original a road network. The 

network could be divided into various sub-networks by 

taking advantage of an interesting property of the 

network. In the literature [5] some researchers proposed a 

hierarchical routing algorithm wherein the grid sub-

network, but the algorithm doesn’t break down the search 

into multiple searches, and the routes were found to be 

about 9% longer than the shortest routes. Some 

hierarchical routing algorithms that aim to provide 

optimal routes require a large number of shortest paths 

among nodes of the network to be pre-computed and 

stored. However, pre-computation usually requires 

prohibitively large storage space [6-9]. In intelligent 

transport systems, some researchers who have proposed 

hierarchical routing algorithms recommend the formation 

of hierarchy on the basis of road types [10–15]. This is 

chiefly based on the observation that a major portion of 

all journeys lie on major roads such as highways and 

expressways, which permit faster travel. 

Current state-of-the-art dynamic routing algorithms are 

incapable of computing these updated directions in an 

acceptable time as the network size increases. This is 

particularly true for algorithms that attempt to account for 

the non-stationary aspects of dynamic networks. 

In our previous work [16], we have proposed a 

heuristic hierarchical technique to find routes in lager 

scale networks. However, that solution is applicable only 

to static network, which is inadequate to represent 

dynamic networks. In this paper, using quotient space 

theory we present a multi-granular representation model 

for partitioning a given network. In dynamic networks, 

we update local area’s structure information of the initial 

network, and apply heuristic search method to solve the 
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network routing of the local area network. Routing 

algorithm of dynamic networks based on multi-

granularity is presented. We hope this algorithm to 

substantially reduce the complexity of route computation 

in large and dynamic networks. The total complexity is 

reduced to the sum of the complexities of the individual 

searches rather than the product of complexities. 

The remainder paper is organized as follows: in section 

2, we discuss the basic idea of Community-based multi-

granular representation of network based on quotient 

space theory. In section 3, we introduce a routing 

algorithm of dynamic network based on multi-granularity. 

Section 4 evaluates the proposed approach. Section 5 

concludes the paper. 

II. COMMUNITY-BASED MULTI-GRANULAR 

REPRESENTATION OF NETWORK 

A. Quotient Space Theory 

The quotient space theory [17] combines the different 

granularities with the concept of mathematical quotient 

set and represents a problem by a triplet(X, f, T), where X 

is the set of our discussing object, namely the universe; 

(.)f
 
is the attribute function of universe X; T is the 

structure of universe X, namely the interrelations of 

elements. When we view the same universe X from a 

coarser grain size, that is, when we give an equivalence 

relation or a tolerance relation [18] R on X, we can get a 

corresponding quotient set denoted by [X], and then 

regard [X] as a new universe, we must have the 

corresponding coarse-grained space ([X], [f], [T]) called a 

quotient space of (X, f, T). In the granular world of the 

quotient space theory, the information granule is a kind of 

reflection of limited abilities that people deal with and 

store information. Dealing with one complicated problem 

and having the limited abilities, we need partition the 

problem into some simple small problems according to 

each characteristic and performance in order to deal with 

easily. 

B. Community-Based Multi-Granular Representation 

Here a network is represented by a weighted edge 

graph G(V,E,W) , where V  is the set of vertices 

representing individual objects, E V V   is the set of 

edges representing the interaction between these 

individual entities, And W  is a set of edge weights. 

Community detection methods partition the graph into 

disjoint communities. If G  is partitioned into 
cn  

communities ( , , ), 1, ,i i i i cC V E W i n , these communi-

ties have the following properties: 
1

n

i

i

V V


 , 
1

n

i

i

E E


 , 

, , ,i ji j V V    ,i jE E   1 , ci j n  , i j . In 

each community iC , iE , a subset of E, connects its nodes, 

iV . In addition to these edges, 
1

/
n

i

i

E E


 is a subset of 

edges representing the inter-community edges, which 

connect pairs of communities. 

Definition1. Equivalence relation RG is defined as  

 
, , ,

1 , | |,1

i G j i j i k j k

c

v R v v v V v C v C

i j V k n

    

   
 (1) 

Define 
1

1 1

1 1{ ,..., }nV v v  as a quotient set corresponding 

to 
GR . Let V=V0, and 0

iv be the element of V. Ranking the 

elements (nodes) of quotient set V1, we have a set denoted 

by 
1

1 1

1 1{ ,..., }nV v v  and a corresponding space denoted by 

1 1 1 1( , , )G V E W . For space ( , , )G V E W , G  is partitioned 

into 
1cn  communities 

1
( , , ), 1,2, ,i i i i cC V E W i n . For 

space 
1 1 1 1( , , )G V E W , 

iC  is reduced to a node 1

iv . 

1 1( , )i je v v  is the inter-community edges between 
iC  and 

jC . 

Then, we defined 
1GR  as 

1

2 2 2 2,i G j i jv R v v v V  , 

2 2

1,1 , | |i jv C v C i j V      and 
2

2 2

2 1{ ,..., }nV v v  as a 

quotient set corresponding to 
1GR . So, the corresponding 

space 
2 2 2 2( , , )G V E W  is constructed. 

Generally, for space ( , , )l l l lG V E W , define 
lGR  as 

l

l l

i G jv R v   , , ,l l l l

i j i jv v V v C v C      1 , | |li j V   and 

1

1 1

1 1{ ,..., }
l

l l

l nV v v


 

   as a quotient set corresponding to 

lGR . So, the corresponding space 
1 1 1 1( , , )l l l lG V E W   

 is 

constructed.  

Obviously, 
1 1 1 1( ( , , ), ( , , ),...G V E W G V E W , (k kG V , kE  

, ))kW  forms a sequence of hierarchical quotient spaces. 

Now, the elements in space ( , , )G V E W  are represented 

by a hierarchical encoding as follows. 

For vV, v is represented by a k+1-dimentional 

integral 0 1( , ,..., )kv v v v . Assume that :i ip V V  is a 

natural projection. If ( ) i

i tp v v , let the i-th coordinate of 

v  be t , i.e., iv t . It means that if v belongs to the t-th 

element of Vi, then iv t . 

In conclusion, the procedure for constructing the 

hierarchical quotient space model of network ( , , )G V E W  

is shown below. 

(1) According to equivalence relation RG, the elements 

of a weighted edge graph ( , , )G V E W  are classified into 

several equivalence classes. Based on the classification, 

we have a quotient space 
1 1 1 1( , , )G V E W . 

(2) According to equivalence relation 
1GR , the 

elements of quotient space 
1 1 1 1( , , )G V E W  are further 

classified into several equivalence classes. Then we have 

a quotient space 2 2 2 2( , , )G V E W . 

.….., 

Generally, according to equivalence relation 
lGR , the 

elements of space ( , , )l l l lG V E W  are classified into 

several equivalence classes. We have a quotient space 

1 1 1 1( , , )l l l lG V E W    .  
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The construction of quotient spaces will be ended until 

space ( , , )k k k kG V E W . 

Ranking the elements of space ( , , )G V E W , we have a 

sequence of hierarchical quotient spaces ( ( , , ),G V E W  

1 1 1 1( , , ),...G V E W , ( , , ))k k k kG V E W . Each element of space 

( , , )G V E W  has a hierarchical code 0 1( , ,..., )kv v v v , 

v V .  

Conclusion 1: 0 01 1( , ,..., ), ( , ,..., )k ks s s s t t t t V    , 

there is a feasible rout between and s and t  

, ,0i ii s t i k    , where 0 1( , ,..., )ks s s  and 

0 1( , ,..., )kt t t  are the hierarchical codes of s and t, 

respectively. 

III. ROUTING ALGORITHM OF DYNAMIC NETWORKS 

BASED ON MULTI-GRANULARITY 

Quotient space theory [17] combines the different 

granularities with the concept of mathematical quotient 

set and represents a problem. “One of the basic 

characteristics in human problem solving is the ability to 

conceptualize the world at different granularities and 

translate from one abstraction level to the others easily, 

i.e., deal with them hierarchically”. 

Let a community as an equivalence class, with quotient 

space theory to represent network decomposition, a 

community is an element of quotient set. In the quotient 

topology, edges information among communities is 

regarded as structure of quotient set. We note multiple 

vertices of a community contact with other communities 

as attribute of quotient set. So the quotient space 

1 1 1 1( , , )l l l lG V E W   
 is a hyper graph which each vertex is 

one community of network ( , , )l l l lG V E W , 0 1l k   . 

The network routing finding procedure begins from the 

comparison between the last code words in the 

hierarchical codes of the source node and the destination 

node to look for the connected path between these two 

nodes. The procedure carries out from the coarsest 

quotient space to the finest one gradually until the 

optimal path is found. 

Source node 0 1( , ,..., )ks s s s  and destination node 

0 1( , ,..., )kt t t t  in the initial network ( , , )G V E W  are 

given. Compare the last code word ks  with kt . If k ks t , 

then compare 1ks   with 1kt   until 1is   1(0 )it i k    and 

i is t , so s and t are connected in quotient space 

1 1 1( , , )i i iG V E W    and equivalent in space ( , , )i i iG V E W . 

Thus, in order to find the network routing between s and t, 

it’s needed to find the connected path between 1is   and 
1(0 )it i k    in space 1 1 1( , , )i i iG V E W    first. We may 

find a connected path 1 1( , )i ie s t   from 1is   to 1it   in 

space 1 1 1( , , )i i iG V E W   . For simplicity, assume that 

1 1 1 2( , ) ( , )i ie s t x x   , 0 1

1 1 1( ,..., )ix x x  , and 2x  

0 1

2 2( ,..., )ix x  . Inserting 1x  and 2x into (s, t), we have 

1 2( , , , )s x x t . Where the (i-1)-th coordinates of s and 1x  

(or 
2x  and t) are the same. For s and 

1x , the same 

operation is implemented, i.e., comparing 2is   with 2

1

ix   

until 1js   1

1

jx   and 
1 (0 )j jx x j i k    . Finding the 

connected path in space 
1 1 1( , , )j j jG V E W  

, it’s known 

that 1 1

1( , )j je s x   is the connected path from s to 
1x . 

Insert 1 1

1( , )j je s x   into s and
1x . The process carries out 

until the connected path is found on space ( , , )G V E W . 

For 
2x  and t , compare 2

2

ix   with 2it   until ' 1

2

jx   ' 1jt   

and ' '

2

j jx t  (0 ' )j i k   . Finding the connected path 

in space 
' 1 ' 1 ' 1( , , )j j jG V E W  

, we know that ' 1 ' 1

2( , )j je x t   

is the connected path from 
2x  to t . Insert ' 1 ' 1

2( , )j je x t   

into 
2x  and t . The procedure continues until the path is 

found in space ( , , )G V E W . 

The pseudocode of Multi-granular spaces Routing 

Algorithm can be described in figure 1. 

For dynamic network routing, we update local area 

structure information of the sequence of hierarchical 

quotient spaces 
1 1 1 1( ( , , ), ( , , ),..., ( , ,k k kG V E W G V E W G V E  

))kW . In local dynamic area sub-network, we apply 

heuristic search method to solve the network routing  

In local dynamic area sub-network, given two vertices, 

the source s  and the destination t . A* search method [19] 

uses evaluation function of vertex v : 
s te(v)=d (v)+π (v)  

to solve point-to-point shortest-path problem. 
sd (v)  

denotes the shortest path’s distance from s  to v . 
tπ (v)  

denotes an estimate on the distance from v  to t . If 

estimated value 
tπ (v)  close to the true shortest distance 

from v  to t , It reduces the searched area and visited 

vertices during query step. We refer to A* search method 

that use a feasible and optimal function tπ ( ) . 

 

Figure 1.  Pseudocode of Multi-granular spaces Routing Algorithm  

For the scanning vertex v , according to the shortest 

distance between two communities in initial network 

( , , )G V E W , we firstly identify the community C(v)  

which vertex v  belongs to. If vertex v  and vertex 
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t belong to the same community ( C(v) = C(t) ), 

according to the minimum spanning trees of the 

community, ( )t v  don’t need to compute and the shortest 

path from vertex v  to vertex t  can be searched. 

Otherwise, we compute the shortest distance 
id (v)  from 

vertex i which is one vertex of the community C(v)  to 

vertex v  and 
td ( j)  from vertex t  to vertex j which is 

one of all vertices of the community C(t)  contact with 

other communities. Let 
c(v)d (c(t))

 
is the shortest distance 

between community C(v)
 
and C(t)  in 

1 1 1 1( , , )G V E W . 

( )t v = 
id (v) +

c(v)d (c(t)) +
td ( j) . 

The pseudocode of Heuristic Search Algorithm(HSA) in 

local dynamic area sub-network can be described in 

figure 2. 

IV. EXPERIMENTAL VERIFICATION 

A. Experiment Steps 

In this Section, we evaluate the performance of 

network routing method based on multi-granular spaces 

in dynamic networks. We conduct all of our experiments 

in C++. Experiments are conducted on an Intel 3.00 GHz 

Dual Core processor with 2G RAM Window Platform. 

To illustrate practical implications of the above 

techniques, we here concentrate on road network. The 

road networks are parts of states and a district in America 

which are taken from the DIMACS Challenge homepage.  

 

Figure 2.  Pseudocode of heuristic search algorithm in local dynamic 
area sub-network 

Table 1 shows the number of nodes and edges of three 

road networks. 

To partition the network into communities, a 

modularity measure was introduced [20] in complex 

network analysis. This measure gives a value Q for a 

partition based on the density of edges inside 

communities in comparison with the density of edges 

between communities. In the case of weighted network, 

the modularity measure is defined in following equations: 

 
,

,

( / 2 ) ( , ) / 2

/ 2

i j i j i j

i j

ij

i j

Q W k k m C C m

m W

 






 (2) 

If 
i jC C , ( , )i jC C =1; otherwise, ( , )i jC C =0. 

Where 
ijW represents the weight of the edge between 

vertex i and vertex j, 
ik  is the sum of the weights of the 

edges attached to vertex i, 
iC  is the community to which 

vertex i is assigned. 

For improving computational performance, we adapt a 

heuristic method to detect community for constructing 

hierarchical representation of the social network. To 

update Q value, Q  record the change of modularity by 

adding a vertex i into a community C or removing a 

vertex i from a community C. Q  is defined as follows 

[21]: 

2

, ,

2 2

, ,

( 2 ) / 2 [( ) / 2 ]

( / 2 [( ) / 2 ] ( / 2 ) )

jk ij jk i

j k C j C j C k C

jk jk i

j k C j C k C

Q w w m w k m

w m w m k m

   

  

    

  

  

 
 (3) 

Note that the number of communities and number of 

inter-community edges play an important role in the 

efficiency of routing algorithms. 

Table 2 reports the number of communities identified 

in each level of community-based multi-granular 

representation of network using the hierarchical 

community detection algorithm. 

TABLE I.  PROPERTIES OF SAMPLE CITY ROAD NETWORK 

Description # of vertex # of edges 

Alabama 566843 661487 

California 1613325 1989149 

Texas 2073870 2584159 

TABLE II.  NUMBER OF VERTICES IN EACH LEVEL OF MULTI-
GRANULAR SPACE 

 Alabama California Texas 

( , , )G V E W  566843 1613325 2073870 

1 1 1 1( , , )G V E W  62032 150234 224528 

2 2 2 2( , , )G V E W  5734 13543 20392 

3 3 3 3( , , )G V E W  845 1638 1986 

4 4 4 4( , , )G V E W  - 658 834 

We perform here a set of experiments to investigate the 

effects of traffic network dynamics (congestion states) on 

multi-granular spaces representations of large road 

networks. Unfortunately, we did not have access to real-

time ITS edge travel times. Many transportation studies 

in the literature [22, 23], employed artificially generated 

time-dependent costs for analysis. In this work, we too 

generated time-dependent costs based on the model of 

[22]. We randomly selected 5% 10%, 15%, 20%, 25%, 

and 30% of all edges forced to experience congestion 

respectively. 
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TABLE III.  COMPARING WITH AVERAGE RUNNING TIME(MS) OF A*, 
ALT AND OUR ALGORITHM IN 100 SOURCE-SINK PAIRS IN ALABAMA 

 Alabama 

 A* ALT Our method 

0% 189 76.8 29.6 

5% 258 80.6 32.4 

10% 287 86.5 34.9 

15% 276 87.8 40.2 

20% 442 105.4 60.5 

25% 537 149.5 104.2 

30% 633 210.4 153.6 

TABLE IV.  COMPARING WITH AVERAGE RUNNING TIME(MS) OF A*, 
ALT AND OUR ALGORITHM IN 100 SOURCE-SINK PAIRS IN CALIFORNIA 

 California 

 A* ALT Our method 

0% 584 140.8 45.8 

5% 766 156.4 52.1 

10% 884 169.7 55.6 

15% 1145 195.2 60.3 

20% - 275.3 72.4 

25% - 345.5 76.5 

30% - 434.6 96.6 

TABLE V.  COMPARING WITH AVERAGE RUNNING TIME(MS) OF A*, 
ALT AND OUR ALGORITHM IN 100 SOURCE-SINK PAIRS IN TEXAS 

 Texas 

 A* ALT Our method 

0% 1287 192.2 60.7 

5% 1576 224.3 72.4 

10% 2967 246.5 78.5 

15% - 268.6 92.5 

20% - 388.5 127.6 

25% - 502.4 143.8 

30% - 790.5 210.4 

TABLE VI.  COMPARING WITH AVERAGE RATIO OF THE NUMBER OF 

SCANNED VERTICES AND THE NUMBER OF VERTICES ON THE SHORTEST 

PATH OF A*, ALT AND OUR ALGORITHM IN 100 SOURCE-SINK PAIRS IN 

ALABAMA 

 Alabama 

 A* ALT Our method 

0% 18.5 6.5 2.9 

5% 19 6.9 3.2 

10% 19.6 7.0 3.3 

15% 19.4 7.8 3.7 

20% 23.5 9.6 4.2 

25% 28.5 12.1 5.2 

30% 40.2 15.3 6.4 

TABLE VII.  COMPARING WITH AVERAGE RATIO OF THE NUMBER OF 

SCANNED VERTICES AND THE NUMBER OF VERTICES ON THE SHORTEST 

PATH OF A*, ALT AND OUR ALGORITHM IN 100 SOURCE-SINK PAIRS IN 

CALIFORNIA 

 California 

 A* ALT Our method 

0% 28 6.6 3.0 

5% 32 6.8 3.2 

10% 39 7.1 3.4 

15% 54 7.7 4.1 

20% - 10.5 5.8 

25% - 13.2 6.4 

30% - 18.5 8.7 

B. Experiment Results 

In experiment, we test our method comparing with A*, 

ALT. In ALT algorithm, due to memory requirements we 

use avoid algorithm
 
[24] to select 32 landmarks. For three 

road networks, we pick a random set of 100 source-sink 

pairs and run the point-to-point shortest path problem. 

Table3-5 reports network routing running time on the 

shortest path results comparing with A*, ALT in the three 

road networks. Table 6-8 reports network routing average 

ratio of the number of scanned vertices and the number of 

vertices on the shortest path results comparing with A*, 

ALT in the three road networks. In A* algorithm, due to 

scale and complexity of network there are no results in 

some cases (“-” in Table 4 and 5). Comparing with A*, 

ALT, our method have improved on different degrees in 

running times and narrow down the search space. 

From the above results, we conclude that network 

routing method based on multi-granular space 

representation to provide efficient representation of large-

scale road networks with time-varying edge weights. 

Also, efficiency of such representation is promising for 

developing hierarchical search strategies in dynamic 

routing algorithms using real-time ITS data. 

TABLE VIII.  COMPARING WITH AVERAGE RATIO OF THE NUMBER OF 

SCANNED VERTICES AND THE NUMBER OF VERTICES ON THE SHORTEST 

PATH OF A*, ALT AND OUR ALGORITHM IN 100 SOURCE-SINK PAIRS IN 

TEXAS 

 Texas 

 A* ALT Our method 

0% 33 7.2 3.1 

5% 42 7.2 3.3 

10% 76 7.8 3.6 

15% - 8.4 4.2 

20% - 11.3 5.9 

25% - 13.8 7.8 

30% - 20.2 9.6 

V. CONCLUSIONS 

In this paper, using quotient space theory, we propose 

a routing algorithm based on multi-granularity in 

dynamic networks. Since dynamic network exhibits 

extremely complex behavior and is continually changing 

over time, we partition the initial network into some 

small sub-networks according to community detection 

methods and update local area’s structure information of 

the initial network. Routing algorithm of dynamic 

networks based on multi-granularity is presented. In 

dynamic sub-network, we apply heuristic search method 

to solve the network routing of the local area network. 

The implementation works on three large-scale road 

networks of US. From experimental results in dynamic 

networks, comparing with running time and searched 

space of A*, ALT, our algorithm is effective and efficient. 

We plan to incorporate the achieved results from this 

study in developing real-time routing algorithms in our 

next study. 
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