

The Resource Configuration Method with Lower

Energy Consumption Based on Prediction in

Cloud Data Center

Liang Quan
School of Information Sciences and Engineering, Fujian University of Technology, Fuzhou 350108, China

Email: liangquanlq@gmail.com

Liang Jiumei

School of Chemical Engineering, Hunan Institute of Engineering, Xiangtan 412001, China

Email: 379486951@qq.com

Zou Fumin
School of Information Sciences and Engineering, Fujian University of Technology, Fuzhou 350108, China

Abstract—The cloud computing data center have numerous

hosts as well as application requests. In future, the short

response time and user Qos are required, and the lower

electricity power consumption to build the low-carbon green

network is an irrevocable trend. The paper first puts

forward a reconfiguration framework based on the request

prediction of Double Exponential Smoothing, On the basis,

work out in advance the allocation scheme which can

improve the resource utilization ratio as well as lower

energy consumption. The paper also present a concept of

Utility Ratio Matrix (URM) to represent allocations of hosts

and Virtual Machines (VMs) and a reconfiguration

algorithm. The algorithm can separate the reconfiguration

computing from the real allocation so that it can avoid a

time delay, and can also reduce the energy consumption in

data center. The corresponding analysis and experimental

results show the feasibility of the reconfiguration algorithm

in this paper.

Index Terms—Cloud Data Center; Request Prediction;

Utility Ratio Matrix; Resource Reconfiguration

I. INTRODUCTION

How to meet the requests of a huge number (up to

millions of or even more) of application as well as to

guarantee QoS is one of the main challenge for cloud data

center, whereas the virtualization technology is a key
lying in data center to coping with that challenge [1, 2].

Virtualization provides the necessary abstraction so that

the underlying fabric (raw compute, storage, network

resources) can be unified as a pool of resources and

resource overlays (e.g. data storage services, Web hosting

environments) can be built on top of it. However, cloud

data center’s virtualization is confronted with an actual

problem when it deals with resource allocation. A

dynamic resource configuration in accordance with the

requirement variation and the resource status is an

efficient way to cope with allocations on demands.

Nevertheless, during the process of dynamic

configuration, a variation of the demands and data center

environment including the type and quantity of both

requests and virtual machines, load of nodes and status of

resource increases the complexity of the reconfiguration

algorithm, which leads to a consequence that

configuration is usually later than request variation.

Considering the time consumed in the adjustment of VMs,

nodes, resources and so on, it will aggravate the time
delay and fail to provide a reliable QoS guarantee.

Among many application scenarios such as web

application, cluster system and distributed computing, the

similar dynamic configuration policy of resources have

been adopted. The researches mentioned above all

invariably show the ubiquitous time delay [3, 4, 5].

In addition, data center is usually in possession of a

huge resource storage, and a lot of servers in execution,

which will consume a large quantity of electricity power

and lead to a great electricity waste, especially while the

deployed servers are in a peak utilization. Therefore, the
power cost is a critical factor that limits the scale and

efficiency of cloud data center. The adoption of an

efficient and reliable deployment policy of VMs and

resources so as to improve the utilization ratio of resource

meanwhile lower the power consumption is another

problem that cloud data center confronts, it will prove

significant for building an energy-efficient green network

environment [6].

The main contributions of the paper lie in the

following: (1) A reconfiguration framework based on a

request prediction method of Double Exponential

Smoothing is provided so as to cope with the
development of VMs and resources in cloud data center;

(2) A data structure called Utility Ratio Matrix (URM) is

presented to help to reduce the energy-comsuption; (3) A

reconfiguration algorithm of VMs and resources is put

forward in the paper. The innovation of the algorithm lies

1692 JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jnw.9.7.1692-1700

in the following: based on the prediction of application

requests, the algorithm separates the computation of

configuration results from the real configuration, namely,

it makes out a specific configuration policy in advance

before the real deployment executing, which can avoid a

time delay of configuration results to the varied

requirements.

II. RELATED WORK

Refernece [7] gives a comparatively comprehensive

illustration on the evolution, technological problems and

existent challenges of data center. It is desirable to
understand the aspects of their design that are worthy of

carrying forward, as well as existing or upcoming

shortcomings and challenges that would have to be

addressed. The paper also define a layered model for such

data centers and provide a detailed treatment of state of

the art and emerging challenges in storage, networking,

management and power/thermal aspects.

To traditional digital data center, a resource

on-demand approach is proposed for Web applications,

which can efficiently online reconfigure clusters in

response to time-varying resource requirements. It can
also dynamically decide the number of running nodes and

virtual machines deployed on them [8]. For dynamic

resource provisioning in large-scale enterprise data

centers, researchers proposed a scalable algorithm that

can produce within 30 seconds high-quality solutions for

hard placement problems with thousands of machines and

thousands of applications [9]. Another reference [10] also

introduces and evaluates a middle ware clustering

technology capable of allocating resources to web

applications through dynamic application instance

placement. It defines application instance placement as
the problem of placing application instances on a given

set of server machines to adjust the amount of resources

which available to applications in response to varying

resource demands of application clusters. Reference [11]

proposes a resource on-demand approach for Web

applications, which can efficiently online reconfigure

clusters in response to time-varying resource

requirements. It can also dynamically decide the number

of running nodes and virtual machines deployed on them.

It first predicts the future workloads of the applications

with Brown’s quadratic exponential smoothing method to

make reconfiguration catch up with demands. Bobroff
and et al put forward a dynamic VMs migrating method,

in which the unnecessary nodes will be shut down. In this

method, Linear Time Series Prediciton is applied to

predict the VM’s demands on resources, and the VMs are

listed in a descending order according to their demands.

Then, apply First-fit Knapsack Algorithm to deploy VMs

on proper nodes [12]. Kusic and et al put forward a

dynamic resource allocation framework based on Limited

Control Predition. The framework through a two-layer

control architecture can work out the number of VM

duplicates that should be set on, the position of the node
where the duplicate VMs lay as well as the resource

amount allocated to VMs on a same node. Although the

method can improve the resource utilization ratio by

shutting down the unnecessary nodes, yet its computation

complexity is extremely exponential [13]. Based on the

analysis on topology characteristics and traffic patterns of

data centers, reference [14] presents a novel approach

called VM Planner for network power reduction in the

virtualization based data centers. The basic idea of VM

Planner is to optimize both virtual machine placement

and traffic flow routing so as to turn off as many

unneeded network elements as possible for power saving.

Reference [15] proposes a coordinated cooling-aware job

placement and cooling management algorithm which is
Highest Thermostat Setting (HTS). HTS is aware of

dynamic behavior of the Computer Room Air

Conditioner (CRAC) units and places jobs to reduce

cooling demands from the CRACs. HTS also

dynamically updates the CRAC thermostat set point to

reduce cooling energy consumption. Buyya et al. also

made continuously deeper researches on

energy-consumption of cloud data center and put forward

some good ideas and methods [16, 17, 18, 19]. And

Dougherty et al. put forward methods of green cloud

computing infrastructure to facilitate to obtain a lower
energy consumption [20, 21]. In addition, there are many

researches on how to reduce the energy consumption in

data center, we are not going to repeat them.

All researches mentioned above against the resource

allocation of data center put forward different solutions.

Through a thorough study about the above, we can draw a

comparison between our work and the above, finding

some differences. Firstly, while solving the problem, we

have the different objectives. We focus on a real-time

resource configuration, optimization and lower energy

consumption while the above are only confined to one or
two aspects. Secondly, we specially aims at cloud data

center while the above are for other application scenarios.

Though similar, they are quite different. Thirdly, all the

above researches lack prediction step or taking different

prediction methods which leads to a different working

method and actual result. Fourthly, by experimental

results, the configuration algorithm and its efficiency of

this paper is comparatively superior to the above

researches.

III. PREDICITION-BASED CONFIGURATION

FRAMEWORK OF VMS AND RESOURCES

As mentioned above, there is a time delay of
configuration computation to the variation of application

requirements. Another related issue is the carbon dioxide

(CO2) emission that is detrimental for the physical

environment due to its contribution in the greenhouse

effect [22]. All these problems require the development

of efficient energy-conscious provisioning policies at VM,

host and resource level. Therefore, we put forward a

configuration framework of VMs and resources based on

Request Prediction (CFVmR-RP), as shown in figure 1.

After the occurrence or during the execution of

applications, Request Predict Module (RPM) follows the
certain predicting strategy to predict the variation trend of

requests according to both the feature of application

requests and variation of cloud data center environments.

JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014 1693

© 2014 ACADEMY PUBLISHER

Application

Requests

VM ManagerCloud Service

Manager

Service

Allocation

Policy

VM Allocation

Policy

Host Manager

Host Policy

Cloud Resources

Cloud Services Cloud VMs Host Entities

Sensors

Allocate or

Create VMs

Allocate

hosts

A
ll

o
ca

te

R
es

o
u

rc
es

CPU Memory Bandwith Storage

User Layer

Submit

requests

Request predict

module

Prediction Policy

Reconfiguration

Generator

Reconfiguration

PlolicyReconfiguration

Searching Engine

Reconfiguration Solution based on Request Prediction

: Reconfiguration flow

: Searching flow

: General flow

Figure Paradigm:

Figure 1. The configuration framework of VMs and resources

The prediction result will be sent to Reconfiguration

Searching Engine (RSE) which selects the relatively

optimal configuration by a through search among VMs,

hosts and physical resources managed by cloud data

center so as to adapt varied requirements of application.

Later, according to the relatively optimal configuration

from RSE, modify the reconfiguration strategy and carry

out a real-time adjustment among VMs, hosts and
physical resources. The modifies include VM started or

released, hosts started or shut down and corresponding

physical resources' deployment increased or decreased.

As the relatively optimal configuration already been

predicted before requests change, therefore the situation

in which configuration results being later than request

variations is avoidable. The configuration based on the

request prediction not only optimizes the number of both

VMs and hosts started but also improves the utilization

ratio of resources. The next section will give a detailed

description about the specific process of reconfigurations.

R0

R1

R2

…

Rx

Ri

V0

V1

V2

…

Vm

Vj

H0

H1

H2

…

Hn

Hk

Figure 2. Multiple-multiple relationships of application requests, VMs

and hosts

There actually are a multiple-mutiple relationship

among applications, VMs and hosts. Namely, any

application can be dispatched to several VMs and any

VM can be deployed on several hosts which is in charge

of resources of all sorts, as shown in figure 2. The

reconfiguration based on the premix that application

requirements are guaranteed aims to have a request

prediction so as to reduce VMs and hosts as much as

possible to improve the utilization ratio of resource as

well as to lower power consumption.

Ri, Vj and Hk respectively stand for application requests,

VMs and hosts. Suppose ijReq 1 , it means a request Ri

is dispatched to a VM Vj, while ijReq 0 dispatching not

happen. Suppose
0

x

j ij

i

q Req


 , it presents the total sum

of requests diaspatched to jV , while 0jq  means no

any request is dispatched to jV , thus at this moment, jV

can be released. Likewise, the total sum of requests

received by cloud data center can be described as
,

0, 0

i x j m

center ij

i j

q Req
 

 

  (here, the same request when

dispatched to different VMs is regarded as different

requests, nevertheless it does not affect the deployment of

VMs and hosts). Suppose 0centerq  , it means any

request is not received in the data center, at this moment
all hosts and VMs on standby or idle can therefore be

released or shut down.

Let 1jkh  , it means host kh has been deployed a

VM jV , while 0jkh  means no deployment has been

done. Suppose
0

j m

k jk

j

v h




 , it means the total sum of

VMs deployed on host kh , while 0kv  means no VM

has been deployed on host kh , so at this moment, kh is on

standby or idle and therefore can be shut down or set to

an energy-saving mode.

1694 JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

For a further understanding, VM utility ratio, resource

utilization ratio and power consumption value are defined

as the followings.

Definition 1. Utility Ratio
j

()jR V represents the total amount of resources that

can meet the demand of
jV ; ()ijR Req stands for the

resource amount that is needed by the request
iR

dispatched on
jV . Then utility ratio of VM

jV can be

described as 0

()

()

jq

ij

i

j

j

R Req

R V
 


, 1j  ,

jq is the total

request amount received by
jV .

Definition 2. Resource Utilization Ratio
k

max kResp 
 represents the maximum amount of

resources that host
kh can accept VM deployments,

suppose  0,1,2, ,j j m  be the probability of each

VM (, 0,1,2, ,jV j m) being deployed on host
kh ,

then let the resource utilization ratio of host
kh at T

moment be 0

(())

m

j jk

j

max k

R V

k Resp



 




 , 1k  , ()jkR V is the

resource amount required by VM jV which is deployed

on kh . If 0kv  , it means no VM is deployed on kh

and the utilization ratio is zero.

IV. CONFIGURATION METHOD OF VMS AND

RESOURCES BASED ON REQUEST PREDICTION

A. The Prediction Method of Double Exponential
Smoothing

In cloud data center, new application requests occur

constantly and resources are also released continually.

Therefore, in order to configure resources in a highly

efficient way and guarantee no time delay between

configuration programs and varied requirements of

applications, a prediction about the future application

request is needed so as to know the demand of

applications in advance. We adopt a method of Double
Exponential Smoothing to predict the application request

at the time t T . Suppose the time serie { }tq has a

linear change in trend from some time, then the linear

trend predicting model is as follows

 t tt Tq a bT


   (1)

ta and tb are the smoothing factors, in which,

(1) (2)

(1) (2)

2

()
1

t t t

t t t

a S S

a
b S S

a

  



 


 (2)

(1)

tS , (2)

tS are respectively the first and the second

smoothing values. Therefore t Tq


 is the prediction value

at the moment t T . The detail prediction process can

be seen in related literatures.

B. The Configuration Algorithm

Definition 3. Utility Ratio Matrix
utilityI

Utility ratio matrix
utilityI is used to describe the load

of each VM and host, which is shown as follows:

()

()

x y

z z

x y

k Hosts

j j

k k

utility

j j

k k
j VMs m n

I

 
 

 
 





 
 
 
 
 
 
 
 

The elements within matrix are called utility ratio:

j
load

k

U



 ,
j is the utility ratio of

jV ,
k is the

resource utilization ratio of host
kh . In matrix utilityI ,

j is descending sort by rows while
k is descending

sort by columns. The sorting result makes VMs of high

utility ratio and hosts of high resource utilization ratio

gather at the upper-left part of the matrix. As searching in

matrix usually starts from low to high(e.g. 0~m or n), it is

helpful to bring down the searching time. In addition,

utilityI obviously demands dynamic modification.

The configuration algorithm includes three parts which

described as follows.

Algorithm 1. App_VM_Reconfiguration()

Input: utilityI of the result after shiftings finished

Output: New _ _List app VMs and _ _List VM Hosts

{ Assignment_Shifting();

Deployment_Shifting();

While j max j  do {Place Apps into jV according to

_ _List app VMs ; j++;}

While k max k  do {Place VMs into
kH according to

_ _List VM Hosts ; k++;}

Return (_ _List app VMs , _ _List VM Hosts);

}

Algorithm 2. Assignment_Shifting()

{ Input: utilityI ;

Output: _ _List app VMs ;

While j max j  do { () (1)j jR V   ;write the residual into

_ _List VMs residual ; j++;}

If (new App) then { Find the first VM who satisfy the App’s

requirement and assign it;

If (no VM satisfy the App) then {create a new VM and assign it;}

Re-sort _ _List VMs residual ; //Here can use method of Quick sort

write _ _List app VMs ;}

While j max j  do {Find VMs xj with smaller utility and stop

its apps;

For j max j  to 1xj  do {Assign the apps of xj ;}

If (the assignment accomplishes) then {stop xj ; write

_ _List app VMs ;}}

Re-sort utilityI ; Re-sort _ _List VMs residual ;

Return(_ _List app VMs);

}

JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014 1695

© 2014 ACADEMY PUBLISHER

Algorithm 3. Deployment_Shifting()

{Input:
utilityI , _ _List app VMs ;

Output: _ _List VM Hosts ;

While k max k  do

{ (1)max k kResp    ; write the residual into

_ _List Hosts residual ; j++;}

If (Hosts not satisfy VM’s requirement) then {Start one or more

hosts and deploy it;}

//VMs of the host with smaller utilization shifts into other hosts with

higher utilization;

While k max k  do {Find host
yk with smaller utilization and

stop its VMs;

For k max k  to 1yk  do {Place the VMs of yk ;}

If (the placement accomplishes) then {stop host yk ; write

_ _List VM Hosts ;}}

Re-sort utilityI ; Re-sort _ _List Hosts residual ;

Return (_ _List VM Hosts);

}

The specific process of the reconfiguration algorithm

can be divided into 3 stages. The first stage is Application

Assignment Shifting (AAS). Based on request prediction

and new application requirements, assign applications to

VMs, and each assignment is respectively recorded in

_ _List app VMs which records the application and its

corresponding VMs. The shifting process includes: (1)

Compute resource residual of each VM according to

matrix utilityI and keep the results in

_ _List VMs residual . A residual of VM jV is

() (1)j jR V   , since j in utilityI is listed in a

descending order, the computed results are listed in an

ascending order in _ _List VMs residual . (2) To new

application iR , ()ijR Req stands for the resource

required by this application assigned to jV . Search

within _ _List VMs residual and assign the new

application iR to the VM with the first residual fitful for

()ijR Req , then record this in _ _List app VMs . Update

the sorting of _ _List VMs residual : carry out a quick

sort in matrix utilityI so as to ensure the descending sort

order of j because the utility ratio has changed. The

method can not only improve the utility ratio of VM but

also lower the complexity of search. (3) To the assigned

application, try to stop all or partial applications that has

assigned on the VM with low utility ratio. For example,

stop b applications on jV after calculating out their

resource amount (namely,
0

()
b

ij

i

R Req


) and then assign

them to one or more VM with higher utility ratio. If all

applications on jV are stopped, then destroy jV . The

final assignment results are kept in _ _List app VMs ,

update the sorting of both _ _List VMs residual and

matrix utilityI .

The second stage is called VM Deployment Shifting

(VDS). Shifting process includes: (1) According to

matrix
utilityI , calculate the resource residual of hosts.

The resource residual of a host
kH is

(1)max k kResp    , whose results are kept in

_ _List Hosts residual . Likewise,

_ _List Hosts residual is listed in an ascending order. (2)

Try to stop all or partial VMs that have deployed on the

host who has a low utility ratio. For example, stop c VMs

on host
kH after calculating their resource amount

(namely,
0

(())
c

j j

j

R V 


), deploy them to one or more

hosts who has a higher utility ratio refer to

_ _List Hosts residual . If all VMs on
kH are stopped,

then shut down
kH or let it be on standby. The final

deployment results are kept in _ _List VM Hosts (this

table records the location that which host the VM are

deployed on). Update the sorting of

_ _List Hosts residual and matrix utilityI .

The third stage is reconfiguration. Based on the results

of two stages above, that is, _ _List app VMs and

_ _List VM Hosts , re-adjust the relatively optimal

position of applications, VMs and hosts.

Special notes should be pointed out that the shifting

locations of applications and VMs are only computed but
real placement dose not happen in the former 2 stages.

The real placement happens in the third stage in which

the adjustment of relative positions of applications,

VMs,and hosts are really done according to

_ _List app VMs and _ _List VM Hosts . It is a critical

design of this reconfiguration algorithm, which can

effectively lower the complexity of algorithm.

V. ALGORITHM ANALYSIS AND EXPERIMENT

RESULTS

A. The Algorithm Complexity Analysis

In Algorithm 2 (Assignment_Shifting), the time

complexity of calculating VM residual is ()m , the

complexity of assigning new application and dealing with

applications shifting is (2 log)mm m  , the complexity

of re-sorting utilityI and _ _List VMs residual is

(log)mm n m  . Therefore, the complexity of

Algorithm 2 is ((2 3log))mm n   . Similarly, the time

complexity of Algorithm 3 (Deployment_Shifting) is

proximately ((1 3log))nn m   . Thus the whole time

complexity of Algorithm 1 (Reconfiguration Algorithm

App_VM_Reconfiguration) should be

(2 2 4log 4log)m nm n m n     , which is actually

superior to the time complexity 2.5()N in refernce [8]

and nearly the same as ()MN in reference [7].

1696 JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

B. The Experiment Environment and Design

This section elaborates the test and analysis of the

method put forward in the paper, the main test and

analysis includes: prediction accuracy, the performance

and comparison of reconfiguration algorithms and so on.
Our experimental environment is well qualified to

simulate cloud computing data center. At present, FJUT

computing center adopts HPP (Hyper Parallel Processing)

architecture which has absorbed the advantages of both

computers as Cluster and MPP. In computing center, the

application server is Tomcat7.0, the operating system is

Red Hat 2.6, and the management platform of virtual

resources is VMWare Workstaiton 8.04. In addition, the

computing nodes contain 92 blade servers (Dawning

CB65-F) which can provide 736 processor cores of

2.6GHz and an internal memory of 1.5TB. The storage
subsystem contains 4 data servers, an metadata server, a

set of first-class real-time storage of 12T and a set of

second-class duty storage. In addition, the experiment

platform adds an extra 50 hosts(whose CPU is AMD

Athlon(TM) 64 X2 3600+ 2.8GHz) as auxiliary

computing nodes.

The computing center does more than just accepting

daily service requests in order to facilitate carrying out

related experiments, we specially developed a software of

User Simulator which can generate service requests

complying with Poisson Distribution so as to simulate the

users' access to the data center.

C. Experiment Results

(1) Tests of the prediction accuracy

We choose a daily record of users' access to FJUT data

center in one day as the experimental data. In order to

obtain a larger amount of users' access, User Simulator is
used to generate evenly partial data accumulated to this

daily recorded data. The daily data are collected from

00:00AM~24:00PM. Every 20 minutes as a sample data

is taken, so total 73 samples are taken in one day. The

predicting results are shown in figure 3, the experiment

result shows that users’ access amount increases

significantly during both periods of 12:00~14:00PM and

21:00~24:00PM. Figure 3 indicates that the predicting

value is fairly close to the real value so that it can

accurately predict varied users' requests.

Figure 3. Original Value and Predicting Value of Requests

(2) Execution performance of the reconfiguration

algorithm

The experiment first test the execution time of

reconfiguration algorithm App_VM_Reconfiguration

(AVMR) under the condition in which computing nodes

and request amount increase, then compare

App_VM_Reconfiguration with Application Placement

Controller (APC) in reference [9], the experimental

results are shown in figure 4. Within 142 computing

nodes of FJUT data center, run the reconfiguration

algorithm. As the number of hosts increases, the time
consuming is all less than 30ms which can be ignored.

The relatively smooth time curve demonstrates a stable

performance of the algorithm which is not much affected

by an increase in hosts. Compared to APC, AVMR is

about equal at performance because of a twisted time

curve in figure 4. And when there is an increase in

request amount, the excuting time of the reconfiguration

algorithm gradually increase but the time curve has a

steady rising. No abrupt change occurs during the process,

which indicates that the algorithm AVMR is quite stable.

Compared to algorithm APC, when the request amount is

small (1000), both the time curve and performance of

AVRM are nearly identical with those of APC. But when

the requests increase gradually, the algorithm AVRM

presented in this paper starts to show some superiority

over algorithm APC with its relatively better time

performance. In addition, the more requests there are, the
smoother the time curve is, because the request prediction

enables a reconfiguration in advance to relieve the time

lag of the configuration results.

Figure 4. Execution time with re-configuration

JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014 1697

© 2014 ACADEMY PUBLISHER

To test the effectiveness of the reconfiguration

algorithm AVMR, get the demand satisfaction ratio and

the information of application placement changes when

application requests and computing nodes vary. And then

compare algorithm AVMR with algorithm APC, the

comparison results are shown in figure 5. As application

increases, the demand satisfaction ratio falls to some

extent, yet still keeps above 0.94 which is an acceptable

range of values. At 21:00~23:00PM when application

requests in FJUT data center turns out to be quite large in

amount, the algorithm AVMR detects application
placement changes which limited in amount whose

occurrence become smooth as the hosts increase in

number. It shows that the algorithm can decide in a stable

and efficient way whether a change is needed in a

deployment of applications. Compared to algorithm APC,

the placement change occurs evidently much less in

algorithm AVMR, and the difference of these two

algorithms tends to become lager and larger as the hosts

increase in number.

Figure 5. The demand satisfaction and placement changes with

re-congfiguration

To observe algorithm AVMR manipulating physical

hosts during its execution, 50% computing nodes (or 71

hosts) are set on while the other 71 nodes are shut down

or on standby during the experiment. Likewise select the

period 21:00~23:00PM, during which time the

application requests in FJUT data center are relatively

larger, add up the average time of hosts being shut down

or started when the algorithm AVMR is executed, whose
results are shown in figure 6. The experimental results

show that during the period 21:00~22:00PM, among 71

computing nodes, 15 hosts are shut down meanwhile

another 7 new computing nodes are started. Around

22:00PM, no hosts are shut down, instead 20 new

computing nodes are started because it is the peak time

when students access to web at night. What is more

special, during this peak time, a large number of

application requests are on-line video on demand which

leads to a rapid increase of computing amount in data

center. And when close to 23:00PM, there is a rapid

decrease in operation of starting computer. In contrast,

the operation of shutting down hosts increases, for the

access to web decreases gradually.

Figure 6. Average hosts which shut down and start

Figure 7. Comparison of electricity power comsuption

Finally we test the power consumption of data center.

The comparison of electricity power consumption of

FJUT data center before and after running of
reconfiguration algorithm AVMR is made, the result is

shown in figure 7. After a 12-hour track of electricity

power consumption and statistics of every hour, we find

some differences of power consumption before and after

1698 JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

the running of AVMR. The electricity power

consumption after the running of AVMR is less than that

before the running of AVMR, which demonstrates that

the reconfiguration algorithm is helpful to lower the

electricity consumption of the data center.

VI. CONCLUSIONS

The future cloud data center will be a critical part of

cloud computing application. The paper puts forward a

reconfiguration framework based on request prediction

according to the technological process of VMs and

resource configuration in cloud computing data center.
The innovativeness of this algorithm lies in the following

two aspects: (1) Predict the application requests; (2)

Separate the computing of the configuration program

from real configurations implementing. For a better

illustration of the innovative works, the paper puts

forward some new definitions for the first time such as

Utility Ratio Matrix which can well represent the

utilization ratio of VMs and hosts in same a data

structure.

As the results of the request prediction is the

foundation of computing reconfiguration program, the
accuracy of request prediction is of great importance.

How to select a better prediction method calls for further

researches. In addition, the optimization computing of the

relatively optimized configuration is a critical and tough

task, and what is the most proper optimization objective

of the relatively optimized configuration and how to work

out these objectives are worthy of an in-depth research in

the future.

ACKNOWLEDGEMENTS

We would like to acknowledge and extend our

heartfelt gratitude to our colleagues for their generous
assistance, my special thanks also go to generous

financial supports of the National Natural Science

Foundation of China (under Grant No. 61101139), the

Natural Science Foundation of Fujian Province (under

Grant No.2012J01244, No.2012J06015, No.2012J01243

and No.2013J01214), and Hunan Provincial Project of

Science and Technology (No. 2013FJ3090)

REFERENCES

[1] Rodrigo N. Calheiros, R. Ranjan, A. Beloglazov, César A.
F. De Rose, and R. Buyya. CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning
Algorithms. Software: Practice and Experience, 2011,
41(1) pp. 23–50.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Generation Computer Systems, 25(6) pp.
599-616, Elsevier Science, June 2009.

[3] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.
Steinder, M. Sviridenko, A. Tantawi. Dynamic placement
for clustered Web applications. In: Proc. of the 15th Int’l
Conf. on World Wide Web. 2006. 593−604. [doi: 10.

1145/1135777. 1135865].

[4] T. Mukherjee, A. Banerjee, G. Varsamopoulos, Sandeep K.
S. Gupta, S. Rungta. Spatio-temporal thermal-aware job

scheduling to minimize energy consumption in virtualized
heterogeneous data centers. Computer Networks, 2009,
53(17) pp. 2888-2904.

[5] P. Padala, K. G. Shin, X. Y. Zhu, M. Uysal, Z. K. Wang, S.
Singhal, A. Merchant, K. Salem. Adaptive control of
virtualized resources in utility computing environments.
ACM SIGOPS Operating Systems Review, 2007, 41(3) pp.
289−302. [doi: 10. 1145/1272996. 1273026]

[6] C. LIN, Y. TIAN, M. YAO. Green Network and Green
Evaluation: Mechanism, Modeling and Evaluation.
Chinese Journal of Computers, 2011, 34(4) pp. 593-612.

[7] K. Kant. Data center evolution: A tutorial on state of the
art, issues, and challenges. Computer Networks, 2009,
53(17) pp. 2939-2965.

[8] H. B. MI, H. M. WANG, G. YIN, D. X. SHI, Y. F. ZHOU,
L. YUAN. Resource On-Demand Reconfiguration Method

for Virtualized Data Centers. Journal of Software, 2011,
22(9) pp. 2193−2205.)

[9] C. Q. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
Scalable Application Placement Controller for Enterprise
Data Centers. The International World Wide Web
Conference Com­mittee (IW3C2). WWW 2007, May 8. 12,
2007, Banff, Alberta, Canada. ACM
978­1­59593­654­7/07/0005.

[10] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.
Steinder, M. Sviridenko, and A. Tantawi. Dynamic
Placement for Clustered Web Applications. The
International World Wide Web Conference Committee
(IWC2), WWW2006, May 22–26, 2006, Edinburgh, UK.
ACM 1595933239/06/0005.

[11] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder, A.
Tantawi, and A. Youssef, “Managing the response time for

multi-tiered web applications,” IBM, Tech. Rep. RC 23651,
2005.

[12] N. Bobroff, A. Kochut, K. Beaty. Dynamic placement of
virtual machines for managing SLA violations. In: Proc. of
the 10th IFIP/IEEE Int’l Symp. on Integrated Network
Management. 2007. 119−128. [doi: 10. 1109/INM. 2007.
374776]

[13] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, G. F.
Jiang. Power and performance management of virtualized

computing environments via look ahead control. Journal of
Cluster Computing, 2009, 12(1) pp. 1−15.

[14] W. W. Fang, X. M. Liang, S. X. Li, L. Chiaraviglio, N. X.
Xiong. VMPlanner: Optimizing Virtual Machine
Placement and Traffic Flow Routing to Reduce Network
Power Costs in Cloud Data Centers. Computer Networks,
Available online 23 September 2012.

[15] A. Banerjee, T. Mukherjee, G. Varsamopoulos, Sandeep K.

S. Gupta. Integrating cooling awareness with thermal
aware workload placement for HPC data centers.
Sustainable Computing: Informatics and Systems, 2011,
1(2) pp. 134-150.

[16] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, A
taxonomy and survey of energy-efficient data centers and
cloud computing systems, Univ. of Melbourne, Tech. Rep.
CLOUDS-TR-2010-3, 2010.

[17] R. Buyya, A. Beloglazov, and J. H. Abawajy,
Energy-Efficient Management of Data Center Resources
for Cloud Computing: A Vision, Architectural Elements,
and Open Challenges, Proceedings of the 2010
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA2010),
Las Vegas, USA, July 12-15, 2010., vol. abs/1006. 0308,
2010.

JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014 1699

© 2014 ACADEMY PUBLISHER

http://onlinelibrary.wiley.com/doi/10.1002/spe.v41.1/issuetoc

[18] K. H. Kim, A. Beloglazov, R. Buyya. Power-aware
provisioning of virtual machines for real-time Cloud

services. Concurrency and Computation: Practice and
Experience, 2011, 23(13) pp. 1491-1505.

[19] A. Beloglazov, J. Abawajy, R. Buyya. Energy-aware
resource allocation heuristics for efficient management of
data centers for Cloud computing. Future Generation
Computer System, 2012, 28(5) pp. 755-768.

[20] S. K. Garg, C. S. Yeo, R. Buyya. Green Cloud Framework
for Improving Carbon Efficiency of Clouds. Euro-Par 2011

Parallel Processing Lecture Notes in Computer Science
Volume 6852, 2011, pp 491-502.

[21] B. Dougherty, J. White, D. C. Schmidt. Model-driven
auto-scaling of green cloud computing infrastructure.
Future Generation Computer System, 2012, 28(2) pp.
371-378.

[22] “Report to Congress on Server and Data Center Energy
Efficiency,” U. S. Environmental Protection Agency, 2007.

Liang Quan graduated from Southwest
Jiaotong University, China, in 1996. He

received the M. S. degree from Central
South University of Forestry Science and
Technology in 2004 and the Ph.D. degree
from Beijing University of Science and
Technology, China, in 2008. He is
currently an associate professor at the
school of Information Science and

Engineering, Fujian University of Technology. He has

published about 60 refereed journal and conference papers, in
which proximately 40 papers are indexed by SCI or Ei. His
research interests include network computing and sensor
networks.

He received research award from Science Foundation of the
national and Fujian province He is a reviewer or PC member of
international journal of Computational Information System,
Journal of Grid Computing, Journal of Network and Computer

Application, ICECE 2010 and ICCSIT 2011.

1700 JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

http://www.sciencedirect.com/science/article/pii/S0167739X11000689##
http://www.sciencedirect.com/science/article/pii/S0167739X11000689##
http://www.sciencedirect.com/science/article/pii/S0167739X11000689##
http://link.springer.com/search?facet-author=%22Saurabh+Kumar+Garg%22
http://link.springer.com/search?facet-author=%22Chee+Shin+Yeo%22
http://link.springer.com/search?facet-author=%22Rajkumar+Buyya%22
http://www.sciencedirect.com/science/article/pii/S0167739X11000902##
http://www.sciencedirect.com/science/article/pii/S0167739X11000902##
http://www.sciencedirect.com/science/article/pii/S0167739X11000902##

