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Abstract—A variation of the traditional Steiner tree 

problem, the bottleneck Steiner tree problem is considered 

in this paper, which asks to find a Steiner tree for n 

terminals with at most k Steiner points such that the length 

of the longest edge in the tree is minimized. The problem has 

applications in the design of WDM optical networks, design 

of wireless communication networks and reconstruction of 

phylogenetic tree in biology. We study a restricted version of 

the bottleneck Steiner tree problem in the Euclidean plane 

which requires that only degree-2 Steiner points are possibly 

adjacent in the optimal solution. The problem is known to 

be MAX-SNP hard and cannot be approximated within 

   unless P=NP, we propose a nearly optimal randomized 

polynomial time approximation algorithm with 

performance ratio   +, where  is a positive number.  

 

Index Terms—Bottleneck Steiner Tree; Approximation 

Algorithm; Performance Ratio; Wireless Networks 

 

I. INTRODUCTION 

Given a weighted graph G=(V,E;W) and a subset SV 
of required vertices (also called terminals), the traditional 

Steiner tree problem [1] asks a shortest acyclic network 

connecting S. In fact, the acyclic network is a tree and it 

may use additional points (also called Steiner points) in 

V-S. We call such a tree a Steiner tree. In the past 20 

years, the traditional Steiner tree problem attracts 

considerable attention and interests from both theoretical 

point of view and its applicability and once occupied a 

central place in the emerging theory of approximation 

algorithms.  

The problem is MAX-SNP hard even when the edge 

weights are only 1 or 2 [2]. For the Steiner tree problem 
in Euclidean plane, it is still NP-hard and there is a 

polynomial-time approximation scheme (PTAS) [3] for 

Euclidean Steiner trees, i.e., a near-optimal solution can 

be found in polynomial time [4]. 

New applications of Steiner tree problem in VLSI 

routing [5], wireless communications [6] and 

phylogenetic tree reconstruction in biology [7] have been 

found and studied deeply. These applications generally 

need to do some modification to the traditional Steiner 

tree problem. Therefore, the study of variations of 

traditional Steiner tree problem become a hot issue. 
For example, recent advances in affordable and 

efficient electronics have had a dramatic impact on the 

availability and performance of radio-frequency wireless 

communication equipment. A number of defense and 

civil applications involve deployment of computing 

devices or sensors able to communicate digital 

information through wireless connections. In most cases 
the sensors are battery powered and therefore operate for 

a limited time before they consume all power and stop 

working. In order to prolong the network lifetime in 

general, it is desirable to minimize the distance between 

nodes [8].  

Another example, in the design of wavelength division 

multiplexing (WDM) optical network, suppose we need 

to connect the n nodes located at p1, p2,..., pn by WDM 

optical network, due to transmit power limit, signal can 

only transmit a limited distance to ensure correct 

transmission. If the distance between some nodes in the 
connection tree is large, signal amplifiers are required to 

place at proper positions to shorten the connection 

distance.  

Two examples leads us to consider minimizing the 

maximum edge length problem and minimizing the 

number of Steiner points problem, implying the two 

variants of the classic Steiner tree problem: the bottleneck 

Steiner tree problem [9] and the Steiner tree problem with 

minimum number of Steiner points and bounded edge-

length [8, 10, 11, 13].  

In this paper, we consider one related variation of the 

traditional Steiner tree problem, the bottleneck Steiner 
tree problem, which is defined as follows: given a set 

P={p1, p2, ..., pn} of n terminals and a positive integer k, 

we want to find a Steiner tree with at most k Steiner 

points such that the length of the longest edges in the tree 

is minimized. 

The problem can be applied to extend the lifetime of a 

wireless network when n nodes have fixed locations and a 

number of up to k additional nodes can be placed at 

arbitrary positions. The objective is to build a spanning 

tree that connects the n fixed points and up to k additional 

nodes in the Euclidean plane, so that the length of the 
longest tree edge is minimized. Hence, the power 

required to transmit on the longest link is minimized also, 

and the network lifetime, in terms of connectivity, is 

extended. 

Other applications such as design of multifacility 

location, VLSI routing, network routing, optical 

switching networks and phylogenetic tree reconstruction 

indicates the broad applicability of the bottleneck Steiner 

tree problem.  
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The problem is showed to be NP-hard. In [9], D.-Z Du 

and L. Wang proved that unless P=NP, the problem 

cannot be approximated in polynomial time within 

performance ratios 2 and     in the rectilinear plane and 

the Euclidean plane, respectively. Moreover, they gave an 

approximation algorithm with performance ratio 2 for 

both the rectilinear plane and the Euclidean plane. For the 

rectilinear plane, the performance ratio is best possible, 

that is, the performance ratio is tight. For the Euclidean 

plane, however, the gap between the lower bound    and 
upper bound 2 is still big. Based on the existence of a 3-

restricted Steiner tree, we presented a randomized 

polynomial approximation algorithm with performance 

ratio 1.866 + , for any positive number  for the 
Euclidean plane [12]. Later I. Cardei, M. Cardei, L. Wang, 

B. Xu, and D.-Z Du improved the performance ratio to 

   +, for any positive number  [8, 13]. This is so far 

the best results possible.  

In 2004, a restricted version of the problem in the 

Euclidean plane which requires that no edge connects any 
two Steiner points in the optimal solution was considered. 

We proved that the problem is NP-hard and cannot be 

approximated in polynomial time within performance 

ratio    and proposed a randomized polynomial 

approximation algorithm with performance ratio    , 

for any positive number  [14]. S. Bae, C. Lee, and S. 
Choi studied the Euclidean bottleneck Steiner tree 

problem when k is restricted to 1 or 2, they gave exact 

solutions to this problem [15]. M. Li, B. Ma and L. Wang 

studied the bottleneck Steiner tree problem in String 

space when k = 1 (also called the closest string problem). 

They proved the problem to be NP-hard and present a 
PTAS for it, and hence solved it perfectly in theory [16].  

In this paper, we study the bottleneck Steiner tree 

problem in the Euclidean plane by allowing only degree-

2 Steiner points are possibly adjacent in the optimal 

bottleneck Steiner tree. The case we consider is more 

general than the restricted version in [14]. We denote the 

problem restricted-BST for short. We have shown that the 

problem is MAX-SNP hard an cannot be approximated 

within performance ratio    and provide an 

O(nlogn+klogn), approximation algorithm with 

performance ratio    [17]. But there still exist a gap 

between the lower bound     and upper bound    . In 

this paper, by introducing the notion of 3-restricted 

Steiner tree, we prove the existence of ratio     and 

propose a randomized polynomial time approximation 

algorithm with performance ratio    +, for any positive 

number , which is nearly optimal and almost close the 
problem. 

In Section II, we show that the existence of 3-restricted 

Steiner tree with the length of the longest edge not 

exceeding    of the optimal solution. Section III provide 

a method to construct a weighted 3-hyoergraph and a 

polynomial time randomized approximation algorithm 

with performance ratio    +. By introducing the binary 

search strategy, we also give a fast implementation. The 

concluding remarks appear in Section IV. 

II. THE EXISTENCE OF PERFORMANCE RATIO 

In this section, by introducing the notion of 3-restricted 

Steiner tree, we will show the existence of performance 

ratio     for the restricted-BST problem. First, the 

following theorem in [17] shows the hardness of the 

problem. 
Theorem 1: Unless P=NP, the restricted-BST problem 

in the Euclidean plane cannot be approximated within 

performance ratio    in polynomial time. 

For describing convenience, we need some related 

notions. Usually, every leaf in a Steiner tree is a terminal. 

However, a terminal may not be a leaf. A Steiner tree is 

full if all terminals are leaves. Thus, if a Steiner tree is not 

full, there must exist a terminal which is not a leaf, we 

can decompose the tree at this terminal into several small 

trees, and these small trees share a common terminal. In 

this way we can always decompose any Steiner tree into 
the union of several small trees, in each of them a vertex 

is a leaf if and only if it is a terminal. These small trees 

are called full Steiner components, or formally,  

Definition 1: A full Steiner component of a Steiner 

tree is a subtree in which each terminal is a leaf and each 

internal node is a Steiner point. 

Consequently, We can define the notion of k-restricted 

Steiner tree and in this paper we focus on the case when k 

= 3.  

Definition 2: A Steiner tree for n terminals is a k-

restricted Steiner tree if each of its full component spans 

at most k terminals.  
Below notation is adopted in the proof of our main 

theorem-Theorem 2. Let a and b be two points in the 

plane, we denote ab an edge and |ab| the length of ab. 

Without loss of generality, we assume the length of the 

longest edges in the optimal Steiner tree is 1.  

Theorem 2: Given a set of n terminals P in the 

Euclidean plane, let T be an optimal bottleneck Steiner 

tree for the restricted-BST problem. Then, there exists a 

3-restricted Steiner tree T’ for P with the same number of 

Steiner points as T such that the length of the longest 

edges in T’ is at most   . 
Proof: Because only degree-2 Steiner points are 

possibly adjacent in the optimal solution, any optimal 

bottleneck Steiner tree T can be decomposed into the 

union of its full components, each of which is either a star 

with a Steiner point as center (see Figure 1) or just a line-

segment path connecting two terminals with l ≥ 0 

intermediate degree-2 Steiner points (See Figure 2). 

 

Figure 1.  A star with a Steiner point 
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Figure 2.  A line-segment path with 3 degree-2 Steiner points 

 

Figure 3.  Transformation of a star to 3-restricted Steiner subtree 

For a star Ts with at least 4 terminals, we can always 

decrease the degree of the Steiner point step by step to 3 

and guarantee the length of the longest edges in the 

modified tree is at most   . The procedure is as below: 
Suppose the Steiner point is labeled as v, there must 

exist two terminals a and b satisfying avb ≤ 90, by 
directly connecting a and b and removing the longer edge 

of va and vb, the degree of v is decreased by 1, and it is 

easily seen that  

|ab| =                               ≤    

(remember the assumption that the length of the longest 

edges in the optimal Steiner tree is 1). Repeat the 

procedure until the degree of v becomes 3. Figure 3 gives 
an example to illustrate the procedure.  

Thus we transform the star Ts into a Steiner subtree in 

which the length of the longest edges is at most    and 

the number of Steiner points in the Steiner subtree does 

not increase. For the line-segment path like full Steiner 

component, no transformation work is need because the 

length of its edges is at most 1. Finally we union all the 

Steiner subtrees to form a steinerized spanning tree T’ 

with the same number of Steiner points as the optimal 

bottleneck Steiner tree T, apparently T’ is a 3-restricted 

Steiner tree and the length of the longest edges in T’ is at 

most   . 

A hypergraph H=(V, F) is a generalization of a graph 

where the edge set F is an arbitrary family of subsets of 

vertex set V. A 3-hypergraph H3=(V, F) is a hypergraph, 

each of whose edges has cardinality at most 3. A 

weighted 3-hypergraph H3=(V, F; W) is a 3-hyperpgrah 

with each edge associated with a weight. A minimum 

spanning tree for a weighted 3-hypergraph H3=(V, F; W) 

is a subgraph T of H3 that is a tree containing every node 

in V with the least weight.  

The following theorem proves the existence of a 

randomized algorithm for computing a minimum 

spanning tree for a weighted 3-hypergraph [18]. 

Theorem 2: There exists a randomized algorithm for 

the minimum spanning tree problem for weighted 3-

hypergraphs, with probability at least 0.5, running in 

poly(n,wmax) time, where n is the number of nodes in the 

hypergraph and wmax is the largest weight of edges in the 

hypergraph. 

III. THE APPROXIMATION ALGORITHM  

In this section, we transform the computation of an 

optimal 3-restricted Steiner tree into the minimum 

spanning tree problem for weighted 3-hypergraphs. 

To construct a weighted 3-hypergraph, we need to 

know B, the length of the longest edges in an optimal 

solution. It is hard to find the exact value of B in an 

efficient way because of the hardness of the restricted-

BST problem. However, we can guess the length of the 

longest edges in an optimal solution. The following 

procedure finds a value B' that is at most (1+)B for any 

>0: 
Run the polynomial time approximation algorithm 

with performance ratio    in [17] to get an upper bound 
X of B. 

Try to use one of 
 

  
, 

 

  
    , 

 

  
     , …, X as 

B', where  is a positive number. 

Thus, we can assume that B'=(1+)B is the 
approximation of the longest edges in an optimal solution. 

Now we can construct a weighted 3-hypergraph H3=(V, F; 

W) from the set P of terminals. The construction process 

is shown in Figure 4. 

 

Figure 4.  Construction process of a 3-hypergraph 

It is easily seen that for a given bound B', the above 

construction can be done in O(n3) time because the 

number of edges is O(n3) and the computation of the 

weight of an edge uses only constant time. After 
obtaining the weighted 3-hypergraph H3(V, F; W), we can 
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use the algorithm in [18] to computer a minimum 

spanning for H3. Now it is ready for us to present our 

approximation algorithm with performance ratio   +, 

where  is a positive number.  
Algorithm restricted-BST(P, n, k, ) 

Input: A set P of n terminals in the Euclidean plane, an integer k and 

a positive number . 

Output: A 3-restricted Steiner tree T for P with at most k Steiner 

points. 

Call the O(nlogn+klogn) approximation algorithm with performance 

ratio    for restricted Euclidean bottleneck Steiner tree problem in [17] 

to get the length of the longest edge X. 

For B'  
 

  
, 

 

  
    , 

 

  
     , …, 

 

  
    

    

 
    do 

Construct a weighted 3-hypergraph H3(V,F; W) according to B' and 

Figure 4.  

Call the polynomial randomized algorithm in [18] to compute a 

minimum spanning tree T’ for H3(V, F; W). 

if w(T’) ≤ k then exit the for loop. 

Replace every edge f of the minimum spanning tree T’ on H3(V, F; W) 

with a Steiner subtree as below descriptions.  

If f = (a, b), replace f with a path connecting a and b by adding w(f) 

intermediate Steiner points with a even partition of f.  

If f = (a, b, c), replace f with a star centered at the circumcenter 

triangle ∆abc if abc forms a triangle, or at the center of the longest 

segment among ab, ac and bc if a, b and c are collinear. 

Output the resulting 3-restricted Steiner tree. 

Theorem 1 and Theorem 2 indicates the existence and 

performance of a randomized approximation algorithm 

for the restricted Euclidean bottleneck Steiner tree 

problem. Combined with algorithm restricted-BST, we 

have the following Theorem.  

Theorem 3: For any given , there exists a randomized 
algorithm that computes a Steiner tree with n terminals 

and k Steiner points with probability at least 0.5 such that 

the longest edge in the tree is at most   + times of the 

optimum, and the algorithm’s running is 
 

 
          . 

In fact, by using a binary search strategy, we can 

decrease the number of loops in Step 2 from 
 

 
 to log(

 

 
) 

and hence improve Algorithm restricted-BST(P, n, k, ). 

Algorithm faster-restricted-BSP(P, n, k, ) is an 

improvement of Algorithm restricted-BST(P, n, k, ). 
Algorithm faster-restricted-BST(P, n, k, ) 

Input: A set P of n terminals in the Euclidean plane, an integer k and 

a positive number . 

Output: A 3-restricted Steiner tree T for P with at most k Steiner 

points. 

Call the O(nlogn+klogn) approximation algorithm with performance 

ratio    for restricted Euclidean bottleneck Steiner tree problem in [17] 

to get the length of the longest edge X. 

Initialize low  0 and high  
    

 
  

while (low < high) do 

mid(low+high)/2 and B' 
 

  
         

Construct a weighted 3-hypergraph H3(V,F; W) according to B' and 

Figure 4.  

Call the polynomial randomized algorithm in [18] to compute a 

minimum spanning tree T for H3(V, F; W). 

Consider the solution T’, if w(T’) > k, then lowmid+1; else 

highmid. 

Replace every edge f of the minimum spanning tree T’ on H3(V, F; W) 

with a Steiner subtree as below descriptions.  

If f = (a, b), replace f with a path connecting a and b by adding w(f) 

intermediate Steiner points with a even partition of f.  

If f = (a, b, c), replace f with a star centered at the circumcenter 

triangle ∆abc if abc forms a triangle, or at the center of the longest 

segment among ab, ac and bc if a, b and c are collinear. 

Output the resulting 3-restricted Steiner tree. 

IV. CONCLUSION 

We mainly considered a restricted version of the 

bottleneck Steiner tree problem in the Euclidean plane. 

The problem is MSX-SNP hard and cannot be 

approximated with ratio    unless P=NP. In this paper 

we presented a polynomial time randomized 

approximation algorithm with performance ratio   +. 

The algorithm is near optimal and almost close the gap 

between lower bound    and upper bound   +. 

Further study include the derandomization of the 

randomized algorithm efficiently. 

As an application, the algorithm can be used to 

improve the lifetime of wireless networks by minimizing 

the length of the longest edge in the interconnecting tree 

by deploying additional relay nodes at specific locations.  
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