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Abstract—The function of the comparing fingerprints 
algorithm was to judge whether a new partitioned data 
chunk was in a storage system a decade ago.  At present, in 
the most de-duplication backup system the fingerprints of 
the big data chunks are huge and cannot be stored in the 
memory completely. The performance of the system is 
unavoidably retarded by data chunks accessing the storage 
system at the querying stage. Accordingly, a new query 
mechanism namely Two-stage Bloom Filter (TBF) 
mechanism is proposed. Firstly, as a representation of the 
entirety for the first grade bloom filter, each bit of the 
second grade bloom filter in the TBF represents the chunks 
having the identical fingerprints reducing the rate of false 
positives. Secondly, a two-dimensional list is built 
corresponding to the two grade bloom filter for the absolute 
addresses of the data chunks with the identical fingerprints.  
Finally, a new hash function class with the strong global 
random characteristic is set up according to the data 
fingerprints’ random characteristics. To reduce the 
comparing data greatly, TBF decreases the number of 
accessing disks, improves the speed of detecting the 
redundant data chunks, and reduces the rate of false 
positives which helps the improvement of the overall 
performance of system. 
 
 
Index Terms—data fingerprint, bloom filter, two-level 
bloom filter, de-duplication, hash 
 

I.   INTRODUCTION AND MOTIVATIONS 

By living in the information era, we encounter different 
information from different channels every day: call, 
television, message, and post, etc. At the same time, a 
great deal of information and data will generate every day, 
such as Micro-blog, Blog, and FRID, etc.  Different kinds 
of information are everywhere. According to the 
International Data Corporation (IDC) statistics, the 
amount of data of the whole world was just 180EB in 
2006, and this figure increased to 1800EB in 2011. It has 
increased by almost one order of magnitude in the past 

course of 5 years. All the data generated every year 
should be stored for the future reference. This number 
will continue to grow. Recent IDC reports predict that 
this figure will arrive to 8000EB (almost 8ZB) in 2015. 
That sounds good to store all the data. The fact is that IT 
budget becomes seriously critical. The growing rate of 
the annual input is just 3 percent [1]. A wide gap comes 
into being between the demand of the information storage 
and the affordability. 

Research and experimental results also show that a 
large amount of data is duplicated in the growing data. 
For many users backup their important data periodically 
to prevent unexpected incidents. In fact, the 70% data in 
the storage system is duplicated, which has never been 
used in 90 days [1]. For the duplicate data, there is no 
need to store. 

It is a hot research topic nowadays that how to use the 
existing storage capacity to store as many data as possible. 
Recently, data de-duplication, the hot emerging 
technology, has received a broad attention from both 
academia and industry, which called Intelligent 
Compression or Single-Instance Storage. Its basic thought 
is to divide the file data into different chunks and the 
same chunks in the saving system only save one copy, 
while the others, referenced to by a pointer are pointing to 
the location of the chunks. On the one hand, it eliminates 
the same chunks, which distribute in the saving system to 
optimize utilization of saving space and get the higher 
saving efficiency. On the other hand, it reduces the 
amount of data that delivers in the network and then 
lower energy depletion and network cost, and is data 
replication and instauration to save a great deal of 
network bandwidth, which is also an important aspect of 
green compute. 

To the storage system for big data, the number of the 
chunks is very huge especially in the case of fine-grain. It 
is a key to improve the performance of the system that 
how to judge a new data chunk whether has already 
storied in the storage system as quickly as possible. 

The information retrieval comes in many forms, such 
as dynamic array, database, RB/B/B+/B* tree and hash 
table. The hash retrieval is famous for its o (1) 
performance. It seems a good solution to adopt hash table 
to save the meta-data index information [2] [3] [4], 
because the overhead for querying the hash table is a 
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constant in theoretically. But in fact, when the data scale 
becomes big, the index information will lead greatly 
ineluctably to not be complete saved in the memory and 
need to carry on an IO operation to access the disk in the 
query, which is a process that pretty much consuming. 
The key place how can avoid the IO operation to 
accelerate the query speed of data fingerprint to raises the 
system performance. 

In this paper, we studied the questions above-
mentioned and performed various experiments. The 
primary contribution of our work is as follows: First, we 
introduce the bloom filter that is a kind of high efficient 
memory data structure into De-duplication Storage 
System (DSS). According to the shortcoming of the false 
positive rate in the original bloom filter, we present a new 
mechanism named Two-stage Bloom Filter (TBF). In the 
new mechanism, each bit of the second grade bloom filter 
represents the entirety of the values of the hash functions 
for the identical chunk in the first bloom filter, that is to 
say that each bit of the second grade bloom filter 
represents the chunks who have the same fingerprints. 
Second, a two-dimensional list is created corresponding 
to the two grade bloom filter. The absolute addresses of 
the data chunks with the same fingerprints are together in 
the identical list that avoiding the saving of the 
fingerprints. This measure reduces the storage space 
greatly and improves the query mechanism of the 
fingerprints in the data de-duplication system. At last, 
since the fingerprints made by the MD5 algorithm have 
the characteristics of random, a new hash function class 
with the strong global random character comes out. 
Comparing with the existing algorithms of detecting the 
redundant data chunks, on the base of reducing the 
comparing data greatly, TBF decreases the number of 
accessing disks, improves the speed of detecting the 
redundant data chunks, and reduces the rate of false 
positives. All these measures improve the overall 
performance of system. 

The following paper reads as follows. Section 2 
introduces related works. Section 3 describes the 
organization of De-duplication Storage System and 
section 4 studies two-stage bloom filter mechanism in 
details. In section 5 various experiments are performed to 
measure the improvement of the rate of false positives 
based on the TBF. At last, section 6 draws the conclusion. 

II.  RELATED WORKS 

It is a serious concern that how to find out more 
redundancy data in the data de-duplication system, and 
how to find out the redundancy data more quickly is 
another research hot spot,  

For the data quantitative is huge, we cannot compare 
the chunks directly, but make use of hash algorithm 
(MD5 or SHA-1) to compute a hash value (data 
fingerprint) of each chunk and deposit this fingerprint to a 
data structure. We will compute its data fingerprint firstly 
when the new chunk coming, then compare it with the 
already exist set of the data fingerprint. If this fingerprint 
has been in the set, we just store an index; otherwise, the 

new chunk and fingerprint all should be store in the 
system. 

It is enough to meet the system performance by using 
the hash table to save the fingerprints that produced by 
the MD5 algorithms when the data quantity is not big. 
However, it will generate many other factors to effect the 
performance of the system thus while the data quantity 
become huge. 

It is the most important factor affecting the system 
performance that the memory is not enough. By the time 
that should compare all the saved fingerprints to make 
sure that a chunk whether has been already existed, an 
I/O operation to query the fingerprints is already 
inevitable when the contents of hash table exceed far 
beyond the memory. This operation extremely consumes 
time that will affect the overall performance of system 
greatly, or even it is sometimes incapability bears with. 

To tackle these problems, M. Lillibridge et al. [5] 
adopted the methods, such as sampling, sparse index and 
chunk locality, etc. Thwel et al. [6] introduced the B+ 
tree into the data de-duplication system, which stored the 
data fingerprints into the leaves of the B+ tree. Because 
of the characters of the B+ tree, when we need to know 
whether a certain chunk has been already existed, we just 
compared one part of nodes of the B+ tree that made the 
time complexities of the search descend from O (0) to O 
(logn). Still, this method involved the IO operations. 
Deepavali Bhagwa et al. [7] then proposed to divide the 
chunk indices as two levels. The upper level was termed 
primary index and kept in RAM, which use to identify the 
file; and the second level is termed bin and kept in the 
disk, which included the whole chunks of the data. In this 
way, we needed access the disk once to search a file, but 
it probably existed a great deal of redundancy data.  

In some intuitive sense, the shorter the chunk, the 
higher the opportunity of discovering the redundancy data, 
as while as the whole metadata was also bigger. 
Bobbarjung et al. [4] proposed a new thinking of the 
stratify storage data fingerprint to find out more 
redundancy data and as far s possible to put down the 
overhead of the metadata processing. It tried to minimize 
the length of the chunk as 1 KB or so, as while as make a 
set of chunks as a unit to deal with. In this way, it had 
merits of both sides, raising the rate of discovering the 
redundancy and reducing the whole amount of the 
metadata. Nevertheless, in practical application the result 
was unsatisfactory when it operated the inserting and 
deleting in the files. 

Kruus et al. [8] proposed a kind of two-stage chunking 
algorithm that re-chunks transitional and non-duplicated 
big CDC chunks into small CDC chunks. It could 
discover more redundancy chunks comparing with the 
basic CDC algorithm and obviously enlarged the amount 
of metadata. But [9] then proposed a new kind of 
algorithm that is according to the chunks appearing 
frequency to decide whether further divide the CDC 
chunks , it could declined the amount of metadata to a 
certain degree and improved the performance of de-
duplication. 
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It is the focus of this paper that how to identify the 
redundancy data as well as reduce the metadata. Aiming 
at web service of wide area network, Li Fan et al. [10] 
presented a kind of improved flexible sharing cache 
protocol, namely summary cache, which made use of the 
bloom filter. And B. Zhu et al. [3] introduced the bloom 
filter into arrive document backup system, that also made 
use of the bloom filter to create a Summary Vector in the 
memory while backing up the data that could query the 
memory vector directly and knew whether the data 
chunks already had been in, while searching the data 
fingerprints. By studying and analyzing bloom filter [11] 
which is a kind of high efficiency memory data structure, 
we find that it can solve the problem that the memory can 
not store the excessive metadata to lead to the frequently 
IO operations during the  retrieval process. In addition, 
the performance of overall system is improved. 

However, some literature[12][13][14] also introduced 
the bloom filter the efficient memory data structure into 
the redundancy data detection and reduced the number of 
the IO operations to judge whether the chunk had been in 
the storage system, but all of them had seldom deep 
studied on the problem of the false positive. In addition, 
some other literature [15] thought that it was not a very 
important problem to minimize the false positive rate of 
the bloom filter. Such as in the query of web page the 
false positive rate sacrificed to obtain the better spatial 
efficiency, and could improve the performance of query 
of the data fingerprint by compressing the bit vector of 
the bloom filter. 

For keeping a low rate of false positive, the availability 
of RAM space on the machine decides the length of the 
bloom filter. For the big datasets, the RAM space is not 
sufficient. Biplob Debnath et al. [16] advocate the flash 
memory to serve as suitable medium for storing bloom 
filters and Michael A. Bender et al. [17] supposed the 
Cascade Filter and Deke Guo et al.[18] proposed dynamic 
Bloom filters to overcome this shortcoming, respectively. 

In our system, we present the solution of the two-stage 
bloom filter mechanism that make use of the second grade 
bloom filter on the base of the algorithm of the standard 
bloom filter. It reduces the number of IO operation 
directly to improve the performance of discovering the 
repeated chunks by as far as possible to decrease the false 
positive rate. 

III. DE-DUPLICATION STORAGE SYSTEM ARCHITECTURE 

To provide the context of  finding the redundancy data 
by the TBF mechanism, this section describes the 
architecture of the Duplication Storage System (DSS). 

The DSS designed for distributed environment is 
divided into three parts: the front-end data input server, 
the metadata query server and the back-end storage server. 
The front-end server connects with the metadata query 

server and the back-end storage server by the network. 
The framework of the system is in Figure 1. 

 

 
Figure 1. Architecture of DSS 

The metadata query server divides into two 
components: the file server component and the index 
server component. The metadata of the file is stored in 
the file server and the TBF storing the chunk fingerprints 
is in the index server. 

When a data file is inputted at the Front End Servers 
level, the fingerprint of the file will be built by DSS, and 
the metadata query server will search the relevant Meta 
information. It will notify Front End to delete the file if 
the file fingerprint has been in the file server; otherwise, 
the DSS will record the related information of this file, 
namely the table of logic file. Each record of the logical 
file includes the file name, file length, the modify time of 
the file, sum of chunk, size of chunk ID, and a unique set 
of data block number. The file can be restored by this 
logic file to get the entity data content.  

The DSS will partitions the file into variable length 
chunks in a content dependent manner [19] and compute 
a fingerprint for each chunk when the file-level 
redundancy does not exist. The metadata query server 
will call the index server component to search whether 
the chunks have been in the storage system after 
receiving the query request of the array of chunk 
fingerprints, and return the chunk IDs. 

The ID field value is 0 or 1.  The value 0 means the 
corresponding chunk does not exist which needs to be 
transferred from the client to the back-end storage system, 
the value 1 means that the chunk already exists which 
does not need to be transferred. 

 

TABLE I.  LOGIC FILE 

File name File length Modify time Sum of 
chunks 

size of chunk 
ID  

ID1 ID2 … IDn 
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TABLE II.  RETURN BY CHUNK FINGERPRINT QUERY 

File name File length Modify time Sum of chunks ID1 ID2 … IDn 

 
In order to accelerate the query speed, decrease the 

memory occupied by the index, and reduce the false 
positive rate, the bloom filer goes to store the index in 
DSS. Moreover, the original bloom filter improves by a 
series second bloom filter, namely TBF to cut down the 
false positive rate, and reduce the frequent IO operations 
to bring up the system performance. 

At last, the storage system receives the chunks from 
the front-ended node and stores them, and finally updates 
the logic files table in the file server. 

VI. CHUNK FINGERPRINT QUERY BASED ON THE TBF 

In the DSS, the large-scale data is the object. Under the 
assumption that we need to store the data about 2n TB, 
each chunk is about 23 KB and it will have about 2n-3*109 

unique chunks. If the index of each chunk is 16 Bytes, it 
needs about 2n+1 GB space to store them. The storage 
space increases exponentially when n increases. Not all 
these indices can be stored in the memory and the 
frequent disk IO operations are unavoidable. Supposed 
that the average time of one IO accessing is about 4 ms, it 
can retrieve 250 chunks per second, which means that the 
throughput of the system is about 2 MB/s. In addition, 
this is not acceptable. 

Then it is the necessary conditions for avoiding to 
access the disks and keep the query time within the limits 
that how to simplify the index data to keep them in the 
memory fully. 

A. Standard Bloom Filter (SBF) Algorithm 

 

 
Figure 2. SBF element inserting 

 
The original bloom filter composed of a large bit 

vector BV and k hash functions is a kind of efficient and 
simplified memory data structure suggested by Burton H. 
Bloom[11] in the 70’s last century, which could realize 
the efficient query whether an element was in the set. 
Compared with the traditional tree query algorithm and 

hash query algorithm, the space that the bloom filter 
needs shows no correlation with the size of the element 
need by query, but it only shows a correlation with the 
numbers of the functions mapping the element to the bit 
vector, which will economize storage space greatly. 

In the initial state, the bloom filter is a vector whose 
length is m, with the initial value of 0. The set S includes 
n elements(data fingerprint){ x1,x2,…xn},there are k 
independent hash functions hi(x) in the Bloom Filter, that 
map the each fingerprint to (0,…,m-1),respectively. We 
will compute the value of hi (xj) (1≤i≤k) when we insert a 
data fingerprint xj into the set S. If the hash value is s, the 
counterpoint of the bit vector BV should be set 1. 

By applying k hash functions on the y data fingerprint 
respectively, it can be concluded that the fingerprint is 
not in the set if there is one or more 0s in the 
corresponding locations in the vector BV. However, it 
cannot be concluded that the data fingerprint belongs to 
the set if the values of the k locations are all 1, for one 
scenario of miscarriage of justice named false positive 
may appear at this time [3], which can be stated as the 
formula: 

kmkn

kkn

e
m

FP )1(
1

11 /−−≈















 −−=                       (1) 

In the formula, m is the length of the vector BV, 
namely the length of bloom filter; while n is the number 
of the set elements, that is the number of chunks and k is 
the number of hash functions. 

Then it is known from the above analysis that for the 
given n and m, they need more hash functions, that is to 
say, increase the value of k, to assure enough low 
probability of the false positive, which will directly lead 
to low performance of adding and querying operations for 
the data fingerprints. 

B.The Principle of the TBF Algorithm 

It cannot decrease the rate of false positive by increase 
the value of k continuously, for k, the FP has a minimum 
value as FPmin=0.6185m/n [20]. In order to minis the value 
of FP. We enlarge the value of m/n at this time. It sets up 
larger bloom filter for the given element amount n, at the 
price of enlarging the memory occupation. 

Inspired by the multidimensional bloom filter 
suggested by Guo et al. [21], we consider adopting TBF 
mechanism by two bloom filters in series to reduce the 
rate of false positive. 

Because each hash function of the SBF is independent 
and has no contact with each other the values of the hash 
function for the different elements produce collision 
easily. While SBF takes no measure to deal with the 
above-mentioned situation. For example, when a same 
value of the different hash function for the other element 
generated after the location of the bit vector had been set, 
it just did nothing but simply queried. 
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The principle of the TBF mechanism is that all values 
of the hash functions for per element incorporates to one 
value, namely the whole characteristic of the element. It 
represents by another bloom filter. Therefore, the 
integrated information leads to the falling rate of the 
collision produced by the single hash function value that 
reducing the rate of the false positive for the overall 
system. 

Given the set of the data fingerprints is S={x1, x2 ,…, 
xn},the TBF is composed of two bloom filters in series. 
The length of the first filter is m, which represents the 
values of the fingerprints generated by the set of the k 
hash functions:  

elementi_addrj=h1j(xi) ∈{0,1,…,m-1}(1≤i≤n,1≤j≤k) 
elementi_addrj represents the jth hash value for the ith 

element. 
The length of the second filter is n’, which represents 

the integrated information of k hash functions for each 
element; the hash function shows as below: 

h2i(x) 
=elementi_addr1 ⊕ elementi_addr2 ⊕ elementi_addr3 ⊕
… ⊕ elementi_addrk; (1≤i≤n’) 

The second bloom filter address comprises of the value 
of XOR operation, which represents the integrity of the 
hash values of each element of the first bloom filter. 

 

x1

x2

…

xi

…

xn

h11(x)

h12(x)

...

H1k(x)

1

1

1

1

1

1

1

1

1

1

1

h2(x)

S
First bloom filter

First hash set

Second hash set

Second  bloom filter  
Figure 3. principle of the TBF 

C. The implementing of the TBF Algorithm 

It needs to build a two-dimension link list to save 
absolute address of the data chunks that shows as the 
fig.4. The length of the list is as same as that of the 
second bloom filter, namely m’ and the initial values are 
null. Each location of the second grade bloom filter 
corresponds to a series of absolute addresses. The system 
will record the absolute address of a new data chunk 
when the data chunk is inserted as well as the value of the 
corresponding location of the second grade bloom filter is 
set to 1. 

It is described at the below about the query algorithm 
of the TBF and the insertion algorithm of the TBF, 
respectively. 

1. The query algorithm of the TBF 
It needs to query the two bit-vectors respectively while 

needing to judge whether a data chunk has been in the 
system. As shown in algorithm 1, first step, it applies k 
hash functions on the fingerprint of the data chunk, and 

query the first grade SBF according to the results of the 
calculation. It indicates that the data chunk has not been 
stored if one or more locations in the first SBF have been 
set to 0, and return the result. Otherwise, if all the k 
locations are set to 1, it goes into the next step to apply 
the XOR operation on the k hash values gaining by the 
first step, and then query the second grade bloom filter by 
the result. It indicates that the data fingerprint has not 
been stored if the location has not been set and otherwise 
it cannot judge whether the data fingerprint has been 
stored. That is to say the false positive occurs. The 
absolute addresses in the Absolute address_index list 
corresponding to the location of the second grade bloom 
filter traverses, and the data in the absolute address 
compare with the new chunk byte by byte. It indicates 
that the chunk has been stored in the system while it 
discovers that some chunk in the storage system has the 
same content as that of the new chunk’s, otherwise, it 
indicates that is a new data chunk. 

 

 
Figure 4. Absolute Addresses List for Initial Data Chunks 

 
Algorithm 1: the query algorithm of the TBF 
Input:a chunk data fingerprint 
Output:bool  //return true, it indicates that the chunk 

has been in; return false, it indicates that the chunk has 
been in 

bool QueryFingerprint(Object fingprint) 
{ int Faddr[k];// the k hash values of the first grade 
 int sSddr;   // the hash value of the second grade    
 Vector BV1, BV2;//the two bloom filters 
 For(i=0;i<k;i++){ 
  Fadd[i]=hashi(fingerprint);            
// to get the i hash values of the first grade 
   If(getBV1(Fadd[i])==0) 
      return true;    
          
//to judge whether the locations of the first gradebloom 
filter have been set 

   } 
 sAddr=Faddr[0] ⊕ Faddr[1]… ⊕ Faddr[k];  
// XOR operation, to get the hash value of the second 
grade 

   if(getBV2(saddr)==0)  
// to judge whether the location of the second grade 
bloom filter has been set 
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      return false; 
   else  
       return taaverse_absolute_address(sAddr);  

//traverse the absolute address list, return true if find 
the same chunk, otherwise return false 
} 
2. The insertion algorithm of the TBF 
As shown in algorithm 2 is the insert algorithm of the 

element of the data fingerprint. At first, whenever a new 
data fingerprint inserted into the set, it will call the Query 
Fingerprint function to judge whether the chunk has been 
in the system. It will save the pointer that save the 
absolute address of the data chunk in the storage system, 
and delete the new data chunk when it finds the new data 
chunk has been in the storage system. Otherwise, it will 
save the new data chunk, create a new absolute address 
block and link it the corresponding location of the address 
list. 

Algorithm 2: the insertion algorithm of the TBF  
input:a chunk data fingerprint 
Output:void 
void AddFingerprint(Object fingerprint) 
{ int Faddr[k];// the k hash values of the first grade  
  int  sAddr;   // the hash value of the second grade   
  Vector BV1,BV2://the two bloom filters 
  Long int  *Address_index[m’]; 
  If(!QueryFingerprint(Object fingprint)) 
   { 
     for(i=0;i<k;i++){ 
       Fadd[i]=hashi(fingerprint);        
   //to get the i hash values of the first grade 
       setBV1(Fadd[i]);                   
 //to set the first grade bloom filter 
      } 
      sAddr=Faddr[0] ⊕ Faddr[1]… ⊕ Faddr[k]; 
//XOR operation, to get the hash value of the second 
grade 

      setBV2(sAddr);                    
  // set the second bloom filter 
      insert_chunk();                    
  //insert the new data chunk 
      setAddress_index(sAddr);            
 //insert the absolute addresses list for new data chunks 
    } 
   else 
     save_Absolute_Address_pointer(fingerprint); 
//save the pointer 

  } 

D. Performance analysis for TBF 

Theorem The rate of false positive for TBF algorithm 
is less than that of the SBF algorithm. 

In this paper, the author proves the following: Let the 
rate of false positive for standard bloom filter algorithm 
be FP1, the length of bloom filter is m, the number of 
elements is n, and the number of hash functions is k. The 
rate of false positive for the second grade be FP2, the 
length of the second bloom filter is m’, the number of 
elements is n’, the number of hash functions is k’. The 
rate of false positive for the TBF algorithm is FP. 

So                FP1= ( )kmkne /1 −− = ( )mne /1 −−        (2) 

For just one hash function is set in the second grade 
bloom filter, namely k’=1, the rate of the false positive 
for the second grade is as follows: 

FP2= ( ) ''/''1
kmnke−− = ( )'/'1 mne−−        (3) 

The two bloom filters are in series, so the overall rate 
of false positive is: 

FP=FP1*FP2= ( )kmkne /1 −− * ( )'/'1 mne−−               (4) 

And n’<m’, then ( )'/'1 mne−− <1, so FP<FP1 

The above-mentioned 2n TB data, if each chunk is 23 
KB and there are about 2n-3*109chunks. They are stored 
in the bit vector. While the value of m/n for the first grade 
bloom filter is set as 2k (k is the number of the hash 
functions), the size of the vector is 2n-2*k Gb, that is to 
say 2n-5*k GB. The value of m’/n’ for the second grade 
bloom filter is set as 2k’ (k’=1) and m’=1/4m, then the 
length of the second bloom filter is set to 1/4*2n-5k’GB, 
namely 1/4*2n-5GB. The space occupied by the Absolute 
address index is (m’+4n) Bytes (m’=nk/2). The whole 
space occupied by the two bloom filters is 
(k+1/4+2k+16)*2n-5GB. That is to say about (3k+16.25)* 
2n-5GB. 

When one fingerprint is 16 Bytes, 2n-3*109 chunks take 
the space of 2n+1GB. Owing to the large number of the 
fingerprints, they cannot be stored in the memory and 
then frequent accessing of the back storage system is 
unavoidable in the query process. While the TBF saves 
nearly 44% of the space by comparison when the k is 6. 
By adopting the TBF mechanism, the back storage 
system is avoided being accessed and greatly reduced the 
operation expenses.  

Furthermore, comparing with initial bloom filter, the 
TBF algorithm represents the multiple separate hash 
functions of the data fingerprints as an entirety to achieve 
smaller rate of false positive. And its mechanism has the 
following merits standing out obviously: FP is about 40% 
of FP1, that’s to say about 60% of disk IO accessing 
operations can be reduced when the value of m’/n’ is 2. 

The experiment proves that the additional spatial 
expenses do little effect on the performance of the whole 
system while it reduces the query time greatly. 

V. EXPERIMENTAL RESULTS 

A prototype system is designed to test how the TBF 
mechanism introduced in our paper influences the overall 
system performance. A comprehensive analysis is 
performed on various aspects of de-duplication backup. 
We test the performance of incremental by adopting the 
TBF mechanism, which avoids the disk bottleneck, and 
analyze the impacts of different amount of data, different 
number of hash functions and different length of the 
bloom filters.  

A. The Experiment Ssetup 

Our experiment is performed on two nodes which are 
configured with 2-way quad-core Xeon E5405 2GHz 
CPUs and 8GB DDR RAM. Their capacity of cache for 
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each core is 6144KB. The data files (chunks) are stored 
on RAID 0 with two disks (Seagate Barracuda 7200RPM, 
1TB each). Each node has an Intel 80003ES2LAN gigabit 
network interface card (NIC) and is connected via 
switched gigabit Ethernet. One node is the server and the 
other is the mirror. 

B. Hash Functions Class 

The most crucial factor is to decrease the collisions of 
hash functions in the TBF, and then the hash functions 
should have the upstanding global distributing character. 

In the hash functions of H3 defined by Carter et al. [22], 
each H3 hash function is corresponding to a 0, 1 function 
matrix. It has the unusual global distribution, but 
consumes excessive CPU resource. 

Considering the rate of collision for the data 
fingerprints is less by MD5 algorithm, new hash 
functions should be created on the base of fingerprints. 

1. The first grade index hash 
The length of fingerprint created by MD5 is 128 bits, 

and let length of the first grade bloom filter be 2n bits, 
which is shown as the Fig.5. We get the first 7 bits of the 
fingerprint to gain p1, whose value range is from 0 to 
127.Then p1 point to the location of the fingerprint, and n 
bits should be got, this value of the n bits is the hash 
value, who will point to the absolute address of the first 
bloom filter. 

 

 
Figure 5. the first grade index hash 

 

2. The second grade index hash 
The second grade index hash is an improvement upon 

the first grade index hash. It gets the content of the first 7 
bits p1 as a pointer to point to the location of the 
fingerprint, and then gets the content of the next 7 bits p2 
as the second grade pointer to point to the next location, 
at last, the n bits should be got as the pointer p. In 
addition, the p is the value of the hash function and it will 
point to the location of the first grade bloom filter. It is 
shown as the Fig.6. 

Furthermore, the first and the second grade index hash 
both have a shortcoming that when it gets the pointer p1 
or p2, namely the content of the 7 bits of the fingerprint, 
the state will follows: 128-p1<n or 128-p2<n. It should 
link the head and tail of the fingerprint to form into a loop. 

 

 
Figure 6. The second grade index hash 

C. Performance of incremental for TBF  

In these experiments, we mainly study the influence of 
the selection of the various number of hash functions to 
the throughput and the number of storage accessing of the 
false positive. In the experiments, the data is about 1TB, 
and the number of the data chunks, namely n, is 
114,845,208. 

 

 
Figure 7. The number of storage accessing of the false positive 

 

 
Figure 8. The throughput 

For 1TB data, the total number of false positive storage 
accessing is no more than 250,000 after the filtering by 
the first grade Bloom Filter. While the memory space 
occupied by the second grade Bloom Filter is negligible. 
Fig.7 illustrates that TBF reduces about 30~40% storage 
accessing of false positive with the same length of the 
first grade Bloom Filter. In addition, it indicates that the 
performance-to-price is the optimal while the k is 8 and 
the length of the first Bloom Filter is 384MB. TBF has a 
limited capability to decrease the rate of the accessing of 
the false positive when increasing the numbers of the 
function or the length of the first grade Bloom Filter.   

Fig.8 shows that the throughput achieves 195MB/s 
when k is 8 and the length of the first grade Bloom Filter 
is 384MB by adopting TBL. The throughput will 
decrease if k is increased. However when the length of 
first grade Bloom Filter increases, it is not obvious to 
observe the increase of the throughput. 

VI.CONCLUSION 

It is a key problem in the de-duplication backup system 
that how to judge whether a new partitioning data 
segment has been in the storage system as fast as possible. 
In this paper owing to sufficient investigations of related 
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fields at domestic and abroad, a new mechanism TBF is 
proposed.   

The false positive exists while introducing the SBF 
mechanism to the traditional data fingerprints comparing 
mechanism. The last result should be decided by 
accessing the disk through IO operations in most of the 
cases. However, introducing the TBF mechanism is not 
simply to add a new bloom filter on the SBF, the second 
grade bloom filter represents the entirety of the first 
bloom filter that each bit of the second grade bloom filter 
represents the chunks who have the same fingerprints. It 
also introduces a two-dimensional list, which gathers the 
absolute addresses of the data chunks having the same 
fingerprints in a list. By this characteristic, the 
fingerprints need not to be stored completely. It can judge 
whether the new input data chunk has been stored by 
traversing the list when meeting the same fingerprints. 
Contrary to it, the SBF must compare all the stored data 
chunks to get the result in the same case. A new hash 
function class based on the MD5 is also created to solve 
the problem of collisions for the fingerprints. 
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