
An Efficient Data Fingerprint Query Algorithm
Based on Two-Leveled Bloom Filter

Bin Zhou1, 2, Rongbo Zhu 1,*, Ying Zhang 3, Linhui Cheng 1

1. South-Central University for Nationalities/School of Computer Science and Technology, Wuhan, China
2. Huazhong University of Science and Technology/School of Computer Science and Technology, Wuhan, China

3. Huazhong University of Science and Technology/ School of Foreign Languages, Wuhan, China
* Corresponding author, Email: rongbozhu@gmail.com

Abstract—The function of the comparing fingerprints
algorithm was to judge whether a new partitioned data
chunk was in a storage system a decade ago. At present, in
the most de-duplication backup system the fingerprints of
the big data chunks are huge and cannot be stored in the
memory completely. The performance of the system is
unavoidably retarded by data chunks accessing the storage
system at the querying stage. Accordingly, a new query
mechanism namely Two-stage Bloom Filter (TBF)
mechanism is proposed. Firstly, as a representation of the
entirety for the first grade bloom filter, each bit of the
second grade bloom filter in the TBF represents the chunks
having the identical fingerprints reducing the rate of false
positives. Secondly, a two-dimensional list is built
corresponding to the two grade bloom filter for the absolute
addresses of the data chunks with the identical fingerprints.
Finally, a new hash function class with the strong global
random characteristic is set up according to the data
fingerprints’ random characteristics. To reduce the
comparing data greatly, TBF decreases the number of
accessing disks, improves the speed of detecting the
redundant data chunks, and reduces the rate of false
positives which helps the improvement of the overall
performance of system.

Index Terms—data fingerprint, bloom filter, two-level
bloom filter, de-duplication, hash

I. INTRODUCTION AND MOTIVATIONS

By living in the information era, we encounter different
information from different channels every day: call,
television, message, and post, etc. At the same time, a
great deal of information and data will generate every day,
such as Micro-blog, Blog, and FRID, etc. Different kinds
of information are everywhere. According to the
International Data Corporation (IDC) statistics, the
amount of data of the whole world was just 180EB in
2006, and this figure increased to 1800EB in 2011. It has
increased by almost one order of magnitude in the past

course of 5 years. All the data generated every year
should be stored for the future reference. This number
will continue to grow. Recent IDC reports predict that
this figure will arrive to 8000EB (almost 8ZB) in 2015.
That sounds good to store all the data. The fact is that IT
budget becomes seriously critical. The growing rate of
the annual input is just 3 percent [1]. A wide gap comes
into being between the demand of the information storage
and the affordability.

Research and experimental results also show that a
large amount of data is duplicated in the growing data.
For many users backup their important data periodically
to prevent unexpected incidents. In fact, the 70% data in
the storage system is duplicated, which has never been
used in 90 days [1]. For the duplicate data, there is no
need to store.

It is a hot research topic nowadays that how to use the
existing storage capacity to store as many data as possible.
Recently, data de-duplication, the hot emerging
technology, has received a broad attention from both
academia and industry, which called Intelligent
Compression or Single-Instance Storage. Its basic thought
is to divide the file data into different chunks and the
same chunks in the saving system only save one copy,
while the others, referenced to by a pointer are pointing to
the location of the chunks. On the one hand, it eliminates
the same chunks, which distribute in the saving system to
optimize utilization of saving space and get the higher
saving efficiency. On the other hand, it reduces the
amount of data that delivers in the network and then
lower energy depletion and network cost, and is data
replication and instauration to save a great deal of
network bandwidth, which is also an important aspect of
green compute.

To the storage system for big data, the number of the
chunks is very huge especially in the case of fine-grain. It
is a key to improve the performance of the system that
how to judge a new data chunk whether has already
storied in the storage system as quickly as possible.

The information retrieval comes in many forms, such
as dynamic array, database, RB/B/B+/B* tree and hash
table. The hash retrieval is famous for its o (1)
performance. It seems a good solution to adopt hash table
to save the meta-data index information [2] [3] [4],
because the overhead for querying the hash table is a

*Corresponding author, Rongbo Zhu, E-mail: rongbozhu@gmail.com
This research was supported by “the Fundamental Research Funds for
the Central Universities”, South-Central University for Nationalities
(Grant Number: CZY12009). And this work also was supported by the
National Natural Science Foundation of China (No. 60902053,
61272497).

JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013 73

© 2013 ACADEMY PUBLISHER
doi:10.4304/jmm.8.2.73-81

constant in theoretically. But in fact, when the data scale
becomes big, the index information will lead greatly
ineluctably to not be complete saved in the memory and
need to carry on an IO operation to access the disk in the
query, which is a process that pretty much consuming.
The key place how can avoid the IO operation to
accelerate the query speed of data fingerprint to raises the
system performance.

In this paper, we studied the questions above-
mentioned and performed various experiments. The
primary contribution of our work is as follows: First, we
introduce the bloom filter that is a kind of high efficient
memory data structure into De-duplication Storage
System (DSS). According to the shortcoming of the false
positive rate in the original bloom filter, we present a new
mechanism named Two-stage Bloom Filter (TBF). In the
new mechanism, each bit of the second grade bloom filter
represents the entirety of the values of the hash functions
for the identical chunk in the first bloom filter, that is to
say that each bit of the second grade bloom filter
represents the chunks who have the same fingerprints.
Second, a two-dimensional list is created corresponding
to the two grade bloom filter. The absolute addresses of
the data chunks with the same fingerprints are together in
the identical list that avoiding the saving of the
fingerprints. This measure reduces the storage space
greatly and improves the query mechanism of the
fingerprints in the data de-duplication system. At last,
since the fingerprints made by the MD5 algorithm have
the characteristics of random, a new hash function class
with the strong global random character comes out.
Comparing with the existing algorithms of detecting the
redundant data chunks, on the base of reducing the
comparing data greatly, TBF decreases the number of
accessing disks, improves the speed of detecting the
redundant data chunks, and reduces the rate of false
positives. All these measures improve the overall
performance of system.

The following paper reads as follows. Section 2
introduces related works. Section 3 describes the
organization of De-duplication Storage System and
section 4 studies two-stage bloom filter mechanism in
details. In section 5 various experiments are performed to
measure the improvement of the rate of false positives
based on the TBF. At last, section 6 draws the conclusion.

II. RELATED WORKS

It is a serious concern that how to find out more
redundancy data in the data de-duplication system, and
how to find out the redundancy data more quickly is
another research hot spot,

For the data quantitative is huge, we cannot compare
the chunks directly, but make use of hash algorithm
(MD5 or SHA-1) to compute a hash value (data
fingerprint) of each chunk and deposit this fingerprint to a
data structure. We will compute its data fingerprint firstly
when the new chunk coming, then compare it with the
already exist set of the data fingerprint. If this fingerprint
has been in the set, we just store an index; otherwise, the

new chunk and fingerprint all should be store in the
system.

It is enough to meet the system performance by using
the hash table to save the fingerprints that produced by
the MD5 algorithms when the data quantity is not big.
However, it will generate many other factors to effect the
performance of the system thus while the data quantity
become huge.

It is the most important factor affecting the system
performance that the memory is not enough. By the time
that should compare all the saved fingerprints to make
sure that a chunk whether has been already existed, an
I/O operation to query the fingerprints is already
inevitable when the contents of hash table exceed far
beyond the memory. This operation extremely consumes
time that will affect the overall performance of system
greatly, or even it is sometimes incapability bears with.

To tackle these problems, M. Lillibridge et al. [5]
adopted the methods, such as sampling, sparse index and
chunk locality, etc. Thwel et al. [6] introduced the B+
tree into the data de-duplication system, which stored the
data fingerprints into the leaves of the B+ tree. Because
of the characters of the B+ tree, when we need to know
whether a certain chunk has been already existed, we just
compared one part of nodes of the B+ tree that made the
time complexities of the search descend from O (0) to O
(logn). Still, this method involved the IO operations.
Deepavali Bhagwa et al. [7] then proposed to divide the
chunk indices as two levels. The upper level was termed
primary index and kept in RAM, which use to identify the
file; and the second level is termed bin and kept in the
disk, which included the whole chunks of the data. In this
way, we needed access the disk once to search a file, but
it probably existed a great deal of redundancy data.

In some intuitive sense, the shorter the chunk, the
higher the opportunity of discovering the redundancy data,
as while as the whole metadata was also bigger.
Bobbarjung et al. [4] proposed a new thinking of the
stratify storage data fingerprint to find out more
redundancy data and as far s possible to put down the
overhead of the metadata processing. It tried to minimize
the length of the chunk as 1 KB or so, as while as make a
set of chunks as a unit to deal with. In this way, it had
merits of both sides, raising the rate of discovering the
redundancy and reducing the whole amount of the
metadata. Nevertheless, in practical application the result
was unsatisfactory when it operated the inserting and
deleting in the files.

Kruus et al. [8] proposed a kind of two-stage chunking
algorithm that re-chunks transitional and non-duplicated
big CDC chunks into small CDC chunks. It could
discover more redundancy chunks comparing with the
basic CDC algorithm and obviously enlarged the amount
of metadata. But [9] then proposed a new kind of
algorithm that is according to the chunks appearing
frequency to decide whether further divide the CDC
chunks , it could declined the amount of metadata to a
certain degree and improved the performance of de-
duplication.

74 JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013

© 2013 ACADEMY PUBLISHER

It is the focus of this paper that how to identify the
redundancy data as well as reduce the metadata. Aiming
at web service of wide area network, Li Fan et al. [10]
presented a kind of improved flexible sharing cache
protocol, namely summary cache, which made use of the
bloom filter. And B. Zhu et al. [3] introduced the bloom
filter into arrive document backup system, that also made
use of the bloom filter to create a Summary Vector in the
memory while backing up the data that could query the
memory vector directly and knew whether the data
chunks already had been in, while searching the data
fingerprints. By studying and analyzing bloom filter [11]
which is a kind of high efficiency memory data structure,
we find that it can solve the problem that the memory can
not store the excessive metadata to lead to the frequently
IO operations during the retrieval process. In addition,
the performance of overall system is improved.

However, some literature[12][13][14] also introduced
the bloom filter the efficient memory data structure into
the redundancy data detection and reduced the number of
the IO operations to judge whether the chunk had been in
the storage system, but all of them had seldom deep
studied on the problem of the false positive. In addition,
some other literature [15] thought that it was not a very
important problem to minimize the false positive rate of
the bloom filter. Such as in the query of web page the
false positive rate sacrificed to obtain the better spatial
efficiency, and could improve the performance of query
of the data fingerprint by compressing the bit vector of
the bloom filter.

For keeping a low rate of false positive, the availability
of RAM space on the machine decides the length of the
bloom filter. For the big datasets, the RAM space is not
sufficient. Biplob Debnath et al. [16] advocate the flash
memory to serve as suitable medium for storing bloom
filters and Michael A. Bender et al. [17] supposed the
Cascade Filter and Deke Guo et al.[18] proposed dynamic
Bloom filters to overcome this shortcoming, respectively.

In our system, we present the solution of the two-stage
bloom filter mechanism that make use of the second grade
bloom filter on the base of the algorithm of the standard
bloom filter. It reduces the number of IO operation
directly to improve the performance of discovering the
repeated chunks by as far as possible to decrease the false
positive rate.

III. DE-DUPLICATION STORAGE SYSTEM ARCHITECTURE

To provide the context of finding the redundancy data
by the TBF mechanism, this section describes the
architecture of the Duplication Storage System (DSS).

The DSS designed for distributed environment is
divided into three parts: the front-end data input server,
the metadata query server and the back-end storage server.
The front-end server connects with the metadata query

server and the back-end storage server by the network.
The framework of the system is in Figure 1.

Figure 1. Architecture of DSS

The metadata query server divides into two
components: the file server component and the index
server component. The metadata of the file is stored in
the file server and the TBF storing the chunk fingerprints
is in the index server.

When a data file is inputted at the Front End Servers
level, the fingerprint of the file will be built by DSS, and
the metadata query server will search the relevant Meta
information. It will notify Front End to delete the file if
the file fingerprint has been in the file server; otherwise,
the DSS will record the related information of this file,
namely the table of logic file. Each record of the logical
file includes the file name, file length, the modify time of
the file, sum of chunk, size of chunk ID, and a unique set
of data block number. The file can be restored by this
logic file to get the entity data content.

The DSS will partitions the file into variable length
chunks in a content dependent manner [19] and compute
a fingerprint for each chunk when the file-level
redundancy does not exist. The metadata query server
will call the index server component to search whether
the chunks have been in the storage system after
receiving the query request of the array of chunk
fingerprints, and return the chunk IDs.

The ID field value is 0 or 1. The value 0 means the
corresponding chunk does not exist which needs to be
transferred from the client to the back-end storage system,
the value 1 means that the chunk already exists which
does not need to be transferred.

TABLE I. LOGIC FILE

File name File length Modify time Sum of
chunks

size of chunk
ID

ID1 ID2 … IDn

JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013 75

© 2013 ACADEMY PUBLISHER

TABLE II. RETURN BY CHUNK FINGERPRINT QUERY

File name File length Modify time Sum of chunks ID1 ID2 … IDn

In order to accelerate the query speed, decrease the

memory occupied by the index, and reduce the false
positive rate, the bloom filer goes to store the index in
DSS. Moreover, the original bloom filter improves by a
series second bloom filter, namely TBF to cut down the
false positive rate, and reduce the frequent IO operations
to bring up the system performance.

At last, the storage system receives the chunks from
the front-ended node and stores them, and finally updates
the logic files table in the file server.

VI. CHUNK FINGERPRINT QUERY BASED ON THE TBF

In the DSS, the large-scale data is the object. Under the
assumption that we need to store the data about 2n TB,
each chunk is about 23 KB and it will have about 2n-3*109

unique chunks. If the index of each chunk is 16 Bytes, it
needs about 2n+1 GB space to store them. The storage
space increases exponentially when n increases. Not all
these indices can be stored in the memory and the
frequent disk IO operations are unavoidable. Supposed
that the average time of one IO accessing is about 4 ms, it
can retrieve 250 chunks per second, which means that the
throughput of the system is about 2 MB/s. In addition,
this is not acceptable.

Then it is the necessary conditions for avoiding to
access the disks and keep the query time within the limits
that how to simplify the index data to keep them in the
memory fully.

A. Standard Bloom Filter (SBF) Algorithm

Figure 2. SBF element inserting

The original bloom filter composed of a large bit

vector BV and k hash functions is a kind of efficient and
simplified memory data structure suggested by Burton H.
Bloom[11] in the 70’s last century, which could realize
the efficient query whether an element was in the set.
Compared with the traditional tree query algorithm and

hash query algorithm, the space that the bloom filter
needs shows no correlation with the size of the element
need by query, but it only shows a correlation with the
numbers of the functions mapping the element to the bit
vector, which will economize storage space greatly.

In the initial state, the bloom filter is a vector whose
length is m, with the initial value of 0. The set S includes
n elements(data fingerprint){ x1,x2,…xn},there are k
independent hash functions hi(x) in the Bloom Filter, that
map the each fingerprint to (0,…,m-1),respectively. We
will compute the value of hi (xj) (1≤i≤k) when we insert a
data fingerprint xj into the set S. If the hash value is s, the
counterpoint of the bit vector BV should be set 1.

By applying k hash functions on the y data fingerprint
respectively, it can be concluded that the fingerprint is
not in the set if there is one or more 0s in the
corresponding locations in the vector BV. However, it
cannot be concluded that the data fingerprint belongs to
the set if the values of the k locations are all 1, for one
scenario of miscarriage of justice named false positive
may appear at this time [3], which can be stated as the
formula:

kmkn

kkn

e
m

FP)1(
1

11 /−−≈















 −−= (1)

In the formula, m is the length of the vector BV,
namely the length of bloom filter; while n is the number
of the set elements, that is the number of chunks and k is
the number of hash functions.

Then it is known from the above analysis that for the
given n and m, they need more hash functions, that is to
say, increase the value of k, to assure enough low
probability of the false positive, which will directly lead
to low performance of adding and querying operations for
the data fingerprints.

B.The Principle of the TBF Algorithm

It cannot decrease the rate of false positive by increase
the value of k continuously, for k, the FP has a minimum
value as FPmin=0.6185m/n [20]. In order to minis the value
of FP. We enlarge the value of m/n at this time. It sets up
larger bloom filter for the given element amount n, at the
price of enlarging the memory occupation.

Inspired by the multidimensional bloom filter
suggested by Guo et al. [21], we consider adopting TBF
mechanism by two bloom filters in series to reduce the
rate of false positive.

Because each hash function of the SBF is independent
and has no contact with each other the values of the hash
function for the different elements produce collision
easily. While SBF takes no measure to deal with the
above-mentioned situation. For example, when a same
value of the different hash function for the other element
generated after the location of the bit vector had been set,
it just did nothing but simply queried.

76 JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013

© 2013 ACADEMY PUBLISHER

The principle of the TBF mechanism is that all values
of the hash functions for per element incorporates to one
value, namely the whole characteristic of the element. It
represents by another bloom filter. Therefore, the
integrated information leads to the falling rate of the
collision produced by the single hash function value that
reducing the rate of the false positive for the overall
system.

Given the set of the data fingerprints is S={x1, x2 ,…,
xn},the TBF is composed of two bloom filters in series.
The length of the first filter is m, which represents the
values of the fingerprints generated by the set of the k
hash functions:

elementi_addrj=h1j(xi) ∈{0,1,…,m-1}(1≤i≤n,1≤j≤k)
elementi_addrj represents the jth hash value for the ith

element.
The length of the second filter is n’, which represents

the integrated information of k hash functions for each
element; the hash function shows as below:

h2i(x)
=elementi_addr1 ⊕ elementi_addr2 ⊕ elementi_addr3 ⊕
… ⊕ elementi_addrk; (1≤i≤n’)

The second bloom filter address comprises of the value
of XOR operation, which represents the integrity of the
hash values of each element of the first bloom filter.

x1

x2

…

xi

…

xn

h11(x)

h12(x)

...

H1k(x)

1

1

1

1

1

1

1

1

1

1

1

h2(x)

S
First bloom filter

First hash set

Second hash set

Second bloom filter
Figure 3. principle of the TBF

C. The implementing of the TBF Algorithm

It needs to build a two-dimension link list to save
absolute address of the data chunks that shows as the
fig.4. The length of the list is as same as that of the
second bloom filter, namely m’ and the initial values are
null. Each location of the second grade bloom filter
corresponds to a series of absolute addresses. The system
will record the absolute address of a new data chunk
when the data chunk is inserted as well as the value of the
corresponding location of the second grade bloom filter is
set to 1.

It is described at the below about the query algorithm
of the TBF and the insertion algorithm of the TBF,
respectively.

1. The query algorithm of the TBF
It needs to query the two bit-vectors respectively while

needing to judge whether a data chunk has been in the
system. As shown in algorithm 1, first step, it applies k
hash functions on the fingerprint of the data chunk, and

query the first grade SBF according to the results of the
calculation. It indicates that the data chunk has not been
stored if one or more locations in the first SBF have been
set to 0, and return the result. Otherwise, if all the k
locations are set to 1, it goes into the next step to apply
the XOR operation on the k hash values gaining by the
first step, and then query the second grade bloom filter by
the result. It indicates that the data fingerprint has not
been stored if the location has not been set and otherwise
it cannot judge whether the data fingerprint has been
stored. That is to say the false positive occurs. The
absolute addresses in the Absolute address_index list
corresponding to the location of the second grade bloom
filter traverses, and the data in the absolute address
compare with the new chunk byte by byte. It indicates
that the chunk has been stored in the system while it
discovers that some chunk in the storage system has the
same content as that of the new chunk’s, otherwise, it
indicates that is a new data chunk.

Figure 4. Absolute Addresses List for Initial Data Chunks

Algorithm 1: the query algorithm of the TBF
Input:a chunk data fingerprint
Output:bool //return true, it indicates that the chunk

has been in; return false, it indicates that the chunk has
been in

bool QueryFingerprint(Object fingprint)
{ int Faddr[k];// the k hash values of the first grade
 int sSddr; // the hash value of the second grade
 Vector BV1, BV2;//the two bloom filters
 For(i=0;i<k;i++){
 Fadd[i]=hashi(fingerprint);
// to get the i hash values of the first grade
 If(getBV1(Fadd[i])==0)
 return true;

//to judge whether the locations of the first gradebloom
filter have been set

 }
 sAddr=Faddr[0] ⊕ Faddr[1]… ⊕ Faddr[k];
// XOR operation, to get the hash value of the second
grade

 if(getBV2(saddr)==0)
// to judge whether the location of the second grade
bloom filter has been set

JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013 77

© 2013 ACADEMY PUBLISHER

 return false;
 else
 return taaverse_absolute_address(sAddr);

//traverse the absolute address list, return true if find
the same chunk, otherwise return false
}
2. The insertion algorithm of the TBF
As shown in algorithm 2 is the insert algorithm of the

element of the data fingerprint. At first, whenever a new
data fingerprint inserted into the set, it will call the Query
Fingerprint function to judge whether the chunk has been
in the system. It will save the pointer that save the
absolute address of the data chunk in the storage system,
and delete the new data chunk when it finds the new data
chunk has been in the storage system. Otherwise, it will
save the new data chunk, create a new absolute address
block and link it the corresponding location of the address
list.

Algorithm 2: the insertion algorithm of the TBF
input:a chunk data fingerprint
Output:void
void AddFingerprint(Object fingerprint)
{ int Faddr[k];// the k hash values of the first grade
 int sAddr; // the hash value of the second grade
 Vector BV1,BV2://the two bloom filters
 Long int *Address_index[m’];
 If(!QueryFingerprint(Object fingprint))
 {
 for(i=0;i<k;i++){
 Fadd[i]=hashi(fingerprint);
 //to get the i hash values of the first grade
 setBV1(Fadd[i]);
 //to set the first grade bloom filter
 }
 sAddr=Faddr[0] ⊕ Faddr[1]… ⊕ Faddr[k];
//XOR operation, to get the hash value of the second
grade

 setBV2(sAddr);
 // set the second bloom filter
 insert_chunk();
 //insert the new data chunk
 setAddress_index(sAddr);
 //insert the absolute addresses list for new data chunks
 }
 else
 save_Absolute_Address_pointer(fingerprint);
//save the pointer

 }

D. Performance analysis for TBF

Theorem The rate of false positive for TBF algorithm
is less than that of the SBF algorithm.

In this paper, the author proves the following: Let the
rate of false positive for standard bloom filter algorithm
be FP1, the length of bloom filter is m, the number of
elements is n, and the number of hash functions is k. The
rate of false positive for the second grade be FP2, the
length of the second bloom filter is m’, the number of
elements is n’, the number of hash functions is k’. The
rate of false positive for the TBF algorithm is FP.

So FP1= ()kmkne /1 −− = ()mne /1 −− (2)

For just one hash function is set in the second grade
bloom filter, namely k’=1, the rate of the false positive
for the second grade is as follows:

FP2= () ''/''1
kmnke−− = ()'/'1 mne−− (3)

The two bloom filters are in series, so the overall rate
of false positive is:

FP=FP1*FP2= ()kmkne /1 −− * ()'/'1 mne−− (4)

And n’<m’, then ()'/'1 mne−− <1, so FP<FP1

The above-mentioned 2n TB data, if each chunk is 23
KB and there are about 2n-3*109chunks. They are stored
in the bit vector. While the value of m/n for the first grade
bloom filter is set as 2k (k is the number of the hash
functions), the size of the vector is 2n-2*k Gb, that is to
say 2n-5*k GB. The value of m’/n’ for the second grade
bloom filter is set as 2k’ (k’=1) and m’=1/4m, then the
length of the second bloom filter is set to 1/4*2n-5k’GB,
namely 1/4*2n-5GB. The space occupied by the Absolute
address index is (m’+4n) Bytes (m’=nk/2). The whole
space occupied by the two bloom filters is
(k+1/4+2k+16)*2n-5GB. That is to say about (3k+16.25)*
2n-5GB.

When one fingerprint is 16 Bytes, 2n-3*109 chunks take
the space of 2n+1GB. Owing to the large number of the
fingerprints, they cannot be stored in the memory and
then frequent accessing of the back storage system is
unavoidable in the query process. While the TBF saves
nearly 44% of the space by comparison when the k is 6.
By adopting the TBF mechanism, the back storage
system is avoided being accessed and greatly reduced the
operation expenses.

Furthermore, comparing with initial bloom filter, the
TBF algorithm represents the multiple separate hash
functions of the data fingerprints as an entirety to achieve
smaller rate of false positive. And its mechanism has the
following merits standing out obviously: FP is about 40%
of FP1, that’s to say about 60% of disk IO accessing
operations can be reduced when the value of m’/n’ is 2.

The experiment proves that the additional spatial
expenses do little effect on the performance of the whole
system while it reduces the query time greatly.

V. EXPERIMENTAL RESULTS

A prototype system is designed to test how the TBF
mechanism introduced in our paper influences the overall
system performance. A comprehensive analysis is
performed on various aspects of de-duplication backup.
We test the performance of incremental by adopting the
TBF mechanism, which avoids the disk bottleneck, and
analyze the impacts of different amount of data, different
number of hash functions and different length of the
bloom filters.

A. The Experiment Ssetup

Our experiment is performed on two nodes which are
configured with 2-way quad-core Xeon E5405 2GHz
CPUs and 8GB DDR RAM. Their capacity of cache for

78 JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013

© 2013 ACADEMY PUBLISHER

each core is 6144KB. The data files (chunks) are stored
on RAID 0 with two disks (Seagate Barracuda 7200RPM,
1TB each). Each node has an Intel 80003ES2LAN gigabit
network interface card (NIC) and is connected via
switched gigabit Ethernet. One node is the server and the
other is the mirror.

B. Hash Functions Class

The most crucial factor is to decrease the collisions of
hash functions in the TBF, and then the hash functions
should have the upstanding global distributing character.

In the hash functions of H3 defined by Carter et al. [22],
each H3 hash function is corresponding to a 0, 1 function
matrix. It has the unusual global distribution, but
consumes excessive CPU resource.

Considering the rate of collision for the data
fingerprints is less by MD5 algorithm, new hash
functions should be created on the base of fingerprints.

1. The first grade index hash
The length of fingerprint created by MD5 is 128 bits,

and let length of the first grade bloom filter be 2n bits,
which is shown as the Fig.5. We get the first 7 bits of the
fingerprint to gain p1, whose value range is from 0 to
127.Then p1 point to the location of the fingerprint, and n
bits should be got, this value of the n bits is the hash
value, who will point to the absolute address of the first
bloom filter.

Figure 5. the first grade index hash

2. The second grade index hash
The second grade index hash is an improvement upon

the first grade index hash. It gets the content of the first 7
bits p1 as a pointer to point to the location of the
fingerprint, and then gets the content of the next 7 bits p2
as the second grade pointer to point to the next location,
at last, the n bits should be got as the pointer p. In
addition, the p is the value of the hash function and it will
point to the location of the first grade bloom filter. It is
shown as the Fig.6.

Furthermore, the first and the second grade index hash
both have a shortcoming that when it gets the pointer p1
or p2, namely the content of the 7 bits of the fingerprint,
the state will follows: 128-p1<n or 128-p2<n. It should
link the head and tail of the fingerprint to form into a loop.

Figure 6. The second grade index hash

C. Performance of incremental for TBF

In these experiments, we mainly study the influence of
the selection of the various number of hash functions to
the throughput and the number of storage accessing of the
false positive. In the experiments, the data is about 1TB,
and the number of the data chunks, namely n, is
114,845,208.

Figure 7. The number of storage accessing of the false positive

Figure 8. The throughput

For 1TB data, the total number of false positive storage
accessing is no more than 250,000 after the filtering by
the first grade Bloom Filter. While the memory space
occupied by the second grade Bloom Filter is negligible.
Fig.7 illustrates that TBF reduces about 30~40% storage
accessing of false positive with the same length of the
first grade Bloom Filter. In addition, it indicates that the
performance-to-price is the optimal while the k is 8 and
the length of the first Bloom Filter is 384MB. TBF has a
limited capability to decrease the rate of the accessing of
the false positive when increasing the numbers of the
function or the length of the first grade Bloom Filter.

Fig.8 shows that the throughput achieves 195MB/s
when k is 8 and the length of the first grade Bloom Filter
is 384MB by adopting TBL. The throughput will
decrease if k is increased. However when the length of
first grade Bloom Filter increases, it is not obvious to
observe the increase of the throughput.

VI.CONCLUSION

It is a key problem in the de-duplication backup system
that how to judge whether a new partitioning data
segment has been in the storage system as fast as possible.
In this paper owing to sufficient investigations of related

JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013 79

© 2013 ACADEMY PUBLISHER

fields at domestic and abroad, a new mechanism TBF is
proposed.

The false positive exists while introducing the SBF
mechanism to the traditional data fingerprints comparing
mechanism. The last result should be decided by
accessing the disk through IO operations in most of the
cases. However, introducing the TBF mechanism is not
simply to add a new bloom filter on the SBF, the second
grade bloom filter represents the entirety of the first
bloom filter that each bit of the second grade bloom filter
represents the chunks who have the same fingerprints. It
also introduces a two-dimensional list, which gathers the
absolute addresses of the data chunks having the same
fingerprints in a list. By this characteristic, the
fingerprints need not to be stored completely. It can judge
whether the new input data chunk has been stored by
traversing the list when meeting the same fingerprints.
Contrary to it, the SBF must compare all the stored data
chunks to get the result in the same case. A new hash
function class based on the MD5 is also created to solve
the problem of collisions for the fingerprints.

ACKNOWLEDGMENT

This research was supported by “the Fundamental
Research Funds for the Central Universities”, South-
Central University for Nationalities (Grant Number:
CZY12009). And this work also was supported by the
National Natural Science Foundation of China
(No.60902053, 61272497).

REFERENCES

[1] (2011) The IDC website [Oneline]. Available:
http://www.idc.com.

[2] Q. Sean and D. Sean, "Venti: A new approach to archival
storage, " in proceedings of the Conference on File and
Storage Technologies: USENIX Association, January 2002,
pp.89-101.

[3] B. Zhu, K. Li, and H. Patterson, "Avoiding the disk
bottleneck in the data domain deduplication file system,”
in Proceedings of the 6th USENIX Conference on File and
Storage Technologies. Berkeley, CA, USA: USENIX
Association, 2008, pp. 1–14.

[4] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki,
"Improving duplicate elimination in storage systems,”
ACM Trans. Storage, vol. 2, no. 4, 2006, pp. 424–448.

[5] M. Lillibridge et aI., "Sparse Indexing, Large Scale, Inline
Deduplication Using Sampling and Locality," in
proceedings of 7th USENIX Conference on File and
Storage Technologies, USENIX Association, San
Francisco, California, 2009, pp. 111-123.

[6] T. T. Tin, and T. L. Ni, "An efficient indexing mechanism
for data deduplication," in proceedings of 2009
International Conference on the Current Trends in
Information Technology (CTIT), December 2009, pp. 1-5.

[7] B. Deepavali, E. Kave, L. Darrell, and L. Mark, "Extreme
Binning: Scalable, parallel deduplication for chunk-based
file backup, " in Proceedings of the 17th IEEE/ACM
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
London, UK, September 2009, pp. 1-9.

[8] K. Erik, U. Cristian, and D. Cezary, “Bimodal Content
Defined Chunking for Backup Streams,” in Proceedings of

8th USENIX Conference on File and Storage Technologies,
Feb, 2010, pp.18-18.

[9] L. Guanlin, J. Yu, and H.C. David, "Frequency Based
Chunking for Data De-Duplication," in proceedings of
18th Annual IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2010 , pp.287-296.

[10] F. Li, C. Pei, A. Jussara, and Z. B. Andrie, "Summary
Cache: A scalable wide-area web cache sharing protocol, "
in proceedings of ACM SIGCOMM'98, Vancouver,
Canada, October 1998, pp. 254-265.

[11] B. H. Burton, "Space/time trade-offs in hash coding with
allowable rrors," Communications of the ACM, July 1970,
pp. 422-426.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, "Bigtable: a distributed storage system for
structured data, " in proceedings of OSDI ’06, USENIX
Association, Berkeley, CA, USA, 2006, pp.205–218.

[13] N. Jain, M. Dahlin, and R. Tewari, "TAPER: Tiered
Approach for Eliminating Redundancy in Replica
Synchronization, " In proceedings of USENIX File And
Storage Systems, USENIX Association Berkeley, CA,
2005, pp.435-447.

[14] B. Souvik, N. Ankur, and K. G. Vikas, "High throughput
data redundancy removal algorithm with scalable
performance," in proceedings of the 6th International
Conference on High Performance and Embedded
Architectures and Compilers, Jan. Heraklion, Greece, 2011,
pp.87-96.

[15] M. Mitzenmacher, "Compressed bloom filters,"
IEEE/ACM Trans. on Networking, vol. 10, no. 5, October
2002, pp. 604–612.

[16] D. Biplob, S. Sudipta, L. Jin, J. L. David, and H. C. D.
David, "BloomFlash : Bloom Filter on Flash-Based
Storage," in proceedings of the 31st International
Conference on Distributed Computing Systems, Jun. 2011,
pp. 635-644.

[17] A. Michael, F. Martin, J. Rob, C. Bradley. Kuszmaul,
Dzejla, Medjedovic, M. Pablo, S. Pradeep, P. S. Richard.,
and Z. Erez, "Don't thrash: how to cache your hash on
flash," in proceedings of the 3rd USENIX conference on
Hot topics in storage and file systems, Jun. 2011, Portland,
OR, pp.1-1.

[18] G. Deke, W. Jie, C. Honghui, Y. Ye and L. Xueshan,"The
Dynamic Bloom Filters," IEEE Transactions on
Knowledge and Data Engineering, IEEE Educational
Activities Department, vol. 22, jan 2010, pp. 120-133.

[19] S. Brin, J. Davis, H. Carcia-Molina, Copy Detection
Mechanisms for Digital Documents (weblink), 1994.

[20] A. Broder and M. Mitzenmacher, "Network applications of
bloom filters: A survey," Internet Mathematics, vol. 1, no.
4, 2003, pp. 485–509.

[21] G. EKE, C. HONGHUI, and W. JIE, “Theory and network
application of dynamic bloom filters," in proceeding of
IEEE Infocom Barcelona, Spain, 2006, pp. 1-12.

[22] L. CARTER, M. WEGMAN, “Universal classes of hash
functions”, Computer and System Sciences, 1979, vol. 18,
no. 2, pp.143-154.

Bin Zhou received the B.S. and M.S. degrees in School of
Computer Science and Technology at National University of
Defense Technology (NUDT), China, in 1994 and 2002,
respectively. He is a PH.D Candidate in the College of
Computer at Huazhong University of Science and Technology
(HUST), China. He is currently an Associate Professor in

80 JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013

© 2013 ACADEMY PUBLISHER

College of Computer Science of South-Central University for
Nationalities. His main research interest is in massive data
management.

Rongbo Zhu received the B.S. and M.S. degrees in Electronic
and Information Engineering from Wuhan University of
Technology, China, in 2000 and 2003, respectively; and Ph. D
degree in communication and information systems from
Shanghai Jiao Tong University, China, in 2006. He is currently
an Associate Professor in College of Computer Science of
South-Central University for Nationalities.
 He is the Editor-In-Chief of International Journal of Satellite
Communications Policy and Management, Associate Editor of
International Journal of Radio Frequency Identification
Technology and Applications. He serves as a guest editor for
several journals, such as, Future Generation Computer Systems,
Telecommunication Systems, and as a reviewer for numerous
referred journals such as IEEE System Journal etc. He has been

actively involved in around 10 international conferences,
serving as TPC Chair of GCN’11, General Co-chair of
ICICA’10 and so on. Dr. Zhu is a member of the ACM and
IEEE.

Ying Zhang received the B.S. and M.S. degrees in School of
Foreign Languages at Central China Normal University
(CCNU), China, in 1994 and 1997, respectively. She is
currently a lecturer in School of Foreign Languages at HUST.

Linhui Cheng received the M.S. degree in College of
Computer Science at South-Central University for Nationalities,
China, in 2008. She is a Lecture in the College of Computer
Science at South-Central University for Nationalities, China.
Her main research interest is in intelligent computing and data
mining.

JOURNAL OF MULTIMEDIA, VOL. 8, NO. 2, APRIL 2013 81

© 2013 ACADEMY PUBLISHER

