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Abstract—In this paper, we proposed a first-order discrete 

time nonlinear dynamic model of congestion control system 

with TCP LogWestwood+ (TCPLog) connections and 

random early detection (RED) gateway in high-speed 

wireless networks. The model is used to analyze nonlinear 

dynamics of the TCPLog/RED network and its stability with 

respect to various RED controller and system parameters. 

Bifurcation and chaos behaviors are shown to occur when 

parameters varied. By theoretical derivation, the fixed point 

and the critical value are obtained, and the nature of the 

bifurcation is determined. Furthermore, bifurcation 

diagrams and Lyapunov exponent are exploited to verify the 

theoretical results. Finally, the bifurcation and chaotic 

phenomena of the congestion control system are numerically 

studied with TCPLog connections and RED gateway. 

 

Index Terms—Congestion Control System; TCP 

LogWestwood+; RED; Bifurcation; Chaos 

 

I. INTRODUCTION 

Transmission Control Protocol (TCP) [1] is widely 

used to offer reliable, bidirectional, virtual channel 

between any two hosts on the networks. However, 

wireless networks are characterized by fairly large 

propagation delays and increasing available bandwidth. 

As the growing spread of wireless networks, traditional 

TCP congestion control protocol is no longer applicable, 
because it is originally designed for wired networks and 

unable to react adequately to packet losses not related to 

congestion [2]. Moreover, TCP becomes inefficient and 

prone to instability when high bandwidth-delay product 

(HBDP) occurs [3-4]. Due to the above drawbacks of 

traditional TCP, many TCP protocol modifications like 

TCP cubic [5], HS-TCP [6] and BIC TCP [7] have been 

developed for today’s HBDP environment. 
Kliazovich et al. has proposed TCP LogWestwood+ 

[8], as an enhancement of TCP Westwood+, whose 

essential algorithm is logarithmic increase, adaptive 

decrease (LIAD) strategy. LIAD inherits the bandwidth 

estimation technique in TCP Westwood+ and develops a 

logarithmic increase function in congestion avoidance 

phase. By means of LIAD, the congestion window 

increases rapidly when the current value is small and 

slowly increases when approaching an estimated 

maximum, which guarantees better throughput and 

network utilization than other existing strategies. Also, its 
small sensitivity with respect to Round Trip Time (RTT) 

and better intra-protocol fairness of bandwidth allocation 

are demonstrated [8]. 

With a sustained explosive growth of wireless network 

applications and subscribers, Internet congestion occurs 

when the required resources goes beyond the capacity of 

the Internet’s communication. Internet congestion may 

result in loss of information, increasing of delay, and 
even the collapse of the system. So the problem of 

congestion control is becoming a hot issue. Internet 

congestion control is an algorithm to allocate available 

resources to competing sources efficiently so as to avoid 

congestion collapse [9]. The congestion control algorithm 

is a highly complex dynamical model, and it will present 

nonlinear dynamic behaviors like bifurcation and chaos 

when the system loses stability, which has attracted a 
great of attention from the authors. It is shown that TCP 

Reno/RED system becomes chaotic dynamics with 

variability of RED parameters [10-12] and its stability 

has been studied [13-14]. DING et al. found earlier that 

the TCP/RED fluid-flow model would exhibit a Hopf 

bifurcation when time delay was increased [15]. Using 

fluid-flow model, Liu et al. analyzed stability and 

bifurcation in wireless networks [16] and TCP/AQM 
networks [17]. With analysis software of the delayed 

dynamical systems-DDE-BIFTOOL, Fold and Hopf 

bifurcation have been studied in the delayed Internet 

TCP-RED congestion control model [18]. So, a deep 

insight of the system nonlinear dynamics is helpful to 

understand the nature of congestion control system and to 

improve its performance. 

Researchers have developed many nonlinear dynamics 
models of other congestion control algorithms and further 

studied their stability. DING et al. validated periodic 

doubling bifurcation by means of one-order discrete 

model for congestion control system with TCP Westwood 

[19]. A continuous time model and extensive stability 

analysis of FAST TCP congestion control mechanism in 

bufferless Optical Burst Switched Networks (OBS) has 
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been provided in [20]. In [21], the authors investigated 

the linear stability and Hopf bifurcation of the eXplicit 

Control Protocol (XCP) for the Internet congestion 

control system. A mathematical model was presented to 

systematically analyze the characteristics of fast 

retransmission and recovery in TCP-SACK [22].  

In this paper, in order to study the nonlinear dynamics 
of a high-speed wireless network with TCP 

LogWestwood+ connections and a RED gateway, first, a 

deterministic discrete time dynamic feedback model of 

this congestion control system is introduced. Then, by 

theoretical calculation, the fixed point, the critical value, 

and the nature of bifurcations in this system are 

determined. Finally, choosing different RED parameters 

as bifurcation parameters, period doubling bifurcation 
and chaotic behaviors are proved and described by 

bifurcation diagram and Lvapunov exponent. 

The remainder of this paper is organized as follows. 

Section 2 presents the nonlinear discrete-time model used 

in the analysis. In Section 3, the fixed point and 

bifurcations are analyzed. In Section 4, numerical 

examples illustrating the nonlinear dynamics are shown 

in the model. Finally, conclusions are drawn in Section 5. 

II. DYNAMIC MODEL FOR TCP LOGWESTWOOD+ 

UNDER RED 

The congestion control strategy of TCP 

LogWestwood+ is logarithmic increase, adaptive 

decrease, targeting adaptation to the high-speed wireless 

environment. Logarithmic increase means that the actions 

undertaken in response to the reception of an ACK packet 

are different from additive increase of standard TCP, 
leading to an approximately logarithmic increase in 

absence of loss events. Moreover, the main idea of 

adaptive decrease is to keep an estimate of the available 

end-to-end capacity and to exploit such information in 

order to reduce transmission rate, instead of the blind 

window halving implemented in TCP as well as in other 

related algorithms [8]. 

Suppose a simple network where a single bottleneck 
link is shared by multiple connections. Assume that all 

connections are TCP LogWestwood+ connections with 

the same round-trip propagation delay, which is denoted 

by d  second. These TCP LogWestwood+ flows are 

connected with two routers that run RED algorithm. The 

number of connections is N  and their packet size is M  

bit/packet. The capacity of the bottleneck link is denoted 

by C  bit/s. 

According to Ref. [10], the congestion control model is 

defined as follows. The RED controller at the router 

provides feedback signal kp  (packet drop probability) at 

period k , which determines the throughput of 

connections and the queue size 1kq   at period 1k  . The 

queue size 1kq   is used to compute the average queue size 

1kq   according to the exponential averaging rule. Then 

the packet drop probability kp  is a function of the 

average queue size kq  at period k . These can be 

expressed as follows: 

 
1 ( )k kq G p   (1) 

 
1 1( , )k k kq A q q   (2) 

  
1 1( )k kp H q   (3) 

in which 
1( , )k kA q q 

 is the averaging function: 

 
1 1( , ) (1 )k k k kA q q w q w q       (4) 

where w  is the exponential averaging weight that 

determines how fast the RED mechanism reacts to a time-

varying load. If w  is small enough, the average queue 

size 
kq  will depend on the long-term changing tendency 

of queue size. 

The RED control function 
1( )kH q 

 is given as: 

 

1 1

1 min

max1

min1

max

max min

( )

0,

1,

,

k k

k

k

k

p H q

q q

q q

q q
p otherwise

q q

 










 



 



 

 (5) 

where minq  and maxq  are the minimum and maximum 

critical values of queue size, and maxp  is the drop 

probability when maxq q . 

The steady state throughput of a TCP LogWestswood+ 

connection [8] is given by 

 
maxlog

41
1 1

2 (1 )

qwest

q

W Tp
r

pT p RTT

 
    
 
 

 (6) 

where RTT  is average round trip time: 

 
q M

RTT d
C


   (7) 

qT  is average queuing time and equal to the difference 

between RTT  and the minimum round trip time minR . 

 min
2

ave

q

q M B M
T RTT RTT

C C

 
     (8) 

where B  is the finite buffer size of RED router and aveq  

is the average queuing size that approximately equals to 

/ 2B . 

  is window update adjusting weight. We decide that 

2  , because the value less than 2  will makes the 

increase of congestion window too aggressive.  

maxW  is defined as the window size at which the last 

packet loss event was detected. TCP Westwood (TCPW) 

and TCP Westwood+ (TCPW+) show good fairness 

properties that network resource is shared evenly when 

all connections are TCPW or TCPW+ flows in the 

steady-state. TCP LogWestwood+ is superior to TCPW+ 
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on fairness. So consider all network resource of link 

capacity and router buffer: 

 
max

C d B M
W

N M

  



 (9) 

Consider two edge cases: 1) the smallest packet drop 

probability 
up  results in a queue size of zero at the next 

period; 2) the largest probability 
lp  leads to a queue size 

1kq 
 of the buffer size B . 

Because the aggregate throughput of connections 

cannot exceed link capacity, 
up  can be determined when 

the bandwidth capacity constraint is satisfied:  

 log westN r M C   . (10) 

From (6) and (10), the following equation can then be 
obtained: 

 
max4(1 )

1 1
2 (1 )

q uu

u q u

W T pN M p
C

p T p RTT

  
   
  
 

 (11) 

As 
1 0kq   , if

k up p . Now RTT  is equal to d . The 

following equation can be derived: 

 
2

2
u

MN
p

MN Cd



  

The average queue size uq , which satisfies 1 0kq   , if 

k uq q , is given by 

 

max min

min max

max

max

( )

therwise

u

u

u

p q q
q p p

pq

q


  

 
  

 (12) 

Thus, if k up p , lp  still satisfies (11): 

 
max

(1 )

2

4
1 1

(1 )

l

l q

q l

l

N M p

p T

W T p
C

BM
p d

C

 



 
 
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  

   
  

 (13) 

Then lp  can be obtained: 

 
2 2

max

2 2

max

l

q

W N M NM
p

W N M NM T C



  

 


   
 (14) 

where dC BM   . 

From (9) and (14), lp  is equal to zero. TCP 

LogWestwood+ algorithm specifies that, for each 

acknowledgment packet received, the congestion window 

should be updated according to: 

maxW W
W

W


  

This updating strategy is more aggressive and efficient 

than conservative additive increase of TCP when the 

congestion window is small, and the congestion window 

value increases very slowly when it approaches 
maxW . 

Therefore, the dependency on RTT  is reduced and better 

network utilization can be achieved. Queue size 
1kq 
 can 

be equal to B  only when 
lp  equals to zero.  

From (5), the corresponding average queue size 
lq  is: 

 max min

min

max

( )l

l

p q q
q q

p


   (15) 

If 
l k up p p  , queue size 

1kq 
 satisfies the following 

equation: 

 
max4(1 )

1 1
2 (1 )

q kk

k q k

W T pN M p
C

p T p 

  
   
  
 

 (16) 

where 1kq M
d

C
  
  . 

Queue size 1kq   is given by: 

 
2

max

1

(1 )

(1 )

k

k

q k k

W MN p dC
q

T Cp MN p M



 

 
 (17) 

From above analysis, it can be derived that 

 
1

2

max

( )

0,

,

(1 )
,

(1 )

k

k u

k

k

q k k

G p

p p

B p p

W MN p dC
otherwise

T Cp MN p M









 


 
  

 (18) 

From (1)-(3) and (18), we can obtain the nonlinear 
one-order discrete-time dynamic model of TCP 

LogWestwood+ under RED: 

 

 

 

 

 

1 1

2

max

,

1

1 ,

1

(1 )

(1 )
,otherwise

k k k

k k u

k k l

k

k

q k k

q A q q

w q q q

w q wB q q

w q w

W MN p dC

T Cp MN p M

 


 

  

  




 







   
 

 (19) 

where 
min max min

(( ) / ( ))
k max k

p p q q q q    . 

III. FIXED POINT AND BIFURCATION 

A. Fixed Point of the System 

To derive the fixed point of (19), the authors first 

denote 

 1 ( , )k kq g q    (20) 
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where   is the system parameter such as exponential 

averaging weight w . The fixed point of mapping ( )g   is 

an average queue size *q  such that  * * ,q g q  . If the 

parameters are properly configured, the fixed point 

should remain between 
minq  and 

maxq . Solve 

 * * ,q g q   as follows: 

2

* * max (1 )
(1 ) ( )

(1 )

k

q k k

W MN p dC
q w q w

T Cp MN p M


   

 
 (21) 

where 
min max min

(( ) / ( ))
k max

p p q q q q


    , then denote 

max min/ ( )maxv p q q  . 

The fixed point of the system, which is the positive 
real number solution of the follow equation, can be 

obtained. 

 2 0ax bx c    (22) 

 qa T Cv MNv   (23) 

 b v v        (24) 

 min min min/c q v q M q v          (25) 

 2 /qdC T v M   (26) 

 dCN   (27) 

 min minqMN MNq v T Cq v     (28) 

 2

maxW MN   (29) 

Hence the representation of *q  is: 

 *

2

b
q

a

  
  (30) 

where 2 4b ac   . 

B. Bifurcation Analysis 

The associated eigenvalue of (20) is showed as follows: 

 
 

 *

2
*

,
1

k

k

k
q q

g q
w w

q q

 

 



  

 
 (31) 

where 2

max qW MN T Cv   and qT Cv MNv   . 

The linear stability criterion is 

 
*

, / 1
k

k k
q q

g q q


    or 

 

 
2

*
1 1w w

q



 
  


 (32) 

If parameter settings violate the above linear stability 

criterion, the fixed point *q  losses stability and periodic 

doubling bifurcation occurs. In order to describe such 

bifurcation, one should choose a bifurcation parameter. 

Several parameters can be chosen as bifurcation 

parameter, such as the exponential average weight w , the 

number of TCP connections N , the propagation delay d  

and 
maxp . 

First, to explain this bifurcation, we choose the 

exponential average weight w  as bifurcation parameter. 

From (32), it is known that the eigenvalue is a linearly 

decreasing function of w , so the critical value of w  is a 

value which can satisfy the following equation: 

 

 
2

*
1 1w w

q



 
   


 (33) 

The critical value of w  can be obtained: 

 

 
2

*

2

1
cw

q



 






 (34) 

The fixed point will become unstable and a period 

doubling bifurcation will occur when the exponential 

average weight w  is increased to pass the critical value 

cw . A period doubling bifurcation has two types: 

supercritical and subcritical. A supercritical bifurcation 

leads to a steady oscillatory behavior near the fixed point, 

while a subcritical bifurcation results in divergent 
oscillations. To determine the nature of the bifurcation, 

the second and the third derivatives of ( )g   are computed: 

 
 

 *

2

2 3
*

, 2

k

k

k
q q

g q w

q q

  

 





 
 (35) 

 
 

 *

3
2

3 4
*

, 6

k

k

k
q q

g q w

q q

  

 



 

 
 (36) 

The quantity 

 

2
2 3

2 3

1 1

2 3
k k

g g
S

q q

    
    
       

 (37) 

determines the nature of the period doubling bifurcation. 

A positive S  indicates that the bifurcation is supercritical 

and a negative S  implies a subcritical bifurcation. For 

(19), 

 

   

2

4 2
* *

2
1

w w
S

q q

  

   

 
  
  
 

 (38) 

We should choose parameters properly and keep the 

value of S  positive, because a subcritical bifurcation 

directly leads to unexpected oscillation in router queues.  
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IV. NUMERICAL EXAMPLES 

In this section, by choosing the exponential average 

weight w , drop probability 
maxp , the number of TCP 

connections N  and the propagation delay d  as 

bifurcation parameter respectively, the stability of the 

system is numerically studied and the analysis in Section 

3 is validated. Furthermore, a bifurcation diagram shows 

qualitative changes in the nature and the number of fixed 

points of a dynamic system with varied parameters. 

A. Exponential Averaging Weight 

First, we study the effect of exponential averaging 

weight w . The remaining system parameters are set as 

follows: 

max min max750 , 250 , 0.3,

15 / , 3750 , 4000 ,

0.1 , 100.

q packet q packet p

C Mbit s B packets M bit

d s N

  

  

 

 

From (30), it is drawn that the fixed point of the 

system * 417.94q  . The critical value of w  is 

0.3816cw   and 0.00004387S   at 
cw  by computing 

(34) and (38). The bifurcation diagram with w  varying 

from 0.3 to 0.5 is plotted in Fig.1, in which we can see 

that the system is stable and these plots have a fixed point 

for small cw w . When w  increases to cw , the system 

loses its stability and a supercritical period doubling 

bifurcation emerges as 0S  . This oscillatory behavior 

in the system is caused by inherent nonlinearity. 

Increasing w  results in more complex behavior such as 

chaotic phenomenon. A negative Lyapunov exponent 

indicates that the system is local stable. Since a positive 

Lyapunov exponent can be used to judge chaos behavior, 
the Lyapunov exponent corresponding to bifurcation 

scenario of Fig. 1 is also plotted in Fig. 2. From Fig. 2 

one can see that in the chaos region there exist a large 

number of periodic orbits. 
 

 

Figure 1.  Bifurcation diagram of average queue size with respect to 

the exponential averaging weight 

B. Drop Probability 

In this subsection, the drop probability maxp ’s effect on 

the stability and behavior of system is studied. First, w  is 

set as 0.25w  , then the value of maxp  is changed while 

other parameters are the same as those in above 

subsection: 

max min750 , 250 ,

15 / , 3750 ,

4000 , 0.1 , 100, 0.25.

q packets q packets

C Mbit s B packets

M bit d s N w

 

 

   

 

Fig. 3 is the bifurcation diagram with 
maxp  changing 

from 0.3 to 0.82, from which one can see the similar 

nonlinear behavior, period doubling bifurcation leading to 

chaos orbits as increasing 
maxp . Note that the plot of 

fixed point is not a horizontal as that in Fig. 1, because it 

is varying with 
maxp . 

 

Figure 2.  Lyapunov exponent for average queue size with respect to 

the exponential averaging weight 

 

Figure 3.  Bifurcation diagram of average queue size with 
maxp  

C. Number of Connections 

Unlike the parameter studied above, the number of 

TCP connections and the propagation delay of the 

networks cannot be controlled by a network manager. So 

knowing the effect of these parameters on system 

stability and behaviors is significant for setting the RED 

control parameters in practice. In this subsection, the 
effect of the number of TCP LogWestwood+ connections 

is discussed and the propagation delay’s influence is 

investigated in next subsection. 

We choose the number of TCP LogWestwood+ N  as 

bifurcation parameter and set other parameters as follows: 

max min

max

750 , 250 ,

15 / , 3750 , 4000 ,

0.1, 0.25, 0.3

q packet q packet

C Mbit s B packets M bit

d w p

 

  

  

 

Here, N  is varied from 30 to 60, the bifurcation 

diagram in Fig. 4 shows that the system stabilizes as the 

number of connections increases. This result agrees with 

1718 JOURNAL OF NETWORKS, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER



the general result that a larger number of users tend to 

stabilize the system [23-24]. 

D. Propagation Delay 

At last, the bifurcation diagram is plotted in Fig. 5 with 

d  varying from 0.15 to 0.23. Other parameters are set as 

follows: 

max min maxq 750 250 0.3

15 / , 3750 4000 ,

100, 0.25

packets q packets p

C Mbit s B packets M bit

N w

    

    

  

， , ,

,  

It shows that the system is stable when round trip 

propagation delay d  is small, and finally becomes 

chaotic with d  increasing. This phenomenon also agrees 

with the result that smaller delay tends to keep the system 

stable [23-24]. 
 

 

Figure 4.  Bifurcation diagram of average queue size with respect to 

TCP connections 

 

Figure 5.  Bifurcation diagram of average queue size with respect to 

propagation delay 

Comparing with [25], our nonlinear one-order discrete-

time dynamic model of TCP LogWestwood+ under RED 

is more complete and accurate, while Chen et al. just 

model the specific behaviour of TCP Westwood in 

congestion avoidance phase. Furthermore, by choosing 

different system and control parameters as bifurcation 
parameter, the relation between the system stability and 

every bifurcation parameter is described clearly, which is 

meaningful for setting parameters in practice. However, 

only the system stability with different round trip 

propagation delay is taken into account in [25].  

V. CONCLUSIONS 

In the paper, the nonlinear dynamics of congestion 

control system of TCP LogWestwood+ with RED 

gateway is discussed. First, a simple one-order discrete 

time model is built by theoretical derivation. Then, the 

fixed point of the system and the nature of bifurcations 

are determined by the model. Moreover, by adopting 

bifurcation diagrams and Lyapunov exponent, the 

nonlinear behaviors including periodic doubling 

bifurcation and chaotic phenomena are illustrated when 
varying different system parameters. 
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