
Group Recommendation: An evolution Approach

based on Bayesian Networks

Wei Liu
 1, 2

 and Sheng Feng
 1, 2

1. Beijing University of Posts and Telecommunications, Beijing, China

2. Beijing Key Laboratory of Network System and Network Culture, Beijing, China

Email: twhlw@163.com, shengfeng2008@gmail.com

Daoli Huang

Ministry Third Research Institute of Ministry of Public Security, Shanghai, China

Email: huangdaoli@stars.org.cn

Abstract—Recommending to groups is even more

complicated than recommending to individuals. Previous

works has suggested that when generating recommendations

to a group, it can achieve better result by learning

information from other groups. Besides, recent research

reports indicate that incorporating disagreement is critical
to the effectiveness of group recommendation. Although the

computation model build with Bayesian networks for group

recommender system is very straightforward, the

computation is rather complex (even though using

approximate technology). In this paper, we will first present

a Bayesian networks based evolution group

recommendation model where groups can learn from each
other. Then, we not only propose a new group

recommendation computation framework, but also propose

a new satisfaction measure model to refine the group

recommendations. We evaluate the performance of our

approach on the MovieLens dataset. Experiment results

show that our Bayesian networks based evolution approach

which is an ensemble of the above three sub-components
outperforms the baseline one.

Index Terms—Group Recommendation; Bayesian Networks;

Group Satisfaction

I. INTRODUCTION

A recommender system (RS) supports users to find

information, products, or services (such as books, movies,

music, digital products, Web sites, and TV programs, to

name a few) by aggregating and analyzing suggestions
from other users, reviews from various authorities, and

user attributes. Collaborative filtering (CF) is known to

be a successful recommendation technique. It makes
recommendations to users based on other users’ ratings

on items, putting more weights on those from similar

users (i.e., other users having similar personal attributes

or product preferences). But to date, recommender
systems have focused mainly on recommending items to

individuals rather than groups of people intending to

participate in a group activity. In recommendation

domains such as shopping and asset investment, it is not a
limitation because users in general behave individually

and only their personal interests should be considered. In

other domains such as movies, trips, book clubs, and

restaurants, however, existing recommender systems have
difficulty in aggregating individual users’ tastes into a

group’s preference properly [1].

A group recommender system (GRS) is a

recommender system aimed at generating a set of
recommendations that will satisfy a group of users, with

potentially competing interests. The challenges associated

with this simple statement deal with: considering how to
record and combine the preferences of many different

users as they engage in simultaneous recommendation

dialogs.

Some types of items that a system can recommend
(e.g., restaurants and museum exhibits) tend to be used at

least as often by groups as individuals, so addressing

recommendations to individuals can actually be unnatural.

Moreover, the evolution of computers away from the
desktop PC makes it increasingly natural for systems to

address groups as well as individuals: Wall displays,

information kiosks, PDAs, and cell phones can be used
easily by persons who are interacting with each other.

And even with the traditional PC, users are being offered

an increasing variety of ways to communicate with each

other and perform tasks together. For these reasons, we
can expect a continuing growth in the trend toward

recommendation (and, more generally, adaptation) to

groups of users.

In paper [2], Judith Masthoff gives a complete discuss
about strategy for aggregating models of individual users

to allow for group recommendation, what strategies have

been used in existing systems, and what researcher have
learned from experiments in this area.

In this paper, we will first present a Bayesian networks

based evolution group recommendation model where

groups can learn from each other. Then, we not only
propose a new group recommendation computation

framework, but also propose a new satisfaction measure

Manuscript received November 29, 2013; revised December 5,

2013; accepted December 6, 2013.

Copyright credit,

National Basic Research Program of China (No.2010CB734104)

Corresponding author: Wei Liu, twhlw@163.com

858 JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jmm.9.6.858-864

model to refine the group recommendations. In contrast
to the traditional solutions, our satisfaction measure

model uses the output of group recommendation model as

input rather than use the system input. In short, our

solution looks like a feedback model of modern control
theory. To the best of our knowledge, it is an approach all

of people before us never try. The above three sub-

components compose our Bayesian networks-based
evolution approach.

This paper is organized as follows: Section 2

overviews related works. Section 3 presents the proposed

the evolution group model. The computing method for
generating recommendations based on the new model is

discussed in Section 4. Section 5 describes how to use the

satisfaction model to refine the group recommendations.
Performance evaluation is done in Section 6, where our

algorithm is compared with the one proposed by Luis et

al. [3]. Finally, in Section 7 we conclude this paper.

II. RELATED WORKS

CF makes recommendations based on item ratings by

neighbors who are those having attributes or preferences

similar to a user to whom recommendation is made. In

general, CF systems make recommendation according to
following three steps: user profile creation, neighbor

formation and recommendation generation [4].

PolyLens [4] by Mark O'Connor et al, a recommender
system for groups of users, had been designed to

recommend items for groups of users, rather than for

individuals. They found that users not only valued group

recommendations, but were willing to yield some privacy
to get the benefits of group recommendations. Users

valued an extension to the group recommender system

that enabled them to invite non-members to participate,

via email.
George Popescu et al had modeled group recommender

systems as a voting problem in facilitate music items

recommendations. Their GroupFuns is a Facebook
application which attempts to suggest a common set of

music items to a group for a social event (e.g., party),

with the aim of maximizing the satisfaction of all

members in the group on the suggested items. Using a
simple algorithm, probabilistic weighted sum, they had

defined an incentive-compatible scheme in which scores

are interpreted as probabilities. The static and the

dynamic cases further contributed to measuring user
preference for the deterministic case. This advances

previous work carried on for understanding the voting

mechanism as well as its dynamics and user choice. Users
are free to state their preferences individually as well as

modify them according to some group dynamics factor

and intermediate common decision. In real-life examples

the two cases presented are very frequently encountered
and numerous applications stated in the beginning denote

the need for adaptive group recommender systems.

GroupFun is one of these systems designed for users to
spend the least amount of time stating their preferences

and be able to reach the common music playlist goal.

In paper [3], Luis et al proposed a collaborative

Bayesian networks-based group recommender system

(CBBGRS), where the group’s rates are computed from
past voting patterns of other users with similar tastes. A

Bayesian network (BN) [5] [6] is a directed acyclic graph,

where the nodes represent the variables from the problem

we want to solve. In Figure 1, we give out the topology of

CBBGRS. Each user variable aU represent the

probability distribution associated to its pattern of rating,

i.e. information about the probability that aU could vote

with value i ,  Pr iU a  , with {1, 2, , }i r  .

In a collaborative RS, the vote prediction for a given

user depends on the votes of the people with similar

tastes or preferences. In order to facilitate the presence of
these relationships in the model, they included a new of

set of nodes V to denote collaborative votes. There is

one collaborative node for each user in the system, i.e.

 1 2, , , nV V V V  . These nodes will also be used to

estimate the probability distributions of the user votes and

they will therefore take their values in the same domain

as U , i.e. 1, 2, ,r .

U1 U2

V1

U3 U4 U5 U6

V2 V3 V4 V5 V6

G1 G2

Figure 1. Collaborative Group Recommender system topology

Let’s overview the approach in [3]. Note that ev and

“evidence” mentioned below represent an item which a

group may be interesting in.
1. First, they try to find K nearest neighborhoods for

every member of the group according to the similarity

measure such as Pearson’s Correlation coefficient and

then push those nearest neighborhoods to the ()iPa v list

of the member’s respective collaborative node (Pa is the

abbreviation of Parent). iv is an instance of iV , for

example, ,i jV is the
thj value of iV .

2. Estimating the conditional probability distributions

 , ,,
()

Pr(| ()) (,)i j i i jk l
PaY Xk i

pa w yv V v


  (1)

and computing the  Pr |iU s ev , 1 ≤ s ≤ r. Please refer

to the original paper [3] to learn the meaning of

,,
(,)i jk l

w y v .

3. Evidence propagation from top to down in BN:

 , ,, ,
1 1

Pr(|) (,) (|)
YV jI

LM

i s i sj k j k
j k

ev w pr evy yv v
 

   (2)

where the
iVm is number of parents of iV , jY is a node

in ()pa V i and
jYL is the number of states that jY takes.

4. Computing:

JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014 859

© 2014 ACADEMY PUBLISHER

Pr(|)

Pr(| ()) Pr(() |)

()

s evGi

s Pa Pa evG G Gi i i
Pa Gi

 

 (3)

For example, if there is a group G1 which has three

members: U1, U2, U3,
1()Pa G is the set of all possible

instances of vector 1 2 3{ , , }V V V . Luis et al took

()

Pr(|),
1

Pa Gi
evvi j

i



 as the approximation of

Pr(() |)Pa evGi . The Pr(| ())s PaG Gi i is determined

by social value function, such as maximum social value

function:

 {1 = max{ ()}
Pr(= | ()) =

0

if k pa Gis PaG Gi i otherwise
 (4)

In paper [7], A. Y. Sihem et al proposed a formal

semantics that accounts for both item relevance to a

group and disagreements among group members. Their
solution is from an intuitive observation: In general,

group members may not always have the same tastes and

a consensus score for each item needs to be carefully

designed. There are two main aspects contributing to the
consensus score. First, the score should reflect the

member’s preferred attitude to the item. The more group

members prefer an item; the higher a score should be
given to the group. Second, the score needs to reflect the

level at which members disagree with each other. They

call the first aspect group relevance and the second aspect

group disagreement. They try to fit a consensus function
to solve this problem. The consensus function, denoted

by (,)F G i , combines the group relevance and the group

disagreement of i for G into a single group

recommendation score using the following formula:

 (,) (,) (1 (,))2F G i rel G i dis G iw wi     (5)

where (,)rel G i is the relevance of an item i to a group

G , (,)dis G i is the disagreement of a group G over an

item i , 11 2w w  and each specifies the relative

importance of relevance and disagreement in the overall

recommendation score.

III. EVOLUTION GROUP MODEL

In general, there are a lot of groups in a large social

network system, such as Facebook, where every user

usually joins several different groups. In paper [8],
Baatarjav et al took University of North Texas (UNT)

Facebook SN as a sample for research. There are 10 main

group types, such as business, common interest,
entertainment& arts, geography, music, etc. Six of them

have over 500 groups, and four of them have range

between 61 and 354 groups in each.

The work in [1] suggests that when generating
recommendations to a group, we can get a good result by

learning from other groups. In [1], their strategy for

generating recommendations is first to aggregate user

profiles into a group profile and then utilize a nearest-

neighbor algorithm in identifying neighbor groups from
whom recommendation sets are generated. Experiment

results showed that their proposed system has

consistently higher precision and individual members are

more satisfied.

U1 U2

V1

U3 U4 U5 U6

V2 V3 V4 V5 V6

G1 G2

Figure 2. Collaborative group recommender system evolution

topology

The research results above inspire us to develop a
group recommender system which incorporates

information from other groups when we compute

recommendations for a special group with Bayesian

networks model. Note that we are taking a strategy that
groups learn from each other under the Bayesian

networks model. For example, U2, U3 join both G1 and G2

in Figure. 1. When computing recommendations for G1,
we can learn something from G2 (especially the

recommendations of G2) to achieve generating better

recommendations for G1. The topology of the Figure 1

should be updated as the system topology of the Figure 2.
Just like that there are many solutions for choosing K-

nearest-neighborhoods in collaborative filtering RS, there

are a lot of solutions for choosing K-nearest

neighborhood groups, too. It can base on different group
similarity measures or different value for K which can be

set according to a threshold or a percentage). Here we

simply present and compare two typical solutions: (1)
choosing the top K-nearest neighborhood groups which

has more common members with the given group; (2)

using similarity measure (such as Pearson correlations or

Spearman’s rank correlations) to determine the top K-
nearest neighborhood groups.

Assuming we need to determine a nearest-neighbor

group for G j , the former solution can be represented as:

 arg | |maxG U Uresult G G Gi i j
 (6)

where | |U UG Gi j
 is the size of intersection of

members of Gi and members of G j . For solution (2),

we use the Pearson correlation coefficient of modified:

() ()
(,)

()

()(), ,

()
2 2

() (), ,

I IG Ga b
sim G Ga b

I Gb

r r r ra j a b j b
j

abs

r r r ra j a b j b
j



 



 

 (7)

860 JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

Solution (1) has two advantages including less
computation and transparence to the group

recommendation history. When applying solution (2) to a

new system or a system which has very little

recommendation history, it almost has no reliability. In
our experiment, we just use the solution (1).

IV. GENERATING THE RECOMMENDATIONS

The Bayesian networks-based group recommendation
model has high computation complexity. Even though

using approximate technology, the computation

complexity of Pr(|)evGa still is ()mO r , where r is the

highest rate and m is the size of a group. In short, the

computation complexity grows exponentially as the

group size grows. So in this section, we propose a new

framework to simplify the group recommendation
computation with insurance that the evolution group

model can run well in this framework.

A. A New Framework to Simplify the Computation

Let’s focus on the formula (3) and take

Pr(| ())s PaG Gi i and Pr(() |)Pa evGi as coefficient

and weight respectively. As we use

()

Pr(|),
1

Pa Gi
evvi j

i



to approximate the real Pr(() |)Pa evGi , so the weight is

a product of all Pr(|), evvi j , 1 ()i Pa Gi  . Although

the approach of multiplying together all the Pr(|), evvi j

is an effective social value function [8], when ()Pa Gi is

large, the computation process of Pr(|)s evGi  will be

very complex. So we proposed algorithm 1 to manage the

application of social value function and simplify the

group recommendation computation. To reduce
computing time, we just use single item evidence as input

to all of our algorithms.

Algorithm1:

//a novel approach to compute group recommendations

//every group will run an instance of this algorithm with //Group

information as hidden input

// GroupPredRecList and CandRecList are global //variables of a

group

// GroupPredRecList  { }, CandRecList  { };

Phase I (prepare):

Input: ev which has not been rated or predicted

1. Every member (denoted by bold point) locates at circle

initially and divides the circle equally. The radius of the circle

is R.

2. Compute all Pr(|), evxi s ; such as Pr(|)1,1 evx ,

Pr(|)1,2 evx , …, Pr(|),1 evxa .

3. For every rate s, (1≤s≤r), we make every member move

toward the center of circle along the radius according to the

value of Pr(|)*, ev Rxi s . For s = 2, the member u1 moves

according to the value of Pr(|)*1,2 ev Rx and the member u2

moves according to the value of Pr(|)*2,2 ev Rx . So for

every rate s, there exists a circle with radius Rs which cover all

member points fitly. After going over r rates, we get r circles.

4. arg ()minR Rresult s s , (1≤s≤r); add the (ev, result, Rresult) to

GroupPredRecList. Note that GroupPredRecList is used to

store the above temporary recommendations which may be

washed out in Phase II and real recommendations will be

stored in CandRecList.

In algorithm 1, the 3th step of Phase I is the place
where we can apply different social value functions and

use different rules to determine the radius Rs for a given

rate s. The example rule is Local Least Misery. For a
given rate s, if we find an Rs circle which only covers the

member with the largest Pr(|), evxi s , this is the case

applying Local Most Pleasure rule. Note that it’s local,
not global. Actually, this approach will produce error, but

it can be compensated with satisfaction measure model.

For example, given rate 3s  , in the process of

computing its 3Rs  , algorithm 1 will only take the

effect of all Pr(|),3 evxi into account or in other way,

algorithm 1 only sees the values including Pr(|)1,3 evx ,

Pr(|)2,3 evx , Pr(|)3,3 evx and so on , and will not see

the values including Pr(|)1,3 1 evx  , Pr(|)1, 1 evx s  and

so on. In standard Bayesian networks, we need to

consider the impact of Pr(|)1, 1 evx s  , Pr(|)1, 1 evx s 

and so on. (This is another reason why the original
algorithm [3] has high complexity). The idea of our

algorithm is that for a given rate s=3, if the power of all

Pr(|), 3 evxi s  temporarily outperforms the power of all

Pr(|), evxi s (s|1≤s≤r && s!=3), it reveals the potential

of rate s=3. But if it doesn’t pass the test of algorithm3, it

will fail at last.

Algorithm1:

// GroupPredRecList  { }, CandRecList  { };

Phase II (generate recommendation):

Input: k

1. TopPredRecList  { }

2. Sort(GroupPredRecList) by result or (result, Rresult);

3. Consume top k ev with highest result from GroupPredRecList

and push them into TopPredRecList.

4. Pick out (ev, result, Rresult) from TopPredRecList one by one to

consult every group member to learn whether they are

satisfactory with it. (Satisfaction measure model will be

presented in Algorithm3 of section 5). If all feel satisfaction,

we add (ev, result, Rresult) to CandRecList. If there is someone

don’t feel satisfaction with the level of disagreement Disev, the

member will move toward the outside of the circle along the

radius according to the value of Disev. At this time, system

needs to re-compute the Rs for the ev.

5. Pick out ev from CandRecList randomly to recommend to the

group.

6. Return ev

B. Learning from Other Groups

Let’s assume that group G1 and G2 have some common

users which were denoted by
1 2

U UG G and G2 had

reached consensus for choosing item j. Now we can learn

that the users
1 2

U UG G in G1 also like item j and the

possibility of successfully recommending item j to G1

increase. What we need to do in the following is to

observe the satisfactory level of remain members for item

j. This kind of learning is very helpful for the case where
users tend to consume a given item more than one time. If

JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014 861

© 2014 ACADEMY PUBLISHER

users enjoy some novel things, we can pick out an item
from the CandRecList of G2. All in all, learning from

other groups make us stand on a top start point.

Algorithm 2 presents the approach in which groups can

learn from each other. Note that algorithm 2 and
algorithm 1 can run concurrently.

Algorithm2:

//assuming we want to generate recommendation for Gp

Input: Gp

1. Find K-nearest neighborhood groups of Gp.

2. Find W ever recommendations in every relevant group;

package every recommendation and its rate into a pair and add

result to the GiftMapi, where i is the identity of a relevant

group.

3. For i : K

For every item j in GiftMapi{

If item j had not been cooked yet

 Sat(Gp, j) = Satisfaction(Gp, j);

}

4. Find Q pairs with highest Sat(Gp, j) over all GiftMapi and add

them to the CandRecList of Gp

V. USING THE SATISFACTION MODEL TO REFINE THE

GROUP RECOMMENDATIONS

To the best of our knowledge, traditional satisfaction

measure models are always embedded in the process of

computing recommendations. But this approach doesn’t
fit the Bayesian networks-based RS well, because

Bayesian networks are born with complexity of

probability computation. In this section, we propose a
satisfaction measure model based on feedback which is a

power technique in control theory. Feedback is a

technology which uses the system output to control or

adjust the system input. The TopPredRecList of algorithm
1 include the temporary recommendations which may be

washed out in Phase II. Note that before generating those

temporary recommendations, we don’t involve with any

satisfaction measure. We package those
recommendations and their rates as pairs and deliver

them as feedback to group members. According to the

satisfactory level of group members to the feedback,
those temporary recommendations should be processed

further. For example, if all members of a group agree on

the rate = 4 for a given item 1, the item 1 wins and lives

in CandRecList; if some members of the group disagree
on the rate = 4, we need further process for the item1.

There are two challenges, including: (1) how to

compute the satisfaction level of member for a given item;

(2) if some members disagree on the rate, how to perform
further process.

A. Define the Satisfaction Measure Model

Before computing the satisfactory level, we need a

reference system. For example, level 3 represents quiet

mood (baseline). Level 5 represents very satisfaction
mood and level 1 represents very dissatisfaction. But in

GRS, the basic problem of measuring satisfactory level is

that we are predicting whether a user likes a novel item.

The user never learns something about this new item and
expresses mood on it. If a user A just expresses that he

doesn’t like this item, now asked to explore whether user

A likes this item, we are almost sure that user A aren’t
interesting in this item. Based on the above observation,

algorithm 3 uses effective collaborative filtering
algorithm (such as SVD) or the ensemble of several

collaborative filtering predictors [9] to predict the rate of

user A for a given item; then we compares the predicted

result with the predicted rate generated by GRS to
measure the satisfactory level. Algorithm 3 presents the

detail of computing the satisfactory level of a member for

a given item.

B. Deal with the Disagreement of Member for a Given

Item

If user u disagrees on the predicted rate s of group

recommendation in TopPredRecList (after running

algorithm 3, the return value is greater than zero), we

make the user u move toward the outside of the circle
along the radius according to the return value of

algorithm 3. Then system needs to re-compute the Rs for

the ev and execute the remain of algorithm 1. This
process repeats till all members reach a consensus to a

rate s.

If user u agrees on the predicted rate s of group

recommendation in TopPredRecList and the return value
of algorithm 3 is less than zero, we make user u move

toward the center of circle along the radius according to

return value of algorithm 3. Now system also needs to re-

compute the Rs for the ev and execute the remain of
algorithm 1. This process repeats till all members reach a

consensus to a rate s. If we want to relax the condition,

we can just take the case where return value of algorithm
3 is less than zero as the case where return value of

algorithm 3 is equal to zero.

If algorithm 3 returns values which are equal or less

than zero for all members of the group for a given item, it
indicates that the group has reached a consensus.

VI. EXPERIMENTS

In this section, we first present the experiment
methodology and experimental settings, and then analyze

the experiment results.

First, we present the measures to evaluate the accuracy

of the system, including MAE and Recall. The system

generates predicted ratings r gi for a test set T of group-

item pairs (g, i) for which the true ratings gir are known.

Typically, gir are known because they are hidden in an

offline experiment, or because they were obtained
through a user study or online experiment. The set of

groups in the system will be denoted by T . T(g) is the

subset of test items that a group g found relevant. L(g) is
a list of items which are recommendations.

1

,,
(,)

MAE rr g ig i
g i

 
T T

 (8)

Percentage of success (%S):

() ()1

Re ()
()

L g T G
call L

T gg


 

G G
 (9)

862 JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

MovieLens dataset was used to train and test our
algorithm. MovieLens data sets were collected by the

GroupLens Research Project at the University of

Minnesota. This data set consists of 100,000 ratings (1-5)

from 943 users on 1682 movies. Each user has rated at
least 20 movies. The data sets u1.base and u1.test through

u5.base and u5.test are 80%/20% splits of the MovieLens

data into training and test data. Each of u1, ..., u5 have
disjoint test sets; this is helpful for 5 fold cross validation.

The collaborative group recommendation model in

Figure. 1 is learned from training sets. In particular, for

each collaborative node Vi we look for the 10 most
similar users (if they exist) using Pearson similarity

measure. It should be noted that all the conditional

probability distributions stores in U and V nodes have
been estimated from the training set using the method in

[3].

We use the following approach to create some groups

from MovieLens dataset. We set every user as group
admin and try to look for K-nearest-neighbors for every

user. If we can’t find any nearest neighbor for the admin,

the admin will cancel the action of creating a group. If

there exist some nearest neighbors, we will add the most
relevant nearest neighbors to the new group. We create

some groups having at most five members rather than at

most four members in [1], because we expect one group
can learn something from other groups. The group test

sets can be obtained from the MovieLens test datasets [3].

The baseline algorithm is simple, but is the basement

of our algorithms. The group rate in the baseline
algorithm is obtained by merging, with the MIN, MAX or

AVG criteria, the rates that individually the collaborative

component proposes for each group member, i.e. using

the results at nodes Vi. Besides that, we compare our
evolution approach with the approach in [3] which is

represented by “Group layer” in TABLE I. Due to the

lack of space, there are some experimental settings we
don’t describe in detail, which can be found in [3]. Note

that we just use most probable (MP) case to determine the

final rate for a given item for all MIN, MAX or AVG

criteria.
In this simulation, the collaborative filtering algorithm

used in our algorithm 3 is SVD [10], which can achieve

performance of RMSE 0.8657 by using iterate technology.

To reduce the computing time, we just use single item
evidence as input to all of our algorithms.

TABLE I presents the average results obtained after

repeating the experiment with each training and test set
under old computation framework. From TABLE I, we

can see that group learning solution (Group learn) does

improve the performance of GRS in terms Recall or MAE

in the MAX or AVG gate case. The recommendation
solution in which groups can learn from each other under

the Bayesian networks model does better than the

baseline approach which outperforms the original
approach of [3] in MP case [11-17].

To validate the efficiency of the new computation

framework, we perform another experiment with

algorithm baseline, group learning and the combination
of group learning and satisfaction evaluation. From

TABLE II, we can see that the combination of group
learning algorithm and satisfaction evaluation method can

achieve a good score and the satisfaction evaluation

method can really refine the recommendations.

TABLE I. AVERAGE EXPERIMENTAL RESULTS WITH OLD

COMPUTATION FRAMEWORK

Old comp_

framework

Baseline

%S MAE

Group layer

%S MAE

Group learn

%S MAE

MAX 54.20 0.562 53.27 0.582 54.71 0.551

MIN 42.14 0.741 35.81 0.971 36.98 0.905

AVG 50.95 0.547 50.28 0.545 52.10 0.523

UAVG_Time 31.20min 45.00min 49.50min

These exists an obvious difference between TABLE I

and TABLE II which is the time of running an algorithm
with average gate (AVG_Time). The time of running an

algorithm with max or min gate is almost the same as

average gate. Due to the lack of space, we do not include
them here. (The simulation was running in a desktop PC

with AMD dual core 2.1G HZ processor and 2G

memory).

TABLE II. AVERAGE EXPERIMENTAL RESULTS WITH NEW

COMPUTATION FRAMEWORK

New comp_

framework

Baseline

%S MAE

Group learn

%S MAE

Group len+sat

%S MAE

MAX 54.81 0.512 54.92 0.572 54.15 0.481

MIN 50.35 0.741 51.41 0.637 52.52 0.585

AVG 52.10 0.547 54.80 0.505 55.91 0.492

UAVG_Time 23.50min 25.10min 27.80min

By analyzing the MAE results for each test set under

new computation framework in Figure. 3, we can see that
MIN_BL perform the worst, and the last second one is

MIN_GLS, because they focus too much on the least

misery of every member of the group.

Figure 3. MAE result for each test set with new computation

framework

VII. CONCLUSIONS

In this paper, we propose a Bayesian networks-based

evolution approach which is composed of a Bayesian

networks-based evolution group recommendation model,
a new group recommendation computation framework

and a new satisfaction measure model. In contrast to the

traditional solutions, our satisfaction measure model use

JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014 863

© 2014 ACADEMY PUBLISHER

the output of group recommendation model as input
rather than use the system input. New group

recommendation computation framework cooperated

with satisfaction evaluation give an alternative way to the

computation framework of Bayesian networks model. We
further evaluate the performance of our approach on the

MovieLens 100K dataset. From the experiment results,

we can see that our algorithms not only make progress in
term of predict accuracy and percentage of success

(recall), but also have better industrial practice value in

term of time. Our approach demonstrates that the

application of our new satisfaction measure model under
Bayesian networks model can refine the group

recommendation well.

VIII. FUTURE WORK

Future work will consider best ways for allowing

group members to interactively achieve common

outcomes that they are willing to consume. By studying

user interaction in a group recommender system we will
be able to match group dynamics with taste preferences

and group satisfaction for a set of events. Fairness is

another study point worth investigating in the evaluation.

Furthermore we plan to deduct what inspirational process
produces user motivation for deciding upon a specific

item list. The explanations future provided by algorithms

based on Bayesian Networks will offer more information
transparency and increasing group awareness [18-21].

ACKNOWLEDGMENT

This work was financially supported by National Basic

Research Program of China (No.2010CB734104), NSFC
Project (30970904/30400137), NNFC and the CASF

Project (60672181), Key Lab of Information Network

Security, Ministry of Public Security (2010). Besides,

Sheng Feng would like to express my thanks to Dr. Qing
Tan and Prof. Fei Gao for allowing me to combine my

research project with the one for the Game Theory course.

In this way I could benefit from the theoretical
implications of aspects related to computation game

theory and my practical work on group recommender in

social websites.

REFERENCES

[1] J. K. Kim, H. K. Kim, H. Y. Oh, Y. U. Ryu, “A group
recommender system for online communities,”
International Journal of Information Management, 30(3),
pp. 212-219. Elsevier Ltd.

[2] F. Ricci, L. Rokach, B. Shapira, P. B. Kantor,
“Recommender Systems Handbook,” Media, 54, pp. 73-
105. Springer US. Retrieved from http://www. springerlink.
com/index/10. 1007/978-0-387-85820-3.

[3] M. d. C. Luis, M. F. a. -L. Juan, F. H. Juan, A. R. -M,
“Miguel. Group Recommending: A methodological
Approach based on Bayesian Networks,” 2007 IEEE 23rd
International Conference on Data Engineering Workshop,
pp. 835-844. IEEE.

[4] B. Sarwar, “Sparsity, Scalability, and Distribution in
Recommender Systems,” Ph. D. Thesis Proposal,
Computer Science and Engineering Dept, University of
Minnesota. July, 1999.

[5] E. Alpaydin, “Introduction to machine learning,” ISBN-10:
0-262-01211-1, chapter 3. The MIT Press, 2009.

[6] R. E. Neapolitan, “Learning Bayesian Networks,” ISBN:
9780130125347, chapter 3. Prentice Hall, 2003.

[7] A. Y. Sihem, S. B. Roy, A. Chawla, G. Das, C. Yu, “Group
Recommendation: Semantics and Efficiency,” Group, 2(1),
pp. 754–765. Retrieved from http://portal. acm.
org/citation. cfm?id=1687627. 1687713, (2009).

[8] E. A. Baatarjav, S. Phithakkitnukoon, R. Dantu, “Group
Recommender system for Facebook,” Work, pp. 211-219.
Springer. Retrieved from http://www. springerlink.
com/index/g004720x1k36087p. pdf, (2008).

[9] X. L. Bao, L. Bergman, R. Thompson, “Stacking
Recommendation Engines with Additional Meta-features,”
Proceedings of the third ACM conference on
Recommender systems RecSys 09 (p. 109). ACM Press.

[10] C. C. Ma, “A Guide to Singular Value Decomposition for
Collaborative Filtering, csientuedutw,” (1), pp. 1-14.
Retrieved from http://www. csie. ntu. edu.
tw/~r95007/thesis/svdnetflix/report/report. pdf

[11] CONITZER, V., 2006. Computing slater rankings using
similarities among candidates. In Proceeding AAAI'06
Proceedings of the 21st national conference on Artificial
intelligence. Vol. 1

[12] Crossen, A., Budzik, J., aAnd Hammond, K., J., 2002.
Flytrap: Intelligent Group Music Recommendation. In
Proceedings of the 7th international conference on
Intelligent user interfaces, Intelligent Information
Laboratory, Northwestern University, USA

[13] Endriss, U., Maudet, N., Sadri, F., and Toni, F., 2006.
Negotiating socially optimal allocations of resources. In
Journal of Artificial Intelligence Research, Vol. 25, pp.
315–348

[14] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L.,
Gordon, L. R., & Riedl, J. (1997):‘GroupLens: Applying
Collaborative Filtering to Usenet News’, Communications
of the ACM, vol. 40, no. 3, March 1997, pp. 77-87.

[15] McCarthy, J., & Anagnost, T. (1998): ‘MusicFX: An
arbiter of group preferences for computer supported
collaborative workouts’, in Proceedings of the ACM 1998
Conference on CSCW, Seattle, WA, 1998, pp. 363-372.

[16] Mitchell, A., Posner, I., & Baecker, R. (1995): ‘Learning to
Write Together Using Groupware’, in Conference
Proceedings on Human Factors in Computing Systems,
Denver, CO, 1995, pp. 288-295.

[17] Neuwirth, C. M., Kaufer, D. S., & Chandhok, R. (1994):
‘Computer Support for Distributed Collaborative Writing:
Defining Parameters of Interaction’, in Proceedings of the
Conference on CSCW, Chapel Hill, NC, 1994, pp. 145-152.

[18] Schafer, J. B., Konstan, J., & Riedl, J. (1999):
‘Recommender Systems in E-Commerce’, in Proceedings
of the First ACM Conference on Electronic Commerce,
Denver, CO, 1999, pp. 158-166.

[19] Shardanand, U., & Maes, P. (1995): ‘Social In formation
Filtering: Algorithms for Automating “Word of Mouth”’,
in Conference Proceedings on Human Factors in
Computing Systems, Denver, CO, 1995, pp. 210-217.

[20] Smith, R. B., Hixon, R., & Horan, B. (1998): ‘Supporting
Flexible Roles in a Shared Space’, in Proceedings of the
ACM 1998 Conference on CSCW, Seattle, WA, 1998, pp.
197-206.

[21] Ungar, L. H., & Foster, D. P. (1998): ‘Clustering Methods
for Collaborative Filtering’, in AAAI Workshop on
Recommendation Systems, Menlo Park, CA, 1998.

864 JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

