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Abstract—Recommending to groups is even more 

complicated than recommending to individuals. Previous 

works has suggested that when generating recommendations 

to a group, it can achieve better result by learning 

information from other groups. Besides, recent research 

reports indicate that incorporating disagreement is critical 
to the effectiveness of group recommendation. Although the 

computation model build with Bayesian networks for group 

recommender system is very straightforward, the 

computation is rather complex (even though using 

approximate technology). In this paper, we will first present 

a Bayesian networks based evolution group 

recommendation model where groups can learn from each 
other. Then, we not only propose a new group 

recommendation computation framework, but also propose 

a new satisfaction measure model to refine the group 

recommendations. We evaluate the performance of our 

approach on the MovieLens dataset. Experiment results 

show that our Bayesian networks based evolution approach 

which is an ensemble of the above three sub-components 
outperforms the baseline one. 

 
Index Terms—Group Recommendation; Bayesian Networks; 

Group Satisfaction 

 

I. INTRODUCTION 

A recommender system (RS) supports users to find 

information, products, or services (such as books, movies, 

music, digital products, Web sites, and TV programs, to 

name a few) by aggregating and analyzing suggestions 
from other users, reviews from various authorities, and 

user attributes. Collaborative filtering (CF) is known to 

be a successful recommendation technique. It makes 
recommendations to users based on other users’ ratings 

on items, putting more weights on those from similar 

users (i.e., other users having similar personal attributes 

or product preferences). But to date, recommender 
systems have focused mainly on recommending items to 

individuals rather than groups of people intending to 

participate in a group activity. In recommendation 

domains such as shopping and asset investment, it is not a 
limitation because users in general behave individually 

and only their personal interests should be considered. In 

other domains such as movies, trips, book clubs, and 

restaurants, however, existing recommender systems have 
difficulty in aggregating individual users’ tastes into a 

group’s preference properly [1]. 

A group recommender system (GRS) is a 

recommender system aimed at generating a set of 
recommendations that will satisfy a group of users, with 

potentially competing interests. The challenges associated 

with this simple statement deal with: considering how to 
record and combine the preferences of many different 

users as they engage in simultaneous recommendation 

dialogs.  

Some types of items that a system can recommend 
(e.g., restaurants and museum exhibits) tend to be used at 

least as often by groups as individuals, so addressing 

recommendations to individuals can actually be unnatural. 

Moreover, the evolution of computers away from the 
desktop PC makes it increasingly natural for systems to 

address groups as well as individuals: Wall displays, 

information kiosks, PDAs, and cell phones can be used 
easily by persons who are interacting with each other. 

And even with the traditional PC, users are being offered 

an increasing variety of ways to communicate with each 

other and perform tasks together. For these reasons, we 
can expect a continuing growth in the trend toward 

recommendation (and, more generally, adaptation) to 

groups of users. 

In paper [2], Judith Masthoff gives a complete discuss 
about strategy for aggregating models of individual users 

to allow for group recommendation, what strategies have 

been used in existing systems, and what researcher have 
learned from experiments in this area.  

In this paper, we will first present a Bayesian networks 

based evolution group recommendation model where 

groups can learn from each other. Then, we not only 
propose a new group recommendation computation 

framework, but also propose a new satisfaction measure 
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model to refine the group recommendations. In contrast 
to the traditional solutions, our satisfaction measure 

model uses the output of group recommendation model as 

input rather than use the system input. In short, our 

solution looks like a feedback model of modern control 
theory. To the best of our knowledge, it is an approach all 

of people before us never try. The above three sub-

components compose our Bayesian networks-based 
evolution approach. 

This paper is organized as follows: Section 2 

overviews related works. Section 3 presents the proposed 

the evolution group model. The computing method for 
generating recommendations based on the new model is 

discussed in Section 4. Section 5 describes how to use the 

satisfaction model to refine the group recommendations. 
Performance evaluation is done in Section 6, where our 

algorithm is compared with the one proposed by Luis et 

al. [3]. Finally, in Section 7 we conclude this paper. 

II. RELATED WORKS 

CF makes recommendations based on item ratings by 

neighbors who are those having attributes or preferences 

similar to a user to whom recommendation is made. In 

general, CF systems make recommendation according to 
following three steps: user profile creation, neighbor 

formation and recommendation generation [4]. 

PolyLens [4] by Mark O'Connor et al, a recommender 
system for groups of users, had been designed to 

recommend items for groups of users, rather than for 

individuals. They found that users not only valued group 

recommendations, but were willing to yield some privacy 
to get the benefits of group recommendations. Users 

valued an extension to the group recommender system 

that enabled them to invite non-members to participate, 

via email.  
George Popescu et al had modeled group recommender 

systems as a voting problem in facilitate music items 

recommendations. Their GroupFuns is a Facebook 
application which attempts to suggest a common set of 

music items to a group for a social event (e.g., party), 

with the aim of maximizing the satisfaction of all 

members in the group on the suggested items. Using a 
simple algorithm, probabilistic weighted sum, they had 

defined an incentive-compatible scheme in which scores 

are interpreted as probabilities. The static and the 

dynamic cases further contributed to measuring user 
preference for the deterministic case. This advances 

previous work carried on for understanding the voting 

mechanism as well as its dynamics and user choice. Users 
are free to state their preferences individually as well as 

modify them according to some group dynamics factor 

and intermediate common decision. In real-life examples 

the two cases presented are very frequently encountered 
and numerous applications stated in the beginning denote 

the need for adaptive group recommender systems. 

GroupFun is one of these systems designed for users to 
spend the least amount of time stating their preferences 

and be able to reach the common music playlist goal. 

In paper [3], Luis et al proposed a collaborative 

Bayesian networks-based group recommender system 

(CBBGRS), where the group’s rates are computed from 
past voting patterns of other users with similar tastes. A 

Bayesian network (BN) [5] [6] is a directed acyclic graph, 

where the nodes represent the variables from the problem 

we want to solve. In Figure 1, we give out the topology of 

CBBGRS. Each user variable aU  represent the 

probability distribution associated to its pattern of rating, 

i.e. information about the probability that aU  could vote 

with value i ,  Pr iU a  , with {1,  2, , }i r  . 

In a collaborative RS, the vote prediction for a given 

user depends on the votes of the people with similar 

tastes or preferences. In order to facilitate the presence of 
these relationships in the model, they included a new of 

set of nodes V  to denote collaborative votes. There is 

one collaborative node for each user in the system, i.e. 

 1 2,  , , nV V V V  . These nodes will also be used to 

estimate the probability distributions of the user votes and 

they will therefore take their values in the same domain 

as U , i.e. 1,  2, ,r . 

 

U1 U2

V1

U3 U4 U5 U6

V2 V3 V4 V5 V6

G1 G2

 

Figure 1.  Collaborative Group Recommender system topology 

Let’s overview the approach in [3]. Note that ev and 

“evidence” mentioned below represent an item which a 

group may be interesting in. 
1. First, they try to find K nearest neighborhoods for 

every member of the group according to the similarity 

measure such as Pearson’s Correlation coefficient and 

then push those nearest neighborhoods to the ( )iPa v  list 

of the member’s respective collaborative node (Pa is the 

abbreviation of Parent). iv  is an instance of iV , for 

example, ,i jV  is the 
thj  value of iV . 

2. Estimating the conditional probability distributions 

  , ,,
( )

Pr( | ( )) ( , )i j i i jk l
PaY Xk i

pa w yv V v


    (1) 

and computing the  Pr  |iU s ev , 1 ≤ s ≤ r. Please refer 

to the original paper [3] to learn the meaning of 

,,
( , )i jk l

w y v . 

3. Evidence propagation from top to down in BN: 

 , ,, ,
1 1

Pr( | ) ( , ) ( | )
YV jI

LM

i s i sj k j k
j k

ev w pr evy yv v
 

      (2) 

where the 
iVm  is number of parents of iV , jY  is a node 

in ( )pa V i  and 
jYL  is the number of states that jY  takes. 

4. Computing: 

JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014 859

© 2014 ACADEMY PUBLISHER



  

Pr( | )

Pr( | ( )) Pr( ( ) | )

( )

s evGi

s Pa Pa evG G Gi i i
Pa Gi

 

   (3) 

For example, if there is a group G1 which has three 

members: U1, U2, U3,  
1( )Pa G  is the set of all possible 

instances of vector 1 2 3{ , , }V V V . Luis et al took 

( )

Pr( | ),
1

Pa Gi
evvi j

i



 as the approximation of 

Pr( ( ) | )Pa evGi . The Pr( | ( ))s PaG Gi i  is determined 

by social value function, such as maximum social value 

function:  

 {1  = max{ ( )}
Pr( = | ( )) =

0 

if k pa Gis PaG Gi i otherwise
 (4) 

In paper [7], A. Y. Sihem et al proposed a formal 

semantics that accounts for both item relevance to a 

group and disagreements among group members. Their 
solution is from an intuitive observation: In general, 

group members may not always have the same tastes and 

a consensus score for each item needs to be carefully 

designed. There are two main aspects contributing to the 
consensus score. First, the score should reflect the 

member’s preferred attitude to the item. The more group 

members prefer an item; the higher a score should be 
given to the group. Second, the score needs to reflect the 

level at which members disagree with each other. They 

call the first aspect group relevance and the second aspect 

group disagreement. They try to fit a consensus function 
to solve this problem. The consensus function, denoted 

by ( , )F G i , combines the group relevance and the group 

disagreement of i  for G  into a single group 

recommendation score using the following formula: 

 ( , ) ( , ) (1 ( , ))2F G i rel G i dis G iw wi      (5) 

where ( , )rel G i  is the relevance of an item i  to a group 

G , ( , )dis G i  is the disagreement of a group G  over an 

item i , 11 2w w   and each specifies the relative 

importance of relevance and disagreement in the overall 

recommendation score. 

III. EVOLUTION GROUP MODEL 

In general, there are a lot of groups in a large social 

network system, such as Facebook, where every user 

usually joins several different groups. In paper [8], 
Baatarjav et al took University of North Texas (UNT) 

Facebook SN as a sample for research. There are 10 main 

group types, such as business, common interest, 
entertainment& arts, geography, music, etc. Six of them 

have over 500 groups, and four of them have range 

between 61 and 354 groups in each.  

The work in [1] suggests that when generating 
recommendations to a group, we can get a good result by 

learning from other groups. In [1], their strategy for 

generating recommendations is first to aggregate user 

profiles into a group profile and then utilize a nearest-

neighbor algorithm in identifying neighbor groups from 
whom recommendation sets are generated. Experiment 

results showed that their proposed system has 

consistently higher precision and individual members are 

more satisfied. 
 

U1 U2

V1

U3 U4 U5 U6

V2 V3 V4 V5 V6

G1 G2
 

Figure 2.  Collaborative group recommender system evolution 

topology 

The research results above inspire us to develop a 
group recommender system which incorporates 

information from other groups when we compute 

recommendations for a special group with Bayesian 

networks model. Note that we are taking a strategy that 
groups learn from each other under the Bayesian 

networks model. For example, U2, U3 join both G1 and G2 

in Figure. 1. When computing recommendations for G1, 
we can learn something from G2 (especially the 

recommendations of G2) to achieve generating better 

recommendations for G1. The topology of the Figure 1 

should be updated as the system topology of the Figure 2. 
Just like that there are many solutions for choosing K-

nearest-neighborhoods in collaborative filtering RS, there 

are a lot of solutions for choosing K-nearest 

neighborhood groups, too. It can base on different group 
similarity measures or different value for K which can be 

set according to a threshold or a percentage). Here we 

simply present and compare two typical solutions: (1) 
choosing the top K-nearest neighborhood groups which 

has more common members with the given group; (2) 

using similarity measure (such as Pearson correlations or 

Spearman’s rank correlations) to determine the top K-
nearest neighborhood groups. 

Assuming we need to determine a nearest-neighbor 

group for G j , the former solution can be represented as: 

 arg | |maxG U Uresult G G Gi i j
  (6) 

where | |U UG Gi j
 is the size of intersection of 

members of Gi  and members of G j . For solution (2), 

we use the Pearson correlation coefficient of modified: 

 

( ) ( )
( , )

( )

( )( ), ,

( )
2 2

( ) ( ), ,

I IG Ga b
sim G Ga b

I Gb

r r r ra j a b j b
j

abs

r r r ra j a b j b
j



 



 

 (7) 
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Solution (1) has two advantages including less 
computation and transparence to the group 

recommendation history. When applying solution (2) to a 

new system or a system which has very little 

recommendation history, it almost has no reliability. In 
our experiment, we just use the solution (1). 

IV. GENERATING THE RECOMMENDATIONS 

The Bayesian networks-based group recommendation 
model has high computation complexity. Even though 

using approximate technology, the computation 

complexity of Pr( | )evGa  still is ( )mO r , where r is the 

highest rate and m is the size of a group. In short, the 

computation complexity grows exponentially as the 

group size grows. So in this section, we propose a new 

framework to simplify the group recommendation 
computation with insurance that the evolution group 

model can run well in this framework. 

A. A New Framework to Simplify the Computation 

Let’s focus on the formula (3) and take 

Pr( | ( ))s PaG Gi i  and Pr( ( ) | )Pa evGi  as coefficient 

and weight respectively. As we use 

( )

Pr( | ),
1

Pa Gi
evvi j

i



 

to approximate the real Pr( ( ) | )Pa evGi , so the weight is 

a product of all Pr( | ), evvi j , 1 ( )i Pa Gi  . Although 

the approach of multiplying together all the Pr( | ), evvi j  

is an effective social value function [8], when ( )Pa Gi  is 

large, the computation process of Pr( | )s evGi   will be 

very complex. So we proposed algorithm 1 to manage the 

application of social value function and simplify the 

group recommendation computation. To reduce 
computing time, we just use single item evidence as input 

to all of our algorithms. 
 

Algorithm1: 

//a novel approach to compute group recommendations 

//every group will run an instance of this algorithm with //Group 

information as hidden input 

// GroupPredRecList and CandRecList are global //variables of a 

group 

// GroupPredRecList  { }, CandRecList  { }; 

Phase I (prepare): 

Input: ev which has not been rated or predicted 

1. Every member (denoted by bold point) locates at circle 

initially and divides the circle equally. The radius of the circle 

is R. 

2. Compute all Pr( | ), evxi s ; such as Pr( | )1,1 evx , 

Pr( | )1,2 evx , …, Pr( | ),1 evxa . 

3. For every rate s, (1≤s≤r), we make every member move 

toward the center of circle along the radius according to the 

value of Pr( | )*, ev Rxi s . For s = 2, the member u1 moves 

according to the value of Pr( | )*1,2 ev Rx  and the member u2 

moves according to the value of Pr( | )*2,2 ev Rx . So for 

every rate s, there exists a circle with radius Rs which cover all 

member points fitly. After going over r rates, we get r circles. 

4. arg ( )minR Rresult s s , (1≤s≤r); add the (ev, result, Rresult) to 

GroupPredRecList. Note that GroupPredRecList is used to 

store the above temporary recommendations which may be 

washed out in Phase II and real recommendations will be 

stored in CandRecList. 

 

In algorithm 1, the 3th step of Phase I is the place 
where we can apply different social value functions and 

use different rules to determine the radius Rs for a given 

rate s. The example rule is Local Least Misery. For a 
given rate s, if we find an Rs circle which only covers the 

member with the largest Pr( | ), evxi s , this is the case 

applying Local Most Pleasure rule. Note that it’s local, 
not global. Actually, this approach will produce error, but 

it can be compensated with satisfaction measure model. 

For example, given rate 3s  , in the process of 

computing its 3Rs  , algorithm 1 will only take the 

effect of all Pr( | ),3 evxi  into account or in other way, 

algorithm 1 only sees the values including Pr( | )1,3 evx , 

Pr( | )2,3 evx , Pr( | )3,3 evx  and so on , and will not see 

the values including Pr( | )1,3 1 evx  , Pr( | )1, 1 evx s   and 

so on. In standard Bayesian networks, we need to 

consider the impact of Pr( | )1, 1 evx s  , Pr( | )1, 1 evx s   

and so on. (This is another reason why the original 
algorithm [3] has high complexity). The idea of our 

algorithm is that for a given rate s=3, if the power of all 

Pr( | ), 3 evxi s   temporarily outperforms the power of all 

Pr( | ), evxi s  (s|1≤s≤r && s!=3), it reveals the potential 

of rate s=3. But if it doesn’t pass the test of algorithm3, it 

will fail at last. 
 
Algorithm1: 

// GroupPredRecList  { }, CandRecList  { }; 

Phase II (generate recommendation): 

Input: k 

1. TopPredRecList  { } 

2. Sort(GroupPredRecList) by result or (result, Rresult); 

3. Consume top k ev with highest result from GroupPredRecList 

and push them into TopPredRecList. 

4. Pick out (ev, result, Rresult) from TopPredRecList one by one to 

consult every group member to learn whether they are 

satisfactory with it. (Satisfaction measure model will be 

presented in Algorithm3 of section 5). If all feel satisfaction, 

we add (ev, result, Rresult) to CandRecList. If there is someone 

don’t feel satisfaction with the level of disagreement Disev, the 

member will move toward the outside of the circle along the 

radius according to the value of Disev. At this time, system 

needs to re-compute the Rs for the ev. 

5. Pick out ev from CandRecList randomly to recommend to the 

group. 

6. Return ev 

B. Learning from Other Groups 

Let’s assume that group G1 and G2 have some common 

users which were denoted by 
1 2

U UG G  and G2 had 

reached consensus for choosing item j. Now we can learn 

that the users 
1 2

U UG G  in G1 also like item j and the 

possibility of successfully recommending item j to G1 

increase. What we need to do in the following is to 

observe the satisfactory level of remain members for item 

j. This kind of learning is very helpful for the case where 
users tend to consume a given item more than one time. If 
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users enjoy some novel things, we can pick out an item 
from the CandRecList of G2. All in all, learning from 

other groups make us stand on a top start point. 

Algorithm 2 presents the approach in which groups can 

learn from each other. Note that algorithm 2 and 
algorithm 1 can run concurrently. 

 

Algorithm2: 

//assuming we want to generate recommendation for Gp 

Input: Gp 

1. Find K-nearest neighborhood groups of Gp.  

2. Find W ever recommendations in every relevant group; 

package every recommendation and its rate into a pair and add 

result to the GiftMapi, where i is the identity of a relevant 

group. 

3. For i : K 

For every item j in GiftMapi{ 

If item j had not been cooked yet 

       Sat(Gp, j) = Satisfaction(Gp, j); 

} 

4. Find Q pairs with highest Sat(Gp, j) over all GiftMapi and add 

them to the CandRecList of Gp 

V. USING THE SATISFACTION MODEL TO REFINE THE 

GROUP RECOMMENDATIONS 

To the best of our knowledge, traditional satisfaction 

measure models are always embedded in the process of 

computing recommendations. But this approach doesn’t 
fit the Bayesian networks-based RS well, because 

Bayesian networks are born with complexity of 

probability computation. In this section, we propose a 
satisfaction measure model based on feedback which is a 

power technique in control theory. Feedback is a 

technology which uses the system output to control or 

adjust the system input. The TopPredRecList of algorithm 
1 include the temporary recommendations which may be 

washed out in Phase II. Note that before generating those 

temporary recommendations, we don’t involve with any 

satisfaction measure. We package those 
recommendations and their rates as pairs and deliver 

them as feedback to group members. According to the 

satisfactory level of group members to the feedback, 
those temporary recommendations should be processed 

further. For example, if all members of a group agree on 

the rate = 4 for a given item 1, the item 1 wins and lives 

in CandRecList; if some members of the group disagree 
on the rate = 4, we need further process for the item1. 

There are two challenges, including: (1) how to 

compute the satisfaction level of member for a given item; 

(2) if some members disagree on the rate, how to perform 
further process. 

A. Define the Satisfaction Measure Model 

Before computing the satisfactory level, we need a 

reference system. For example, level 3 represents quiet 

mood (baseline). Level 5 represents very satisfaction 
mood and level 1 represents very dissatisfaction. But in 

GRS, the basic problem of measuring satisfactory level is 

that we are predicting whether a user likes a novel item. 

The user never learns something about this new item and 
expresses mood on it. If a user A just expresses that he 

doesn’t like this item, now asked to explore whether user 

A likes this item, we are almost sure that user A aren’t 
interesting in this item. Based on the above observation, 

algorithm 3 uses effective collaborative filtering 
algorithm (such as SVD) or the ensemble of several 

collaborative filtering predictors [9] to predict the rate of 

user A for a given item; then we compares the predicted 

result with the predicted rate generated by GRS to 
measure the satisfactory level. Algorithm 3 presents the 

detail of computing the satisfactory level of a member for 

a given item. 

B. Deal with the Disagreement of Member for a Given 

Item 

If user u disagrees on the predicted rate s of group 

recommendation in TopPredRecList (after running 

algorithm 3, the return value is greater than zero), we 

make the user u move toward the outside of the circle 
along the radius according to the return value of 

algorithm 3. Then system needs to re-compute the Rs for 

the ev and execute the remain of algorithm 1. This 
process repeats till all members reach a consensus to a 

rate s. 

If user u agrees on the predicted rate s of group 

recommendation in TopPredRecList and the return value 
of algorithm 3 is less than zero, we make user u move 

toward the center of circle along the radius according to 

return value of algorithm 3. Now system also needs to re-

compute the Rs for the ev and execute the remain of 
algorithm 1. This process repeats till all members reach a 

consensus to a rate s. If we want to relax the condition, 

we can just take the case where return value of algorithm 
3 is less than zero as the case where return value of 

algorithm 3 is equal to zero. 

If algorithm 3 returns values which are equal or less 

than zero for all members of the group for a given item, it 
indicates that the group has reached a consensus. 

VI. EXPERIMENTS 

In this section, we first present the experiment 
methodology and experimental settings, and then analyze 

the experiment results. 

First, we present the measures to evaluate the accuracy 

of the system, including MAE and Recall. The system 

generates predicted ratings r gi  for a test set T  of group-

item pairs (g, i) for which the true ratings gir  are known. 

Typically, gir  are known because they are hidden in an 

offline experiment, or because they were obtained 
through a user study or online experiment. The set of 

groups in the system will be denoted by T . T(g) is the 

subset of test items that a group g found relevant. L(g) is 
a list of items which are recommendations. 

 
1

,,
( , )

MAE rr g ig i
g i

 
T T

  (8) 

Percentage of success (%S): 

  
( ) ( )1

Re ( )
( )

L g T G
call L

T gg


 

G G
 (9) 

862 JOURNAL OF MULTIMEDIA, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER



MovieLens dataset was used to train and test our 
algorithm. MovieLens data sets were collected by the 

GroupLens Research Project at the University of 

Minnesota. This data set consists of 100,000 ratings (1-5) 

from 943 users on 1682 movies. Each user has rated at 
least 20 movies. The data sets u1.base and u1.test through 

u5.base and u5.test are 80%/20% splits of the MovieLens 

data into training and test data. Each of u1, ..., u5 have 
disjoint test sets; this is helpful for 5 fold cross validation. 

The collaborative group recommendation model in 

Figure. 1 is learned from training sets. In particular, for 

each collaborative node Vi we look for the 10 most 
similar users (if they exist) using Pearson similarity 

measure. It should be noted that all the conditional 

probability distributions stores in U and V nodes have 
been estimated from the training set using the method in 

[3]. 

We use the following approach to create some groups 

from MovieLens dataset. We set every user as group 
admin and try to look for K-nearest-neighbors for every 

user. If we can’t find any nearest neighbor for the admin, 

the admin will cancel the action of creating a group. If 

there exist some nearest neighbors, we will add the most 
relevant nearest neighbors to the new group. We create 

some groups having at most five members rather than at 

most four members in [1], because we expect one group 
can learn something from other groups. The group test 

sets can be obtained from the MovieLens test datasets [3]. 

The baseline algorithm is simple, but is the basement 

of our algorithms. The group rate in the baseline 
algorithm is obtained by merging, with the MIN, MAX or 

AVG criteria, the rates that individually the collaborative 

component proposes for each group member, i.e. using 

the results at nodes Vi. Besides that, we compare our 
evolution approach with the approach in [3] which is 

represented by “Group layer” in TABLE I. Due to the 

lack of space, there are some experimental settings we 
don’t describe in detail, which can be found in [3]. Note 

that we just use most probable (MP) case to determine the 

final rate for a given item for all MIN, MAX or AVG 

criteria. 
In this simulation, the collaborative filtering algorithm 

used in our algorithm 3 is SVD [10], which can achieve 

performance of RMSE 0.8657 by using iterate technology. 

To reduce the computing time, we just use single item 
evidence as input to all of our algorithms. 

TABLE I presents the average results obtained after 

repeating the experiment with each training and test set 
under old computation framework. From TABLE I, we 

can see that group learning solution (Group learn) does 

improve the performance of GRS in terms Recall or MAE 

in the MAX or AVG gate case. The recommendation 
solution in which groups can learn from each other under 

the Bayesian networks model does better than the 

baseline approach which outperforms the original 
approach of [3] in MP case [11-17].  

To validate the efficiency of the new computation 

framework, we perform another experiment with 

algorithm baseline, group learning and the combination 
of group learning and satisfaction evaluation. From 

TABLE II, we can see that the combination of group 
learning algorithm and satisfaction evaluation method can 

achieve a good score and the satisfaction evaluation 

method can really refine the recommendations. 

TABLE I.  AVERAGE EXPERIMENTAL RESULTS WITH OLD 

COMPUTATION FRAMEWORK 

Old comp_ 

framework 

Baseline 

%S MAE 

Group layer 

%S MAE 

Group learn 

%S MAE 

MAX 54.20 0.562 53.27 0.582 54.71 0.551 

MIN 42.14 0.741 35.81 0.971 36.98 0.905 

AVG 50.95 0.547 50.28 0.545 52.10 0.523 

UAVG_Time 31.20min 45.00min 49.50min 

 

These exists an obvious difference between TABLE I 

and TABLE II which is the time of running an algorithm 
with average gate (AVG_Time). The time of running an 

algorithm with max or min gate is almost the same as 

average gate. Due to the lack of space, we do not include 
them here. (The simulation was running in a desktop PC 

with AMD dual core 2.1G HZ processor and 2G 

memory).  

TABLE II.  AVERAGE EXPERIMENTAL RESULTS WITH NEW 

COMPUTATION FRAMEWORK 

New comp_ 

framework 

Baseline 

%S MAE 

Group learn 

%S MAE 

Group len+sat 

%S MAE 

MAX 54.81 0.512 54.92 0.572 54.15 0.481 

MIN 50.35 0.741 51.41 0.637 52.52 0.585 

AVG 52.10 0.547 54.80 0.505 55.91 0.492 

UAVG_Time 23.50min 25.10min 27.80min 

 

By analyzing the MAE results for each test set under 

new computation framework in Figure. 3, we can see that 
MIN_BL perform the worst, and the last second one is 

MIN_GLS, because they focus too much on the least 

misery of every member of the group. 
 

 

Figure 3.  MAE result for each test set with new computation 

framework 

VII. CONCLUSIONS 

In this paper, we propose a Bayesian networks-based 

evolution approach which is composed of a Bayesian 

networks-based evolution group recommendation model, 
a new group recommendation computation framework 

and a new satisfaction measure model. In contrast to the 

traditional solutions, our satisfaction measure model use 
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the output of group recommendation model as input 
rather than use the system input. New group 

recommendation computation framework cooperated 

with satisfaction evaluation give an alternative way to the 

computation framework of Bayesian networks model. We 
further evaluate the performance of our approach on the 

MovieLens 100K dataset. From the experiment results, 

we can see that our algorithms not only make progress in 
term of predict accuracy and percentage of success 

(recall), but also have better industrial practice value in 

term of time. Our approach demonstrates that the 

application of our new satisfaction measure model under 
Bayesian networks model can refine the group 

recommendation well. 

VIII. FUTURE WORK 

Future work will consider best ways for allowing 

group members to interactively achieve common 

outcomes that they are willing to consume. By studying 

user interaction in a group recommender system we will 
be able to match group dynamics with taste preferences 

and group satisfaction for a set of events. Fairness is 

another study point worth investigating in the evaluation. 

Furthermore we plan to deduct what inspirational process 
produces user motivation for deciding upon a specific 

item list. The explanations future provided by algorithms 

based on Bayesian Networks will offer more information 
transparency and increasing group awareness [18-21]. 
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