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Abstract

This efforts objective was to identify and hybridize a suite of technologies enabling the devel-
opment of predictive decision aids for use principally in combat environments but also in any 
complex information terrain.  The technologies required included formal concept analysis for 
knowledge representation and information operations, Peircean reasoning to support hypothesis 
generation, Mill’s canons to begin defining information operators that support the first two tech-
nologies and co-evolutionary game theory to provide the environment / domain to assess predic-
tions from the reasoning engines.  The intended application domain is the IED problem because 
of its inherent evolutionary nature.  While a fully functioning integrated algorithm was not 
achieved the hybridization and demonstration of the technologies was accomplished and demon-
stration of utility provided for a number of ancillary queries.
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Abstract
This efforts objective was to identify and hybridize a 

suite of technologies enabling the development of pre-
dictive decision aids for use principally in combat envi-
ronments but also in any complex information terrain.  
The technologies required included formal concept 
analysis for knowledge representation and information 
operations, Peircean reasoning to support hypothesis 
generation, Mill’s canons to begin defining information 
operators that support the first two technologies and 
co-evolutionary game theory to provide the environ-
ment / domain to assess predictions from the reasoning 
engines.  The intended application domain is the IED 
problem because of its inherent evolutionary nature.  
While a fully functioning integrated algorithm was not 
achieved the hybridization and demonstration of the 
technologies was accomplished and demonstration of 
utility provided for a number of ancillary queries.

1. Introduction

The effort described in this report captures observa-
tions and assessments of an R&D effort to put greater 
theoretical foundations to efforts in the information 
domains.  Significant levels of effort have gone into 
designing information systems without the fundamental 
theoretical foundations needed to build robust informa-
tion systems.  As a result I see systems that lack the 
requisite logics needed to manipulate or operate on in-
formation, the logics needed to interpret, update, secure 
or process the massive amounts of information we need 
to deal with the problems of command on network cen-
tric battlefields, to deal with the terrorist threats against 
our homeland or even the information associated with 
remaining economically competitive.  

This effort attempted, with too little time and money 
to address the issues and demonstrate a solution focused 
on the IED terrorist threat.  The objectives were to iden-
tify and hybridize a suite of technologies to provide a 
system to provide unobtrusive predictive decision sup-

port for a commander in the field.  Linking mathemati-
cally robust knowledge representation to a Peircean 
based reasoning engine and then integrating that into a 
co-evolutionary game environment we could produce a 
system with a capability of anticipating the next moves 
of an adversary without having to wait for a statistically 
significant pattern of destruction to emerged before we 
define a counter strategy.  Approaches founded on de-
ductive and inductive decision aids can only react to 
situations on the ground, which in a highly dynamic 
environment only lead to unacceptable losses.

The effort initiated suffered from many  excursions to 
address questions of applicability of different subsets of 
technology on specific questions associated with infor-
mation problems.  What I will try to do in this report is 
identify some of the application areas and how the dif-
ferent groupings of technology can address these 
unique problems.  One observation as a result of this 
effort involves the linkage between theory and engi-
neering.   What I see is the potential for decades of po-
tential theoretical research to flesh out all the potential 
of these technologies while from an engineering per-
spective realizing that the 80% solution will advance 
capabilities beyond anything we have in the field or 
will have in the field in the next 20 years if we pursue 
traditional piecemeal approaches being pursued today.

2. Structure of Adaptive Decision Aids 

The first step in identifying the needs of a command 
decision support sub-system is to understand the deci-
sion making process.  It is felt that we often neglect the 
cognitive load imposed on our commanders and as a 
result provide them with burdensome applications that 
take away from a fundamental task, one of survival.  
Systems engineering provides the means by which we 
can assess the larger context of the problem being ad-
dressed to ensure we solve the correct problem. One 
observation in the process is the need to understand the 
decision making process from a philosophically based 
perspective, and to approach the design in a manner that 
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augments the decision making process and mitigates the 
impact on the tasks being addressed.  Recognizing that 
decisions are based on a decision makers “belief state” 
enables us to design decision aids that simply modify 
that belief state.

Figure 1.  Decision making paradigm.

The model shows a system that collects data and 
convolves that with their collected knowledge to create 
an understanding of a situation, creating a belief state.  
The model permits the accretion of more data as well as 
updating the knowledge base, through learning or by 
adding to the command collective, individuals or sys-
tems with different skills.  Once a belief state is gener-
ated decisions are made which are tempered by uncer-
tainty, and risk aversion.  This model also adds some 
insight into the concept of information deception.  What 
can we do or what can an adversary do to corrupt the 
belief state of the decision maker?

Additionally, by approaching design from this per-
spective, we can develop solutions which enable the 
decision maker to employ their considerable problem 
solving skills to situations that may be novel, or were 
not recognized in the course of command activities.  
The approach is an attempt to augment a commanders 
skills rather than replacing them. 

The basic technologies addressed in this research 
effort included knowledge representation, reasoning, 
and co-evolutionary game theory.  Each technology 
support an aspect of the total solution.  The representa-

tion of knowledge has a number of requirements that 
enable us to apply a number of technologies to produce 
the hybrid solution being sought.  We need a technol-
ogy that enables the construction of knowledge bases, 
that minimize transformations between conceptual rea-
soning and process reasoning systems, and augment a 
Peircean based abductive reasoning architecture.  The 
most difficult of these requirements involves the trans-
formation between conceptual and process reasoning.  
In conceptual reasoning we are attempting to identify 
some object or concept while in process reasoning we 
are having to recognize the concept but also the state 
and the allowable transitions in state

The reasoning engine is based on C.S. Peirce’s model 
of scientific inquiry.  This philosophical construct pro-
vides the foundation for how we as humans reason 
about situations new to us.  This model consists of three 
reasoning capabilities; Abduction, deduction and induc-
tion.  A crude way of looking at this suite of logic is 
abduction provides plausible hypotheses to explain an 
observation, deduction provides a basis for selecting 
from that set of hypotheses, and induction is the means 
to validate the hypothesis selected.  

Co-evolutionary game theory provides the basis for 
assessing merits of a hypothetical solution against a 
suite of objectives.  In this analysis we assume multiple 
objectives for each player in the game.  What this 
means is, in a non-cooperative game, each player has  
the ability to evolve over time.  The resultant Pareto 
optimal solution space identifies the best strategies any 
player can use to maximize their objectives.   IN an IED 
domain that might mean the best design and deploy-
ment for an adversary, and the best detection and miti-
gation strategies for the blue side.

3. Formal Concept Analysis (FCA)

Formal concept analysis is a knowledge  representa-
tion development effort initiated by Ganter & Wille 
based on ordered set theory.  The mathematics of FCA 
lend themselves to lattice theory and the rich represen-
tation capabilities of that domain. FCA is based on the 
idea of a formal context, KFC, defined by a “triple” as 
the one in equation 1. 

K
fc
/(G,M, I )

 Eqn 1  
In this equation G and M are sets of objects and at-

tributes respectively and I is a binary relation between 
the two sets.  There is an operator defined, (⋅)′ which 
aids in the definition of formal concepts from the for-
mal context.  
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(A l) / m!M (g,m)! I6 g! A# -

(B l) / g! G (g,m)! I6m! B# -  
Eqn 2  

In this expression, the operator action on the object 
set A produces the set of attributes common to objects 
within that set.  Likewise, application of the operator on 
the set of attributes B produces the set of objects which 
posses those attributes.  The interesting application of 
this operator, which has very practical operational im-
plications, is shown in equations 3.

A3((A) l)

(A l) =(((A l) l) l)  
Eqn 3  

Operationally, this operator permits us to efficiently 
construct a working context based on data being proc-
essed to produce a complete object / attribute context.  
The first application of the operator identifies common 
attributes while the second application identifies objects 
possessing the attributes which were common to the 
original set of objects.  The result of this operation can 
potentially be a larger object set than the original object 
set based on the formal context on which the operator is 
being applied.  This is a very powerful tool for use in 
knowledge / data search.

The linkage to lattice theory provides avenues into a 
robust representation domain that can aid an analyst in 
developing an understanding of the collected data.  The 
technologies use the “Begriff” of an identified context 
as the basis for the construction of that lattice.  The Be-
griff, B(G,M,I), is the ordered set of all concepts within 
a context.  A concept is defined by the conditions in 
equation 4.

(A,B) fc (G,M, I )
,

6 A3 G, B3M^ h

(A l) = B & (B l) = A  

Eqn 4  

The ordering of the concepts in B(G,M,I) is defined 
in the next expression.

A
1
,B

1
` j# A

2
,B

2
` j

,

A
1
3 A

2
0B

2
3 B

1  

Eqn 5  

An example of a lattice is given in from information  
developed by K. Wolff for his FCA tutorial. This exam-
ple is a simple model capturing aspects of a knowledge 
base dealing with animals.  In matrix representation the 
information is the following.

Animals Preying Flying Bird mammal

Lion x x

Finch x x

Eagle x x x

Hare x

Ostrich x

Bee x

Table 1.  Matrix representation of an animal con-
text.

The lattice representation of this information is 
shown in figure 2.

Figure 2.  Lattice of animal domain.

The expansion capability of this technology is cap-
tured by the “Bee” entry in the matrix.  The lattice prior 
to the addition of the information related to the bee con-
sists of information in figure 2 with the upper right 
node (BEE) removed.  Expanding a knowledge base, to 
include the bee, is a simple task in this technology.  
Likewise, the parsing of a lattice can be accomplished 
nearly as easily.  What this does is give us the ability to 
structure the lattice at varying levels of knowledge ab-
straction and then when additional detailed information 
is of interest we can “zoom” into an object node to see 
the additional structure of the knowledge base under the 
selected node.  This mechanical process adds to the 
potential understanding of knowledge and data being 
worked with.

The reality of the situation is that attributes are often 
defined by continuous real variables and / or may be 
probabilistic.  Formal concept analysis deals with at-
tributes with continuous variables by defining a special 
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construct called a “many valued context”.   They are 
defined in the next expression.

K
mv
/(G,M,W, I )

 Eqn 6  
As before, G is the set of objects, M is a set of attrib-

utes with values from the set W, defined by a ternary 
relational operator I.  In this extension, the set of all 
values an attribute may assume is defined by the do-
main of that attribute. 

dom(m)/ g! G (g,m,w)! I w!W# - Eqn 7  
To use many-valued contexts in formal concept 

analyses these attributes must go through a scaling 
process in order to generate a formal context that identi-
fies the presence or absence of an attribute.  Scaling can 
be considered as a construction of a special context that 
defines the relations of the many-valued attributes with 
new attribute sets and then ‘joining’ the original context 
and the new scale context.  The new scaling context can 
be represent in equation 8.

S
m
/ (G

m
,M

m
,I
m
)
 Eqn 8  

Mm is a set of new attributes to represent the many-
valued attribute in G and Im is the binary relationship 
between the attribute sets.  An example from Tam in-
volves book prices.

Price >$0 >$25

Book A $25.95 $25.95 x

Book B $19.95 $19.95 x

Book C $74.95 $74.95 x

  Table 2.  Initial book price context and scaling 
context.

This results in a new context defined below.

Price > $0 Price >$25

Book A x

Book B x

Book C x

Table 3.  Scale context of book prices.

This process of scaling is important in Wolff’s exten-
sion of formal concept analysis into the temporal do-
main.

Dealing with uncertainty and probabilities of attribute 
associations has been treated in a more mechanistic 

fashion by the author.  The Attribute sets carry a prob-
ability of association with an object into the lattice con-
struction domain which is converted to a binary rela-
tionship based on a ‘threshold’ value identified by an 
analyst.  This approach simplifies treatment of informa-
tion uncertainty and lends itself to use by Finn’s instan-
tiation of Mills first canon which requires the construc-
tion of exemplar lattices.

3.1. Mathematics of generating a Begriff.

Within the construct of this effort we have considered 
a context to represent a “related block” of information, 
e.g. an explosives data set, or a sports car data set.  The 
idea of a related block of information becomes import 
in the section discussing fuzzy variable transformations.  
The Begriff is the set of all concepts of a context.  The 
set of concepts can be defined by an application of the 
“prime” operator discussed in the previous sections.  
Determining the Begriff consists of applying the 
“prime” operator to each attribute and then to all com-
binations of attributes associated with the intent of the 
context.  

B= Fn_ i
n
/

with

Fn= mk` j
k
/ for n = 1

Fn= m j mk` j
k>j
/

c mj
/ for n = 2

Fn= ml m j mk` j
k>j
/

c mj>l
/

c ml
/ for n = 3

h

n = {1,2,gm}

Eqn 9

A procedural approach to defining a Begriff can be 
found in Davey & Priestley’s book.   This approach 
relies on a process that uses a series of set intersections 
as the context is processed.  The effect is the same 
while the equations above are a rigorous interpretation 
of the process described.

3.2. Likelihood estimates

Much of the effort has focused on laying the founda-
tions for a rigorous theoretical suite of technologies.  
This translates into minimizing the number of heuristics 
employed in the formulations.  In developing an engi-
neering implementation of the theoretics this rigor is 
relaxed within the bounds defined by the theory.  One 
engineering issue concerns false alarm / false negative 
types of issues associated with learning. In this situation 
we want to be able to tailor the bias of the resultant 
estimator.  by defining the likelihood of a set of attrib-
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utes being representative of a positive or negative ex-
ample we can define thresholds of suitability.

The likelihoods are generated by the size of the con-
cept at a particular node.  This size is defined as the 
extent of the concept.  normalizing to the total number 
of instances in the context provides an estimate of this 
likelihood.

Concept with an extent of 3

Figure 3.  Example of a likelihood estimate.

L=S
extent
/S

context  Eqn 10  
The Sextent represents the size of the concept and Scontext 
is the size of the context associated with the concept.  
While very simple it can effectively used with J.S. 
Mill’s first canon which is a learning operator.

3.3. Fuzzy variable transformation

Formal concept analysis is based on a binary rela-
tionship operator between objects and attributes, either 
the attribute can be associated with the object or not.  
The problem is that in real situations many of the at-
tributes may be real or even spectral in character.  In 
order to transform real world information into a form 
amenable to FCA we use a “fuzzification” process 
based on fuzzy set theory.  Within a context we assume 
that a real attribute posses a common interpretation.  

Temperature in a materials context should not be asso-
ciated with temperature for a physical location.  If all 
temperatures were lumped and fuzified significant bi-
ases would be introduced as well as introducing fidelity 
issues into the knowledge repository.  

Identifying and isolating a real variable is the first 
step of the process.  The range of that variable is deter-
mined and “padding” of 10% is added to the maximum 
and minimum values to ensure a degree of robustness to 
the context classification.  

Figure 4.  Fuzzification of a real variable over a 
range of -10 to 10.

The figure above shows a real fuzzification using 5 
fuzzy levels.  A variable value along the horizontal axis 
permits us to estimate the likelihood that the attribute 
belongs to a particular  classification.  In the implemen-
tation of the process we use a over laid structure which 
permits a greater combinatory representation of a vari-
able.  For example a variable value of ‘5’, has non-zero 
membership in 3 quantiles of the fuzzified variable.  
This used in conjunction with the threshold variable 
gives an analyst a great deal of flexibility to discrimi-
nate information in a reasoning system.

4. Temporal Concept Analysis

Temporal concept analysis is an extension of FCA in 
which the evolutions of the system or object are consid-
ered in conjunction with the conceptual aspects of the 
object.  The principle researchers in the area, Wolff and 
Neouchi, approach the problem by adding directed 
edges to the lattice to capture the evolutionary behav-
iors of the attributes.  Wolff’s efforts have resulted in a 
very formal representation of the temporal extensions 
of FCA while Neouchi has focused on the development 
/ definition of sets of operators that focus on issues as-
sociated with temporal concepts. 

Wolff has approached temporal concept analysis by 
scaling the time and event space and adding directed 
edges to the concept lattice of the context.  The poten-
tial difficulty of this approach can be seen in the simple 
example in the next figure.
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Figure 5.  Example of lattice with directed edge 
overlay.

The blue vectors on the lattice in figure 5 indicate the 
temporal evolution of the objects in the formal context.  
The red vectors show persistent states of objects in that 
context.  What I think becomes clear is the complexity 
of the display for even so simple an example.  Complex 
information bases will rapidly overwhelm any advan-
tages lattice representation bring to formal concept 
analyses.

A way around this complexity issue is to redefine 
how we think about systems / objects and the states of 
those systems.   Traditionally, we view a system in a 
specific state as a unique object, so we are forced in a 
FCA paradigm to replicate an object as many times as 
we have states for it.  If we instead view the system as 
being unique with sets of constant or time dependent 
attributes we can reduce the complexity of the lattice.  

The paradigm we are working to develop is a ‘zoom-
able’ model in which we can zoom into an object to 
flesh out greater detail of the object at lower levels of 
conceptual abstraction.  We can perform a similar func-
tion when approaching issues of systems state or the 
time dependent attributes.  We can zoom into the tem-
poral attribute and use the mathematics or technology 
that is better suited for the problem being solved.  For 
example we can use FCA to move us into a conceptual 
neighborhood and focus on a temporal attribute and use 
Bayesian, Markov, or the temporally extended formal 
concept analysis to refine our understanding of a situa-
tion.  

We might be able to see these possibilities in more 
detail by considering the information in figure 6.  The 

notional example considers different temporal traces for 
the 4 attributes and a different set of attributes for two 
objects.  We can see that taking a snapshot of these sys-
tems or objects at different points in time produces dif-
ferent collections of attributes for the objects.  This can 
also change with different threshold levels.  At point 
‘a’, object 1 is characterized by attributes A while ob-
ject 2 by attributes A and D.  If  D was not in the data 
set the correct hypothesis could not be identified.  Us-
ing a process of temporal matching could refine the 
hypothesis since A is present in object 1 at all three 
states while it is only present at state ‘a’ in object 2.  

Knowing the Markov transition matrix could aid in 
the proper identification of a temporally dependent hy-
pothesis.  Likewise temporal extensions of formal con-
cept analysis could also be used to refine the selection 
mechanisms.  The second approach may require addi-
tional computational overhead, but should be just as 
effective.

Figure 6.  Temporal traces of four attributes and 
two objects with a mix of attributes.

4.1.  Temporal logic.

Andre' Trudel discusses a concept of temporal logic 
in which information collected or understandings 
achieved affect not only future projects but also past 
experience.  Effectively we may re-interpret a past 
event based on new information.  This perspective ties 
into our understanding of belief states and needs to be 
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addressed as belief is generated or updated during the 
course of analysis or experience.

Figure 7.  Model for temporal reasoning.

Figure 8.  Temporal example.

The premise is that "the here & now" lies on the 45 
deg. line defined by the x-y axis.  This is indicated by 
the point (p,p).  The perceived past lies on a horizontal 
line emanating from (p,p) but for x < p.  similarly the 
expected future lies on the line but for x > p.

Figure 8 shows that at (2,2) a house is white; at 
(10,10) it is red but the agent thought it was blue at 
(5,5).  This belief occurred at (10,10), thus the notation 
blue(5,10).  At (15,15) the house was again observed to 
be white.

What the structure or the paradigm brings to the table 
is a way to think about how new information can im-
pact past belief which in turn can impact projections or 
predictions.

5. Peircean Reasoning

Reasoning is the process we as humans use to solve 
problems or make decisions.  We all use reasoning, 
some use sophisticated philosophies, others use ad hoc 
reasoning.   The form taken is a function of our training 
and experience.  Modal logic enters the equation in 
attempts to describe the flavors or nuances of reasoning 
we employ.  The ultimate form of reasoning is  the 

method of scientific inquiry which was defined by C.S. 
Peirce.

The three forms of reasoning in this paradigm con-
sists of deduction, induction and abduction.  Deductive 
reasoning is based on a structure that concludes if the 
premise of an argument is true the resultant must be 
true.  Inductive reasoning operates on a principle that if 
“... I thrown a ball in the air it fell to the ground every 
time...” I believe that the next time I throw the ball in 
the air it will fall to the ground.  Abduction is the more 
complex form of reasoning, in this case we develop 
hypotheses based on knowledge we possess to explain a 
new set of observations.  Peircean reasoning is a hybrid 
form that integrates these three foundational forms of 
reasoning into his method of scientific inquiry. 

The reasoning engine implemented in this effort is 
based on C.S. Peirce’s model of scientific inquiry.  This 
philosophical construct provides the foundation for how 
we as humans reason about situations new to us.  This 
model consists of three reasoning capabilities; Abduc-
tion, deduction and induction.  The logic associated 
with these forms of reasoning are captured in figure 9.

Figure 9.  Formal representation of Peircean rea-
soning.

A crude way of looking at this suite of logic is abduc-
tion provides plausible hypotheses to explain an obser-
vation, deduction provides a basis for selecting from 
that set of hypotheses, and induction is the means to 
validate the hypothesis selected.  Induction can be 
viewed as a statistical collection of data that confirms 
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or supports the hypothesis.  This statistical validation 
must be tempered by maxims such as “severe” testing 
as defined by Mayo.  A second nuance of this problem 
is the frequentist perspective that needs to be tempered 
by Bayesian statistics for many of the problem domains 
this solution is being proposed to address.

Not addressed in this effort is analogical reasoning 
which is a form of abductive reasoning.  The classic 
example of analogical reasoning is the Bohr atom ex-
ample.  electron’s revolve around the nucleus like plan-
ets revolve around the sun.  Therefore, the forces in an 
atom can be modeled using an inverse-square law.  This 
form of hypothesis generation examines the detail of 
phenomena and looks for similarities at these levels to 
draw higher level hypotheses.

5.1. Modal Logics

Modal logic deals with possibility and plausibility in 
reasoning processes.  Some of the more familiar forms 
of modal logic include Kripke, Deontic, Temporal, and 
Doxastic logic.  Kripke logic seems to form a basis set 
upon which are added logic operators for a specific 
domain or issue associated with reasoning about the 
truth of some argument.  Temporal logic is possibly the 
easiest to understand which deals with assertions func-
tionally dependent in time.  E,g, “it will always be that” 
or “it was always that” are 2 operators from temporal 
logic.  

(1)tK (a " b) " Ka " Kb^ h

(2)tB (a " b) " Ba " Bb^ h

(3)tKa " a

(4)tKa " Ba

(5) if: a, then: Ka
(6) if: a, then: Ba

(7)JB= Consistency

(8) BBa " Ba Veridicality of Pos Introspection

(9)JB=" (BJBa " JBa) Veridicality of Neg Introspection

(10) Ba " BBa Positive Introspection

(11)JBa " BJBa Negative Introspection

Definitions:

K+Knowledge

B+Belief

:+"it is logically valid"

=+a logical contridiction

a, b+represent blocks of info / knowledge

Figure 10.  Logic dealing with the veridicality of 
knowledge.

A very interesting implementation of a modal logic is 
from Lindstroem & Rabinowicz which deals with 
knowledge and belief.  As we begin to formulate a total 
solution we find situations requiring knowledge up-
date(epistemic logic), belief revision(doxastic logic) 
temporal logic and others to formulate a complete, 
theoretically founded solution.

5.2. Knowledge Operators

The operators being defined or designed for this rea-
soning construct are based on the five canons of John 
Stuart Mill.  Initial work by Burch and Finn have fo-
cused on the first canon and involved significant effort 
at validating these canons in a much larger philosophi-
cal and logic context.  In this effort we are taking a 
more Peircean, pragmatic approach to selecting and 
implementing the operators.  The five canons consist of 
those identified in the next list. 

J.S. Mills Canons
• Method of Agreement
• Method of Differences
• Indirect Method
• Method of Residues
• Method of Concomitant Variables

The first canon:   If two or more instances of the phe-
nomenon under investigation have only one circum-
stance in common, the circumstance in which alone all 
the instances agree, is the cause (or effect) of the given 
phenomenon.

The second canon: If an instance in which the phe-
nomenon under investigation occurs, and an instance in 
which it does not occur, have every circumstance save 
one in common, that one occurring only in the former; 
the circumstance in which alone the two instances dif-
fer, is the effect, or cause, or a necessary part of the 
cause, of the phenomenon. 

The third canon: If two or more instances in which 
the phenomenon occurs have only one circumstance in 
common, while two or more instances in which it does 
not occur have nothing in common save the absence of 
the circumstance; the circumstance in which alone the 
two sets of instances differ, is the effect, or cause, or a 
necessary part of the cause, of the phenomenon.

The fourth canon:  Subduct from any phenomenon 
such part as is known by previous inductions to be the 
effect of certain antecedents, and the residue of the 
phenomenon is the effect of the remaining antecedents.” 
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The fifth canon: Whatever phenomenon varies in any 
manner whenever another phenomenon varies in some 
particular manner, is either a cause or an effect of that 
phenomenon, or is connected with it through some fact 
of causation.

The descriptions of the canons come directly from 
Mill’s System of Logic, and will form the basis for the 
knowledge operators in the system.  Only the first 2 
canons have been implemented in the coded algorithms.

5.2.1.Implementation of JSM-1.  The first canon, 
the method of agreement, addresses issues of learning.  
The Finn implementation involves the construction of 3 
contexts, a positive, a negative and an unknown con-
text.  The positive context captures examples which are 
representations of a goal attribute, the negative context 
provides counter examples and the unknown or neutral 
context represents a set of instances to be classified.  In 
his formulation Finn identifies two types of attributes, 
structural and gaol attributes.  Structural attributes are 
those describing an instance.  The goal attribute is an 
attribute which describes a common characteristic.  An 
example developed involves the classification of the 
field from which crude oil was pumped.  In the example 
the goal attribute was “field” which had examples from 
3 production fields, “Upper”, “Wilhelm”, and “Sub-
Muli”.  

Our implementation is modified for a number of rea-
sons, first, to eliminate a heuristic in the Finn formula-
tion and second, follow a paradigm of a knowledge 
base.  The knowledge base contains classification con-
texts and knowledge derived from learning contexts.  
This last adjustment uses the first canon to construct a 
context in which conditions(attributes) are identified 
that are characteristic of the goal condition.  Figure 3 in 
the section on likelihood estimation is a portion of the 
learning lattice used to construct the classification 
knowledge concerning oil field characterization.  

C
lc
&B+,B-

L
goal

=B+
-B+

+B-

 
Eqn 11  

A learning context is converted to a positive and 
negative begriff which is subtracted from the positive 
begriff producing an incomplete goal lattice.  The set 
nature of the begriff requires that the subtraction opera-
tion be defined as in equation 11.  The resultant goal 
lattice is then converted to a classification context 
which when displayed in a lattice looks like the next 
figure.

Figure 11. Learned classification context.

In this figure the 3 oil production fields are delineated 
in the first row of the lattice.  Beryllium.Q2 and 
Iron.Q3 would lead to a two hypotheses, the oil came 
from the SubMuli or Upper fields.  A deductive screen 
would indicate that a test for Aro_HydroC.Q1 would 
indicate the field was SubMuli while the lack of that 
attribute would mean the sample came from the Upper 
field.  This lattice is the result of 54 samples from the 3 
fields.

The engineering aspects come into play through a 
threshold used in conjunction with the likelihood esti-
mates described earlier.  Imposing a likelihood or 
greater than 0.2 on concepts in the positive begriff 
means that a single example may not be sufficient to 
constitute a positive example.  This process reduces the 
probability of predicting unknown instances but reduces 
false positives.  Similarly, by imposing a threshold on 
the negative begriff results in reducing false negatives 
in a prediction problem.
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5.2.2.Implementation of JSM-2.  The second canon, 
the method of differences, can be characterized as a 
causal reasoning operator.  In this case we again split 
evidential context into positive and negative begriff’s.  
The first step is to identify common attributes for the 
positive evidence.  Once we have created that positive 
common lattice we subtract concepts of the negative 
begriff from this common lattice.  mathematically the 
operations are described in the next equation.

C
ev
&B+,B-

L+^ hcommon = B
1

+
+B

k

+

` j
k

/a k

L
cause

= L+^ hcommon- L+^ hcommon+B-

 

Eqn 12  

5.2.3.Implementation of JSM-3.  Interestingly, the 
third cannon is a very simple variation of the second.  
The difference is the intersection term in the 3rd ex-
pression of equation 12 is “zero” based on the descrip-
tion above.  The result is that the algorithm for JSM-2 
will also support JSM-3.

6. Co-Evolutionary Game Theory

Game theory as defined by L. Samuelson is the study 
of interactive decision making.  In general, the essen-
tials of game theory include games played either coop-
eratively or non-cooperatively with 2 or more players.  
The game can be played once or repeated by rational 
players with known utility functions(goals/objectives).  
In single play Nash equilibrium is the ultimate stability 
point while in evolutionary game theory where all play-
ers evolve the stability point is defined by the idea of 
evolutionary stable strategy(ESS) in which the ESS 
does not necessarily correspond to a Nash equilibrium.

Classic game theory is played one time with a payoff 
matrix defining the results of the game based on the 
strategies.  In pure game theory Nash equilibrium is the 
condition that results from a mixed strategy and consti-
tutes the best possible result of the game in which the 
players are rational players.

Evolutionary game theory modifies the game by 
playing repeated games, again in a non-cooperative 
environment.  In this approach, each time the game is 
played the game participants are drawn from a popula-
tion of players each having the same or different strate-
gies of play.  Under the rules of this game a process is 
defined for modifying the population of players.  The 
operators defining the modification can be designed 
based on the objectives of the game.  The other signifi-
cant difference of this game theoretic approach involves 
the fact that there is no guarantee that the solution will 
evolve to a Nash equilibrium.  In the case of evolution-

ary game theory the solutions evolve to the evolution-
ary stable strategy or ESS.

Finally, in a co-evolutionary game theoretic environ-
ment we are removing all restrictions on the nature of 
the game.  In this case it could be thought of as a game 
in which the rules are changing as well as the playing 
pieces.  The strategies, rather than being defined by a 
population of potential players, are being defined by 
reasoning entities integral to the game.  The implica-
tions of this approach are not yet clear, but we expect to 
see behavior similar to the evolutionary game theoretic 
in which we evolve to an ESS.  

As problem solvers we may apply a manifestation of 
game theory as part of our reasoning process.  When we 
speculate on possible solutions, internally we are as-
sessing these solutions using a heuristic or model that 
translates initial conditions into some sort of effect.  In 
the military decision making process (MDMP) the war 
gaming done in support of military planning is or can 
be an external manifestation of that evolutionary game 
in which we assess the impact of decision being made.  

Research in the area of co-evolutionary game theory 
has focused on cooperative games in which each side 
uses a single weighted fitness function for each player 
in the game.  The game is played to some definition of 
optimization using a Pareto approach.  The problem in 
this approach involves the need for non-cooperative 
game play and a need to address multiple objective for 
all the players.  No one, except American voters, are 
single objective individuals.  In the complex environ-
ments of insurgencies and terrorism the players possess 
many levels and classes of objective.  When one objec-
tive is blocked, a shift occurs to maximize along an-
other objective dimension.  

Performing a co-evolutionary Pareto optimization 
against a spectrum of objectives for each player pro-
vides a far more robust and dynamic solution that can 
be used in the field.  Moving around the Pareto surface 
in response to changes in preference by one or more 
players ensures any perceived advantages can be miti-
gated by the other players.

6.1. Pareto Optimization

Pareto optimization is similar to evolutionary optimi-
zation in that a massive directed search of the solution 
space is conducted in an effort to find the “best” solu-
tion.  The fitness function in a Pareto optimization in-
volves dominance criteria over the objective dimen-
sions of the problem.  If we consider a multi-objective 
function, Pareto optimization can be defined by the 
following expression for a minimization problem.
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Eqn 13  

In this expression F() is the vector of objectives and a 
non-dominated solution satisfies the condition in the 
3rd expression of equation 13.   These non-dominated 
solutions fall on the line defined by the blue bullets.  
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Pareto Front
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Figure 12.  Pareto optimal curve.

7. Data / Information Fusion

Considering data / information fusion as the basis for 
an information architecture, we begin to see the impacts 
on the other elements of the systems design. In Hawk-
ins book “On Intelligence”, we see a model for the neo-
cortex which ideally suites the needs of an information 
fusion paradigm that supports the essential elements of 
a reasoning based approach to fusion.  In his model he 
articulates a layered system in which different levels of 
abstraction are realized at each of the six layers. Figure 
14. takes a little liberty in representing the model 
Hawkins proposed and adds a technical solution to the 
representation of the layers of the neocortex.  The 
points to capture from this construct is the comprehen-
sive feedback loops between layers of the neocortex 
and the links to different sensors, like auditory, visual, 
smell, etc.  The feedback loops activate an “expectation 
mechanism, when performing a similar function daily 
we expect things to be the same as the day before.  
Opening the door to your office, we expect to find a 
round smooth knob which must be turned.  When that 
knob was changed overnight and we now discover a 
lever, we stop and have to adjust or discover a method 
for entering that door.  We have effectively shifted from 
an inductive-deductive pattern matching system to an 
abductive based system.  

In a similar way, the expectation crosses sensor 
boundaries such that not only do we expect a certain 
feel to the door knob but we expect to hear that familiar 
squeak, also a silver color and the knob to be at room 
temperature.  When any of these conditions have 
changed we shift to an abductive problem solving para-
digm.  

In the model presented in figure 14, we have repre-
sented each layer as an ART(adaptive resonance theory) 
neural network.  The reason for selecting this initial 
technology is because of the classification capability of 
that design.  We are looking for a technology that corre-
lates attributes with instances, or an object with state 
variables.  An object can in turn be a member of a 
higher level set of attributes which define a more com-
plex abstraction.  This abstraction concept becomes 
important for the enablement of high level reasoning 
and can be supported by a knowledge representation 
technology based on formal concept analysis. 

The deliberative aspects of a fusion system, when the 
Hawkins net does not find a definitive solution, is pro-
vided in the next figure which begins to show the inte-
gration of modal logic into the solution. 

Figure 13.  Reasoning engine for use in fusion 
systems.

In this model we see instances of modal logic deline-
ated that is used to process the information that is used 
by the reasoning engine.  This engine may also employ 
modal logics of a form appropriate for the problems 
being addressed.
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8. Predictive Decision Aids

What has been addressed up to this point are the core 
technologies which form the foundations of a fusion 
system.  As indicated this fusion system needs to in-
clude a reasoning component to begin to address the 
complex issues of data and information fusion.  Any-
thing short of that design is wasting time and resources.  
The last topic I want to touch on involves predictive 
decision aids.  This last integration step involves inte-
grating the fusion/reasoning engine into the co-
evolutionary game engine.

The objective is to create an environment that postu-
lates solutions to some mission objective and tests them 
in a competitive scenario.  The solution requires a simu-
lation capability as well as the Pareto optimization 
mechanisms.  A system architecture is provided in the 
next figure.

Figure 15.  Simple model of the co-evolutionary 
game engine.
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Figure 14.  Hawkins net based on ART NNs.



What is being depicted is a co-evolutionary game 
environment in which all players evolve with experi-
ence subject to the scenario and their objectives.  The 
normal “bag of strategies” is replaced by reasoning 
engines that formulate solutions based on their knowl-
edge.  The game searches for an evolutionary stable 
strategy which is an n-dimensional Pareto surface.  That 
information is transfered to a light weight decision aid 
for use by a force commander.

8.1. Belief State (Cache)

The belief cache can be viewed as the tagged collec-
tion of validated hypotheses generated by the reasoning 
system. This cache contains the understanding up to the 
current point in time, of data being collected and as-
sessed.  In a combat environment this belief cache can 
be interpreted as “situational awareness”.  The structure 
of this cache is defined in the next equation.

  

� 

Bk j =

t j ,Active j
h j,0,d1,…dn,d1

v,…dm
v{ }

h j,k,d1,…dn,d1
v,…dm

v ,h j,k−1,…h j,k− t{ }
h j,r,d1,…dn,d1

v,…dm
v ,h j,r−1,…h j,r−s{ }

These belief kernels consist of a time tag, tj an activa-
tion flag, Acitvej, a hypothesis, hj, data collected that 
results in the hypothesis, dn and data collected to vali-
date the hypothesis, dvm.  The next two notional inclu-
sions consist of hypotheses from higher levels of ab-
straction that may depend on hypotheses generated at 
sets of lower abstraction.  This construct is needed to 
trace the impact of changes or updates to information at 
lower levels of abstraction.

9. Summation

What we have identified in this short note is a suite of 
technologies that together define a solution to fusion 
which captures a reasoning model that supports fusion.  
It is this approach that is needed if we are to capture the 
human capability of performing fusion which has at its 
core a reasoning function.  The solution we are working 
towards is a 70-80 percent solution, to demonstrate the 
synergistic functioning of the major technologies we 
have identified as integral to that solution.

Significant additional work needs to be performed to 
ensure the optimal identification of the modal logics 
required by the solution.  There may be a better mix, or 
alternatives that have not been realized.  Logic has im-
plications on the information security, on its timeliness, 
on its validity, and its quality.  Modal logics also aid in 

the management of knowledge and the belief.  The ef-
fort here has only scratched the surface, but the impor-
tance of this integration cannot be missed or ignored.

The knowledge representation technology of formal 
concept analysis is in my opinion, the best suited to 
support logic, reasoning, and the neocortical architec-
ture identified as the real time fusion engine.  It also 
seems to support the two major forms of reasoning that 
we need in decision aid problems were we need to be 
able to perform concept reasoning as well as process or 
temporal reasoning.

Finally, a fusion solution requires a core reasoning 
capability.  When the inductive – deductive functioning 
of the system cannot identify a situation you need to be 
able to switch into an abductive hypothesis generating 
function in the effort to find a solution to this new situa-
tion. Hawkins neocortical model provides a fast running 
induction-deduction engine, that additionally supports 
Peircean reasoning, is a natural for multi-sensor fusion, 
and the feedback mechanisms are a very powerful ap-
proach for prediction / expectation functionality.
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