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Abstract

This report contains the results of a research effort on advanced robot locomotion. The
majority of this work focuses on walking robots. Walking robot applications include delivery
of special payloads to unique locations that require human locomotion to exo-skeleton human
assistance applications. A walking robot could step over obstacles and move through narrow
openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate
objects in ways that a standard robot gripper could not. Most importantly, a walking robot
would be able to rapidly perform these tasks through an intuitive user interface that mimics
natural human motion. The largest obstacle arises in emulating stability and balance control
naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is
bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so
common that it is taken for granted, but bipedal motion requires active balance and stability
control for which the analysis is non-trivial. This report contains an extensive literature study
on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation,
and hardware verification of two variants of a proto-type leg design.
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1 Introduction

While Sony and Honda robots have focused on entertainment value and human interaction, the
research goal at Sandia would be to develop practical mobility platforms (from the waist down) that
would have DOE and military applications. These applications include delivery of special payloads
to unique locations that require human locomotion to exo-skeleton human assistance applications.
A walking robot could step over obstacles and move through narrow openings that a wheeled or
tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard
robot gripper could not. Most importantly, the walking robot would be able to rapidly perform
these tasks through an intuitive user interface that mimics natural human motion.

Though a user interface might capture the user intent with regards to mobility, it is unlikely to
accomplish the task of balance and stability control. Human beings accomplish balance through
active controls that rely on feedback from organs (“sensors”) in the inner ear, peripheral nerves in
the soles of the feet, and visual cues. It is conceivable that equivalent attributes might be sensed on
the robot and fed back to an operator who can in turn make corrections, but there exist significant
stability issues with delays in closing the feedback loop. It is more plausible to achieve stability
control onboard the robot and decouple it from the mobility commands provided by the user.
This principle has already been explored with balancing wheeled robot systems [1]. Stabilization
becomes more challenging, however, when the system must interact with the environment. For
example, control methods have been developed to identify and mitigate unstable states on the
Segway robotic mobility platform[2]. Unstable states may arise if the Segway vehicle interacts with
an obstacle, an attached manipulator rigidly grips a fixed point in the environment, or in any other
way suffers a restriction to its state space due to interaction with its environment. For legged robots
in particular, the problem of balancing a running robot (dynamic stability) is far more challenging
than balancing a slow moving robot between stable poses.

Another consideration that is often ignored is that of power utilization and storage. A motor-
driven bipedal robot is likely to use more power given the need to actuate more degrees of freedom,
and these motors will be required to apply torques for balance control even while “standing.”
Although several untethered bipedal robots have been developed [3, 4], no bipedal robots have been
able to achieve tetherless operation for extended periods of time. The power requirements for any
practical range of remote operation would necessitate a large battery pack that must be designed
around a desired dynamic model for the robot. A practical walking robot design must achieve
dynamic stability control over varied terrain while performing several normal human behaviors (ie.
running, walking, carrying a package), and it should achieve this untethered.

This report includes the results of a literature search summarizing the current state-of-the-art in
legged robots and balanced robot control. In addition, the stability and hop control for a monoped
robot is developed and presented. Finally, a plausible method for powering an untethered robot is
presented and discussed to motivate further work.

2 Literature Survey

A significant and rapidly increasing body of research exists on walking, running, and hopping
robots. Current and recent work spans a broad range of capabilities and approaches. While not a
comprehensive review, this section provides a snapshot of the scope of current activities. We focus
mostly on monopeds and bipeds, but some notable quadrupeds are also described. Another section
focuses on control strategies for walking robots.
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2.1 Monopeds and Bipeds

Virtually all “walking” or biped robots use one of two philosophies for control of ambulation.
Some of the most highly-publicized robots, including those from Honda [3] and Sony [4], use joint
trajectory control and balance by keeping the center of gravity above the support polygon at all
times. This approach has yielded visually impressive results when playing trajectories for known
environments, but is extremely vulnerable to disturbances and environmental uncertainty. This
vulnerability arises because the support polygon for humanoid forms is extremely small compared
to the height of the center of gravity. This approach is also relatively energy-inefficient because
significant effort is expended to overcome the intrinsic robot and drivetrain dynamics and force
adherence to the desired trajectory. A result of this somewhat unnatural approach is that the
gait of such robots appears to differ significantly from natural human walking. Although Honda
now reports that their ASIMO robot is capable of running, as indicated by the fact that at times
both feet are simultaneously (and very briefly) off the ground, this is most accurately viewed as
an extremely brief transition between periods of static stability rather than full dynamic stability.
Nonetheless, speeds of up to 1.66 m/sec have been achieved as of December 2005 [3]. Another
group in Japan has done similar work toward hopping and running in an ASIMO-type robot [5].

A contrasting approach relies on dynamic stability, in which walking, hopping, or running
consists of a state in which the robot is constantly falling and catching itself with the next step
of its leg or legs. Typically, legs are designed to include deliberate compliance that enables them
to store and release energy at appropriate points in the gait cycle, improving efficiency. This
approach is motivated by studies of biomechanics and muscle properties, and emulates the use
of passive muscle dynamics to improve efficiency in animal and human walking. Controllers for
dynamically stable walking robots range widely in complexity, but are generally simpler and require
less a priori knowledge of the environment than their trajectory-based counterparts. Specific limb
trajectories are often driven as much by their passive dynamics as by pre-programming.

Early work in dynamically-stable walking robots was dominated by Marc Raibert’s Leglab at
MIT. In the early 1980’s Raibert developed a series of hopping robots, first with one leg and later
with two [6]. Raibert’s two-legged “pogo stick” robot remains one of the few to dynamically balance
in a full three dimensions, without separate support. Later Raibert’s Leglab group developed an
impressive early biped called Spring Flamingo that walked at speeds greater than 1.2 m/sec and
was able to handle unexpected rolling terrain while continuing to balance in two dimensions (it
was supported in the plane orthogonal to the ground and walking plane by a rotating boom).
Raibert and the group led by his successor Gill Pratt developed series elastic actuators, force-
controlled actuators that include springs in series to improve fidelity, cushion impacts and store
energy [7]. They also developed “virtual model control”, a form of equilibrium point control used
to drive walking over rough terrain [8]. Finally, Pratts group designed and built a 12 degree of
freedom biped (called M2) made to mimic human legs and walk and run independently and in three
dimensions. They were able to demonstrate independent standing under battery power and taking
several steps tethered in the lab, but never truly achieved stable walking.

The influence of the work of Raibert and his successors is readily seen in work ongoing in bipedal
locomotion, particularly in the prevalence of mechanical compliance in robot legs. A group led by
Sang-Ho Hyon at the Tokyo Institute of Technology has developed Kenken, a single-legged hopping
and running robot using two hydraulic actuators. It has been demonstrated traveling at speeds
up to 2.0 m/sec around a rotary track with a planar rod for stabilization. A two-legged version
was in development as of 2003 [9]. A French group working with Ohio State University and the
University of Michigan has developed a bipedal robot with knobs for feet and articulated knees
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known as the RABBIT. Much like Spring Flamingo and Kenken, it travels about a central pivot
and cannot balance in three dimensions [10]. This robot is specifically intended to run at high
speeds. Another robot known as Runbot recently received publicity for breaking a bipedal robot
speed record by traveling at 3.5 leg lengths / sec (it is 30 cm tall). Videos show that this appears to
be a fast walking gait, not strictly a running gait. This robot is notable because it is dynamically
stable and uses an extremely simple control algorithm that simply senses foot strikes on the ground
and the swing of its legs. When a foot strikes the ground, the opposite leg swings forward; the
knee actively bends to achieve ground clearance until the hip reaches a certain point, when the
knee straightens to prepare for impact [11]. This simple control strategy stands in contrast to
the advanced force-based controllers used for many robots, but it may not prove as effective when
terrain is rough or unpredictable.

2.2 Quadrupeds

Most walking robots with four or more legs have significantly different goals and capabilities than
most biped or walking robots. However, several particular robots have characteristics relevant to
the problem under study. The BigDog robot, developed by Boston Dynamics to act as a robotic
pack mule, is dynamically stabilized and demonstrates an impressive ability to traverse rough
terrain. BigDog is powered by a gasoline engine that drives hydraulic actuators, and uses mechanical
compliance in its joints to emulate muscle dynamics. It has been separately shown walking at up
to 3.3 mph (1.45 m/s), climbing a 35 degree slope, and carrying loads of up to 120 lb. The robot
is extremely robust to disturbance inputs thanks both to its dynamic stability and relatively low
center of gravity and large footprint (compared to walking robots) [12].

The Scout II robot developed at McGill University is a quadruped that is able to run with a
“bounding gait at speeds greater than 1 m/s despite its small size [13]. While this gait does not
risk falling instability in the same sense as most bipeds, its ability to run aggressively with all legs
off the ground at times is notable.

2.3 Control Approaches

The principles of legged motion can be decomposed into the mechanical dynamics, control, and
attention to balance during operation. This means that the legged systems studied operate in
a regime where the velocities and kinetic energies of the masses are important determinants of
behavior [6].

“The exchange of energy among its various forms is also important in understanding the dy-
namics of legged locomotion. For example, there is a cycle of activity in running that changes the
form of the stored energy several times: the body’s potential energy of elevation changes to kinetic
energy during falling, then to strain energy when parts of the leg deform elastically during rebound
with the ground, then into kinetic energy again as the body accelerates upward, and finally back
into potential energy of elevation. This sort of dynamic exchange is central to an understanding of
legged locomotion” [6].

A dynamic treatment, however, does not imply an intractable treatment. Although the detailed
dynamics of a legged system may indeed be complicated, control techniques that use dynamics may
be simple [6]. Control systems can generally be made simpler if they are attuned to the dynamics
of the mechanism they control and to the task the mechanism performs. An initial goal of this
project is to identify and explore control techniques that use dynamics in simple ways to efficiently
produce optimized legged locomotion. In addition, the dynamics play a vital role in the legged
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systems ability to actively balance. A statically or passively balanced system avoids tipping and
typically must operate in or near equilibrium. In contrast an actively balanced system my tip and
accelerate for short periods of time [6].

“The control system manipulates body and leg motions to ensure that each tipping interval is
brief and that each tipping motion in one direction is compensated by a tipping motion on the
opposite direction. An effective base of support is maintained over time. A system that balances
actively may also permit vertical acceleration, such as the bouncing that occurs when the legs deform
elastically and the ballistic travel that occurs between bounces” [6].

“The ability of an actively balanced system to depart from static equilibrium relaxes the rules
on how legs can be used for support. This leads to improved mobility. For example, if a legged
system can tolerate tipping, then it can position the feet far from the center of mass in order to use
footholds that are widely separated or erratically placed. If it can remain upright with a small base of
support, then it can travel where obstructions are closely spaced or where the path of firm support is
narrow. The ability to tolerate intermittent support also contributes to mobility. It allows a system
to move all its legs to new footholds at one time, to jump onto or over obstacles, and to use ballistic
motions for increased speed. These abilities to use narrow base and intermittent support generally
increase the types of terrain a legged system can negotiate. Animals routinely exploit active balance
to travel quickly on difficult terrain. Legged vehicles will have to balance actively, too, if they are to
move with animal-like mobility and speed” [6].

Early work and research on machines that run and walk with active balance have been captured
in [6]. Some of the most recent biped dynamics and controls research has been reported in the
following references [10], [14], [15], [16], [17], [18], and [19]. Optimization techniques [20], [21], [22],
[23] have become very popular in the pursuit of finding specific optimized swing leg trajectories.
Several of these researchers [22], [23] have employed differential dynamic programming techniques
as an efficient method for the optimized biped walking and locomotion tasks.

Optimization methods such as Dynamic Programming (DP) techniques [24] are reviewed to

1. aid in the prediction of optimal walking and running families of design trajectories/curves for
specific mission requirements,

2. eventually determine the sizing and design of the biped leg lengths, upper/lower leg length
ratios, and actuator torque requirements, and

3. realize the DP algorithm as an integral part of the real-time implementation optimized feed-
forward component of our robust control design architecture (see Figure 1).

Our biped locomotion control system architectures will be composed of several key components,
as shown in Figure 1. The architecture will consist of a trajectory generator/optimizer and a
feedback control system. The trajectory generator provides a feasible feed-forward control reference
trajectory. It is desirable that the reference trajectory be optimized with respect to a performance
objective that reaches for the ideal dynamic behavior of the system, keeping in mind the presence of
system and actuation constraints. Theoretically, if deviations (or the errors) in the states and inputs
are zero, then the dynamic system will results in optimized performance (see Figure 1). However,
in real-world applications, there will always be inaccuracies. The feedback control system provides
stability and robustness around the reference trajectory, subject to inherent modeling uncertainty
and external disturbances. This approach has the advantage that the system is tracking a feasible
optimized trajectory while maintaining stable system response. The desired objectives can be
commanded by the operator or preprogrammed autonomously. Typically, this higher level of input
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Figure 1: DP architecture consisting of trajectory generator/optimizer and feedback control system.

may consist of set points or regulation, pass through of several way-points, or tracking of specific
targets. The key role of dynamic programming in the control systems design is to provide an ideal
trajectory optimizer or path planner that can generate arbitrarily smooth input profiles with no
initial guess for the input parameters for the biped locomotion system.

In addition, to the early literature review, several other key research efforts have been identified.
The main motivation was to identify what work has been completed for leaping, landing, and run.
Both contact and flight phases become important components for the control system design. For
multi-segment models Requejo, McNitt-gray, and H. Flashner [25], [26] investigate the flight-phase
motion for a gymnast dismount from a bar. The model is used to simulate and experimentally
validate the advance understanding of flight-phase dynamics to test hypotheses regarding multi-
joint control prior to landing. Alexander [27] reviews a wide range of models that have been
used in biomechanics. He compares simple models with complex ones and discusses the merits of
both. In [28], the control of the body orientation in flight using the internal motion of the leg is
discussed. The study provided an additional degree of control to dynamically balance a legged robot
during running. Wooten and Hodgins [29] describe a technique for generating transitions between
simulated behaviors. By parameterizing individual basis behaviors, one can design control systems
such that the exit states of one behavior leaves the simulated character in a valid initial state for
the next behavior. This approach was demonstrated with four basis behaviors: leaping, tumbling,
landing, and balancing. Control algorithms have been developed that allow an animator to generate
a variety of dynamic behaviors by combining parameterized controls for leaping, tumbling, landing,
and balancing.

The result of this preliminary literature review identified two candidate models for optimization
subject to several constraints based on what particular phase the system may be in, i.e., flight-
phase, landing phase, etc. The first model is a simple planar composite two-body model for which
the internal body rotation can influence the final conditions of the composite two-body system.
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The second model that was identified includes further complexity and is based on the 5-segment
model from reference [25].

2.4 Opportunities for Innovation

Despite the high level of research activity in this area, significant improvements are needed in
certain areas to achieve performance suitable for deployment for military or disaster response
applications. Most research platforms continue to use balancing bars in one dimension; three-
dimensional balancing has been achieved only rarely, and not robustly in bipedal robots. Few
human-scale or near human-scale robots have managed to exceed about 1.5 m/sec, which is far
slower than most humans are capable of running. Perhaps the area where the greatest improvement
is needed is in power and energy density; few robots have shown the ability to power their own
walking. Even fewer have demonstrated the ability to carry additional loads (BigDog is a notable
exception, but it is not a biped). Finally, no biped of which we are aware has demonstrated a robust
capability to interact physically with objects in its environment. This requires extra power, the
ability to accommodate large forces coming from sources other than the ground that may be high
above the center of gravity, the ability to interact stably with an unpredictable range of environment
dynamics, and the ability to recover from failures (e.g. falls). All of this leaves the state-of-the-art
woefully short of the capabilities needed for useful deployment, and each of these areas presents a
significant opportunity to innovate.

3 Monoped Hopping Robot

Simple control algorithms were developed to enable balanced hopping of a hopping robot prototype.
A solid model of the prototype is shown in Figure 2. The system consists of a wide rounded base; a
flexible steel ring that acts as a spring and damper; a linear actuator that drives a mass vertically,
providing hopping energy input; and a rotary actuator that moves a weighted arm, shifting the
system center of gravity horizontally for balancing. A significant portion of the prototype’s mass
(including the mass of both actuators) is concentrated at the top of the ring, rendering the system
intrinsically unstable; if released from the vertical, it falls over in the same plane in which the arm
swings. In the orthogonal horizontal direction, the width of the base makes the system statically
stable. To simplify controller design, control was decoupled into a hop generation controller for
providing drive energy and a base positioning controller to provide balancing. Each was analyzed
with independent simplified models, and controllers were then implemented on a simulated model
of the full dynamics to test function.

3.1 System Model

In physics, resonance is the tendency of a system to oscillate with high amplitude when excited
by energy at a certain frequency. This frequency is known as the system’s natural frequency of
vibration, resonant frequency or eigenfrequency. If a structure is subjected to vibration at its
natural frequency, the displacements of that structure will reach a maximum. Figure 3 shows a
simple undamped spring-mass system, which is assumed to move only along the vertical direction.
It has only one degree of freedom (DOF), because its motion is described by a single coordinate
x. When placed into motion, oscillation will take place at the natural frequency, fn, which is a
property of the system. Newton’s second law is the first basis for examining the motion of the
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Figure 2: Hopping Monoped Solidworks Model

Figure 3: Undamped Spring-Mass System
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system. The deformation of the spring in the static equilibrium position is ∆, and the spring force,
∆k, is equal to the gravitational force, w, acting on mass m.

∆k = w = mg (1)

By measuring the displacement x from the static equilibrium position, the forces acting on m are
∆k(∆ + x) and w. Now apply Newton’s second law of motion to the mass m:

∑
F = mẍ = w − k(∆ + x) (2)

Since ∆k = w, we obtain
mẍ = −kx. (3)

Defining the natural frequency as

w2
n =

k

n
, (4)

we can rewrite the equations as
ẍ+ w2

n = 0. (5)

Since this is a homogeneous second order linear differential equation, is has the following general
solution

x = A sinwnt +B coswnt (6)

where A and B can be evaluated from initial conditions.
Figure 4 shows our system. The base mass is defined as m1, m2 is the mass used to excite

the spring in its natural frequency, and m3 is the stabilizing mass. Since m2 and m3 are rigidly
connected, the equation for our systems natural frequency is

wn =

√
k

m2 +m3
(7)

Note that this approach has modeled the spring as an ideal spring. Often a damping term is
associated with many spring mechanisms, or used to model contact with the ground. A damping
term is added to the model in the next section.

3.2 Hop Generation

To analyze and control hop generation, balance and the movement of the weighted arm were
neglected. The single-dimensional model used for this controller is shown in Figure 5. The base
is modeled as a mass m1. The flexible ring is modeled as a spring and damper with stiffness k
and damping b. The fixed mass at the top of the ring is modeled as a mass m2; this includes the
mass of the swinging arm, which is assumed to be stationary for this portion of the analysis. The
moving actuator mass is modeled as the mass m3, with an actuator force F3 applied between the
two masses (positive upward on m3 and positive downward on m2). Contact with the ground was
modeled as contact with a stiff spring kg and damper bg.

Several different options for driving hopping were considered. Perhaps the simplest approach
is simply to oscillate m3 open-loop, without any sensor feedback, to put energy into the system.
This approach can produce hopping, and hopping height is maximized when the drive frequency
matches the resonant frequency of the system (as determined by the spring stiffness k and the total
above-spring mass m2 + m3). One way to do this is characterized by the following control law,
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Figure 4: System Model

Figure 5: Hopping Robot Dynamic Model
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which drives the desired mass position zdes (the desired difference between z2 and z3) in a sinusoidal
trajectory, and closes a proportional-derivative (PD) control loop to determine the actuator input
force from desired and measured positions and velocities:

zdes = zmax sinωt (8)

F3 = −Kph(z3 − z2 − zdes) −Kdh(ż3 − ż2 − ˙zdes) (9)

In these equations, zmax is the maximum desired displacement amplitude separating z3 and z2. ω
is determined by the natural frequency of the spring-mass system created bym3, m2, and the spring
k. Depending on the mechanical parameters of the system, this approach may require oscillation at
relatively high frequencies, which could lead to very high forces if m3 is large. Additionally, when
modest hopping heights are achieved, this approach is rather wasteful of actuator power, because
the actuator continues to needlessly drive the system at its resonant frequency as it flies through
the air, with no net effect on the system energy. Net potential energy is only imparted to the
system when it contacts the ground and the spring can be compressed.

An improved approach is to coordinate the drive actuator motion with the robot’s cycle of
coming in and out of contact with the ground as it hops. Work done on the system is maximized if
m3 is driven upward when the spring is maximally compressed, which occurs at the bottom of the
system travel [30]. Similarly, the least energy is removed from the system if m3 is moved downward
when the spring is extended and unloaded, which occurs when the robot is airborne. This approach
requires sensory feedback, but a simple implementation could use a proximity sensor or limit switch
to detect contact with the ground. In this case, zdes depends on whether or not the system is in
contact with the ground. If the robot is contacting the ground (z1 <= 0):

zdes = zmax (10)

If the robot is airborne (z1 > 0):
zdes = −zmax (11)

The control law applied is then the same as in equation 9. When contact with the ground
begins or ends, the desired position switches and the separation between m3 and m2 follows a step
response, the shape of which is dictated by the control gains and the dynamics of the actuator.
When the base of the robot contacts the ground, the controller rapidly moves m3 to its maximum
vertical displacement relative to m2, compressing the spring. When it leaves the ground, m3 is
brought down relative to m2, restoring the travel that is needed for the next hop. The result is a
controller that provides a “kick each time the base contacts the ground.

Figure 6 shows the simulated hopping height of the robot with a feedforward controller and
with the simple feedback controller described above. The distance between the ground and the
robot base is plotted. The parameters used for this simulation were m1 = 0.3kg,m2 = 1.5kg,m3 =
0.5kg, k = 10000N/m, b = 12.25Ns/m,Kph = 10000, and Kdh = 100. The ground stiffness was
assumed to be 5000000N/m and the ground damping 10000Ns/m. The feedforward controller
drives at the resonant frequency determined by the spring stiffness and the total mass above the
spring, without knowledge of the robot’s states. The feedback controller first drives at this same
frequency until the robot becomes airborne; then it follows the algorithm described above. In both
cases the actuator force is capped at the same level (100 N), simulating saturation.

The switching (feedback) controller reaches its asymptotic hopping height more quickly and
more consistently than the feedforward controller, because movement of the masses is synchronized
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Figure 6: Plot of Hopping Robot Performance
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with the hopping cycle. The feedforward trajectory also shows a significant amount of excess move-
ment while airborne, which results from unnecessary oscillations of the upper two masses in flight.
Though simple, the feedback controller is clearly superior to the feedforward resonating controller,
and can be implemented with only binary contact sensors. This provides one straightforward way
to generate hopping.

3.3 Base Positioning

For balancing, the simplest model may neglect the system compliance and movement of the driving
mass, but must include gravity and planar motion. The model in Figure 7 shows the two-link model
used to represent planar balancing. Because the robot is intended to spend a significant fraction
of its duty cycle airborne, one control approach exploits the airborne time to position the links in
order to facilitate upright bouncing (as opposed to tipping over). Thus when this controller is used
with the hop generation controller, the goal is to position the robot for an upright (stable) bounce
while airborne, and provide it with a burst of energy input while in contact with the ground to
send it sufficiently high in the air to again align itself for another stable bounce. The balancing
can in theory be accomplished by horizontally aligning the point on the robot of expected contact
with the ground (the base) with the robots center of gravity. When in contact with the ground,
the point of contact with the ground is assumed to act as a pin joint. If the center of gravity is
positioned directly above the pin or very close, the torque due to gravity that acts around that pin
is very small; alternatively, if the center of gravity is horizontally far from the pin joint, a significant
gravitational torque acts on the robot, tipping it toward the ground. While there is always some
torque due to gravity unless alignment is perfect, the robot only needs to avoid tipping for the
relatively short period of contact with the ground.

The most desirable hopping controllers do not require knowledge of the location of the ground to
traverse and provide stable hopping. If the balancing controller is ignorant to the ground location,
it must seek to have the robot base position track the motion of the center of gravity throughout
the airborne phase of the robots travel, such that at any time if it contacts the ground, it can
manage contact and produce a subsequent stable hop.

While the system is airborne (i.e. in free fall), the controller should act to align the position of
the base of the robot xfoot with the position of the center of gravity, which is determined by the
centers of gravity of each of the two links. For this simplified analysis, the lower link mass ml is
assumed to include the mass of the base as well as that of the mass fixed to the top of the ring and
the linearly-moving drive mass (the ring compliance is neglected as it plays no significant role in
free fall). The upper link mass ma is assumed to include only the mass of the moving rod and any
mass fixed to it. The instantaneous position of the center of gravity of the two-link system can be
determined by:

xcg =
ma

ma +ml
xa +

ml

ma +ml
xl (12)

In this expression, xcg is the horizontal position of the center of gravity relative to some fixed
position, and xa and xl are the positions of the centers of gravity of the upper and lower link,
respectively, with respect to the same reference. This quantity must be compared to the position
of the base xfoot with respect to the same fixed reference. Alternatively, the difference between
these quantities can be directly computed using only the absolute angles of the links relative to the
ground frame, Θa and Θl, as measured by a tilt sensor on each body.
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Figure 7: Balance Model

Because this difference is to be minimized, one simple controller would apply a torque between
the two joints that is proportional to the error:

τ1 = Kpb(xcg − xfoot) (13)

Because there is no damping in the system, this results in large oscillations about the correct
alignment. This can be corrected by including a damping term:

τ2 = Kpb(xcg − xfoot) +Kdb(ẋcg − ẋfoot) (14)

The correct signs for the gains Kpb and Kdb are not obvious. For the cases simulated, in which
ma << ml and initial angles were restricted to be within 30 degrees of vertical, it was found that
stable solutions resulted only when both gains were negative.

Figure 8 shows simulation results of the difference between the horizontal position of the robot
base and the system center of gravity versus time for several different controlled initial conditions,
for a robot in free fall. The masses used for this simulation were ma = 0.5kg and ml = 1.8kg;
the latter includes the mass of all parts except the moving arm. The length of the lower link was
assumed to be 0.5 m with its center of gravity located halfway down. The length of the upper link
was assumed to be 0.3 m. The control gains used were Kpb = 10 and Kdb = 2. Note that in each
case the error vanishes as the controller acts. This approach works effectively in simulation even
for cases when the system has a modest amount of angular momentum; no control input could slow
net system rotation, but for reasonable amounts of time the base position can continue to track
the center of gravity. While this simulation alone does not demonstrate stable hopping, it does
illustrate an effective method to align the center of gravity with the base, which should encourage
stable repeated bounces and prevent tipping.

19



0 0.5 1 1.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time, sec

er
ro

r,
 m

θa = 10 degrees
θa = θl = 10
θa = 10, θ̇l = 5.7
θa = 10, θl = −10
θa = −10, θ̇a = 5.7
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4 Full Dynamic Simulation

In addition to the independent validation of the two control approaches described above, initial
simulation was performed on the full nine degree of freedom system dynamics. The hop generation
controller and the base positioning controller were applied to the system model described in Section
4.2. These simulations confirm that the hop generation controller can indeed inject energy into the
system and increase hopping height, and that the base positioning controller can align the center
of gravity and the point of contact with the ground in ballistic flight in preparation for contact
with the ground. However, sustained balanced hopping has to date not been demonstrated in the
simulation for a wide range of initial conditions. Study of the simulations suggests several possible
challenges that must be overcome. Impact with the ground appears to substantially disrupt the
base-positioning controller, even when the controller is switched off during periods of contact. One
problem is that although the center of gravity may align vertically with the base at impact, the
spring and its drive actuator are not necessarily oriented vertically. This means that the spring
force contributes a significant amount of angular momentum, which arm movement cannot affect.
The arm rotates continually around in an attempt to position the base correctly, but the angle
of the spring at impact cannot be specified by this controller. After several impacts, the angular
momentum may be too large to manage, and the robot crashes.

It may be possible to construct a controller that balances the need to align the center of gravity
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Figure 9: Balanced Monoped Dynamic Model

with the base with the need to bring the spring leg close to vertical at impact. It is unknown
whether this can be done effectively without knowledge of the location or time of ground impact;
perhaps some estimate of this will be needed to make control reliable. Despite the limitations
of the primitive approach described here, it has shown some promise to improve balance and to
provide at least two to three stable hops before crashing, as well as to generate hopping energy.
While this is an inadequate solution, it is done with a minimum of sensory feedback and using two
extremely simple algorithms; the approach could almost certainly be improved by using additional
information.

4.1 Balance Control

The desired dynamics for this balanced monoped robot are similar to that of a double inverted
pendulum. The system in Figure 9 is defined with masses m1 and m2, rod lengths l1 and l2, angles
θ1 and θ2 defined with respect to the vertical, and foot with radius of curvature r. The double
inverted pendulum state is achieved when both angles θ1 and θ2 are near zero. To begin, we will
consider the simpler case of a leg with no foot. In other words, we consider the system with r = 0
whereby the bottom rod is ”pinned” to the floor. For this system, the driven dynamic response
is found using the Euler-Lagrange equation and is given by equations 15-18 shown below. See
Appendix A for the full derivation. Balance of the system will be achieved by developing a state
feedback controller to apply a control torque to the joint linking the two rods.

θ̇1 = ω1 (15)
θ̇2 = ω2 (16)
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ω̇1 =
−m2l1ω

2
1 cosψ sinψ −m2g cosψ sin θ2
l1(m1 +m2 sin2 ψ)

+
−m2l2ω

2
2 sinψ + g(m1 +m2) sinθ1
l1(m1 +m2 sin2 ψ)

− τ cosψ
l1l2(m1 +m2 sin2 ψ)

(17)

ω̇2 =
m2l2ω

2
2 sinψ cosψ − g(m1 +m2) sin θ1 cosψ

l2(m1 +m2 sin2 ψ)

+
(m1 +m2)(l1ω2

1 sinψ + g sin θ2)
l2(m1 +m2 sin2 ψ)

+
τ(m1 +m2)

l22m2(m1 +m2 sin2 ψ)
(18)

where ψ = θ1 − θ2. Though this system is nonlinear, the state equations 15-18 are continuously
differentiable. Therefore, local linearization about an equilibrium point is possible [31]. By lineariz-
ing the system about a given equilibrium point, the dynamics of the system may be adequately
described by a linear set of system equations having the form shown in 19. This allows linear state
feedback control methods to be calculated that will maintain stability as long as the system remains
in the neighborhood of that equilibrium point.

ẋ = Ax+Bτ (19)

where x is the vector x = [θ1 ω1 θ2 ω2]T , τ is a scalar valued input torque, A is the Jacobian matrix
of the system evaluated at an equilibrium point, and B is the vector sensitivity of the system to
the input torque [32]. For a linearized system, A and B are calculated as shown in 20 and 21.

A =




0 1 0 0
dω̇1
dθ1

dω̇1
dω1

dω̇1
dθ2

dω̇1
dω2

0 0 0 1
dω̇2
dθ1

dω̇2
dω1

dω̇2
dθ2

dω̇2
dω2




(20)

B =




dθ̇1
dτ

dω̇1
dτ

dθ̇2
dτ

dω̇2
duτ




=




0
− cos(θ1−θ2)

l1l2(m1+m2 sin2(θ1−θ2))

0
m1+m2

l22m2(m1+m2 sin2(θ1−θ2))




(21)

The nonlinear system described in equations 15-18 contains two plausible equilibrium points at
(θ1, ω1, θ2, ω2) = (0, 0, 0, 0) and (θ1, ω1, θ2, ω2) = (0, 0, π, 0). The system is more interesting at the
equilibrium point (θ1, ω1, θ2, ω2) = (0, 0, 0, 0) (the origin) since it gives a double inverted pendulum;
so, we linearize about this point.

If we consider the system with m1 = 0.2 kg, m2 = 0.1 kg, l1 = 0.3 m, and l2 = 0.3 m linearized
about the origin, the calculated A and B matrices are given by equations 22 and 23.

A =




0 1 0 0

49 0 −16.333 0

0 0 0 1

−49 0 49 0




(22)
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B =




0

−55.56

0

166.67




(23)

The controllability matrix of this system is calculated and given by equation 24.

C =
[
B BA B2A B3A

]
=




0 −55.56 0 −5444

−55.56 0 −5444 0

0 166.67 0 10889

166.67 0 10889 0




(24)

The controllability matrix C is full rank with non-trivial eigenvalues; therefore, the system is
controllable using state feedback control in the neighborhood of the origin. Ackerman’s formula is
used to reassign eigenvalues to the controlled system by finding a feedback gain to apply according
to equation 25 [33].

τ = Kx = [k1 k2 k3 k4][θ1 ω1 θ2 ω2]T (25)

The poles are chosen somewhat arbitrarily to be [λ1 λ2 λ3 λ4] = [−5 − 5 − 5 − 5]. This pole
placement results in a feedback control gain of K = [3.93 0.636 − 0.179 0.0918]. The controlled
system is simulated using MATLAB’s ODE solver. The stable state trajectory for the controlled
system is seen in Figure 10. The phase diagram is given in Figure 11. Note that the state approaches
the origin, which is the dual inverted pendulum state, from a non-zero initial condition. The
controlled system was animated in MATLAB to better illustrate its behavior. Figure 12 shows the
pose of the double inverted pendulum at roughly t=0.1, t=0.50, and t=1.0 seconds.
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Figure 12: Balance Controller Animation

Next, we consider the analysis for the system with a foot having radius of curvature r > 0. For
this system, the dynamic equations are given by equations 15-16 and 26-27 below. See Appendix
B for the full derivation.

ω̇1 =
−m2l2(l1 cosψ + r cos θ2)(l1ω2

1 sinψ + g sin θ2) −m2l
2
2(l1 sinψ − r sin θ2)ω2

2

∆ −m2l2(l1 cosψ + r cos θ2)2

+
l1l2 sin θ1(m1 +m2)(g + rω2

1)
∆ −m2l2(l1 cosψ + r cos θ2)2

− τ(l1 cosψ + r cos θ2)
∆ −m2l2(l1 cosψ + r cos θ2)2

(26)

ω̇2 =
(l21 + 2rl1 cos θ1 + r2)(m1 +m2)(l1ω2

1 sinψ + g sin θ2)
∆ −m2l2(l1 cosψ + r cos θ2)2

+
(l1 cosψ + r cos θ2)[m2l2(l1 sinψ − r sin θ2)ω2

2 − l1 sin θ1(m1 +m2)(g + rω2
1)]

∆ −m2l2(l1 cosψ + r cos θ2)2

+
τ(l21 + 2rl1 cos θ1 + r2)(m1 +m2)
m2l2(∆ −m2l2(l1 cosψ + r cos θ2)2)

(27)

where ψ = θ1 − θ2 and ∆ = l2(l21 + 2rl1 cos θ1 + r2)(m1 +m2)
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As will be illustrated by simulation, the addition of a curved foot improves the system transient
response. Significant improvements only arise for somewhat large values of r. Consider again the
previous example system with m1 = 0.2 kg, m2 = 0.1 kg, l1 = 0.3 m, and l2 = 0.3 m linearized
about the origin. We shall simulate this system instead for r = 0 (l1 = 0.3m), r = 10cm (l1 = 0.2m)
and r = 20cm (l1 = 0.1m) and compare the response. Note that we are preserving the quantity
r + l1 = 0.3m, the maximum height of mass m1. As with the last system, we use Ackerman’s
formula to place the poles at [λ1 λ2 λ3 λ4] = [−5 − 5 − 5 − 5]. We find that the necessary
gains are Kr=0 = [3.93 0.636 0.179 0.0918], Kr=10cm = [3.80 0.773 − 0.122 0.138], and Kr=20cm =
[4.03 1.19 0.0500 0.275]. The simulation results are given in Figures 13, 14, and 15. In particular,
note that for the same pole placement, the system requires less control torque as r increases. In
addition to the reduced control torque, Figure 13 shows less overshoot for ω2 and θ2 as r increases.
Figure 14 also shows less overshoot for θ2 for larger r.
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Figure 13: Stable State Trajectory

In practice, after considering the model in Figure 9, one might criticize the need for such a
large r value in relation to l1, since this would result in a very large foot. However, the model was
generated to complement the analysis. In practice, the foot would not be large, but rather, just the
curved portion contacting the ground would have a large radius of curvature. It is for this reason
that we preserved the quantity l1 + r = 0.3m for the simulation since we did not want to consider
how r would increase the height of the first link.

4.2 3-Dimensional Model

Three dynamics simulations were created to support this LDRD. Each simulation is more complex
than its predecessor, and each was designed to study a certain aspect of controlling a moving body
that must be oriented before landing. These models are described below in increasing order of
complexity.
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( Need Daves picture of the box and mass)

Figure 16: Rotating Mass System

4.2.1 Moving mass inside a box

The purpose of the first model was to understand how a moving mass could be used to reorient a
body in flight. This model is a 7 degree-of-freedom (7 DOF) system consisting of two rigid bodies,
the box and a rotating mass inside the box. The box is a 6 DOF system with three translational
and three rotational degrees of freedom in the inertial frame. The seventh degree of freedom is
the rotational motion of the moving mass about an axis fixed in the box. This system is shown in
figure 16. No ground interaction is used in this model since the purpose of the model is solely to
understand reorientation during the flight phase. The axis of rotation inside the box may be placed
at any orientation with respect to the box. Once this axis is specified, the axis remains fixed with
respect to the box during a simulation run. A control torque is applied to the moving mass about
the fixed axis of rotation.

4.2.2 Gymnast

This model is a planar model consisting of five rigid segments and follows the gymnast simulation
introduced in [26]. Since a humanoid robot is one of the configurations of interest for this LDRD, it
was decided that the study in [26] would be a good starting point for a controller study. The system
is shown in Figure 17. Ground interaction is not considered for the same reason as that given in
the previous model. The five rigid bodies form a 7 DOF system which is constrained to remain in
a vertical plane. The torso is given two translational degrees of freedom and one rotational degree
of freedom in the inertial frame. The head, thigh and arm are each given one rotational degree of
freedom with respect to the torso. The calf is given one rotational degree of freedom with respect
to the thigh. Control torques are applied at the hip, knee, shoulder and neck joints.

4.2.3 Hopping robot

This simulation models the 9 DOF system shown in Figure 18. The goal of the simulation is to
control this unstable system such that the robot lands in a stable orientation and then hops back
into the air. The lightweight lower section (lander) has six degrees of freedom in the inertial frame.
The heavy upper section has one translational degree of freedom with respect to the lander. This
degree of freedom is the vertical position due to the deflection of the spring connecting the lander
and the upper section. The motion of the linear actuators point mass with respect to the upper
section adds a translational degree of freedom. The final degree of freedom is the rotational motion
of the swinging rod with respect to the upper section. A control force is used to drive the linear
actuator and a control torque is applied to the rotating arm. A detailed description of this model
appears in Appendix C.

5 Power Considerations

An actively stable robot poses clear control challenges, but an often unconsidered problem is that
of power utilization. In most tracked or wheeled robots, the main drive motors dominate the
power budget. However, tracked or wheeled mobility platforms enjoy passive stability. When the
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Figure 17: Gymnast Model

Figure 18: Ring Model
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Figure 19: Ragone Plot for Various Energy Sources

passively stable robot is idle, it needs no power for its drive motors. However, for the actively
stabilized motor-driven robot, even an idle, unmoving platform uses power continuously. A motor
driven bipedal robot may need a dozen motors or more to maintain a pose. Even while just standing,
each motor must consume current to provide the necessary torque just to stay static. A Ragone
plot for various energy sources appears in Figure 19. An internal combustion engine optimizes the
maximum specific energy and specific power of all energy sources shown in Figure 19. Therefore,
for maximum operational life, an internal combustion engine is the best energy source given today’s
battery and fuel cell technologies.

6 Summary and Conclusions

This report contains the results of a research effort on advanced robot locomotion. The majority
of this work focuses on walking robots. We review potential control architectures and propose an
architecture based on Dynamic Programming Techniques. We also develop a system model for a
balanced hopping robot and analyze two potential control strategies. The first attempts to reach
a controlled resonance to hop while the second attempts to coordinate the drive actuator motion
with the robot’s cycle of coming in and out of contact with the ground as it hops. Two different
approaches for balance control are then developed. The first uses a kinematic balance model while
the second approach derives the dynamics using the Euler-Lagrange equation. Simulation results
are presented for stability regions as well as system performance. Kane’s method was applied to
develop a nine degree of freedom system model and the detailed derivations appear in Appendix C.
Power considerations were briefly discussed, and a Ragone plot of different power sources makes the
argument for an internal combustion engine power source. Future research will include hardware
validations and further investigations into potential energy sources.
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A Dynamic Equation Derivation for Balanced Monoped with r = 0

The model of the monoped is nearly identical to that of a dual inverted pendulum; see Figure 9.
For this case, we assume the simpler condition of r = 0. In other words, there is no foot, and
the bottom link is “pinned” to the floor. This derivation applies the Euler-Lagrange equation to
L = T −V where T is the kinetic energy of the system, and V is the potential energy of the system
as a function of the system state variables. The potential energy of the system is determined simply
by the heights h1 and h2 of each of the masses m1 and m2 as shown below.

V = g(m1h1 +m2h2)
= m1gl1 cos θ1 +m2g(l1 cos θ1 + l2 cos θ2) (28)

The kinetic energy of the system is determined by the absolute velocities v1 and v2 of the two
masses.

T =
1
2
m1v

2
1 +

1
2
m2v

2
2

=
1
2
m1(ω1l1)2 +

1
2
m2((l1ω1cosθ1 + l2ω2cosθ2)2 + (l1ω1sinθ1 + l2ω2sinθ2)2)

=
1
2
m1ω

2
1l

2
1 +

1
2
m2(l21ω

2
1 + l22ω

2
2 + 2l1l2ω1ω2cos(θ1 − θ2)) (29)

The quantity L = T − V is expanded in equation 30 below.

L =
1
2
m1ω

2
1l

2
1 +

1
2
m2l

2
1ω

2
1 +

1
2
m2l

2
2ω

2
2 +m2l1l2ω1ω2 cos(θ1 − θ2)−

m1gl1 cos θ1 −m2gl1 cos θ1 −m2gl2 cos θ2 (30)

The Euler-Lagrange equation is applied to equation 30 and formulated as follows.

d

dt

(
δL

δω1

)
− δL

δθ1
= 0 (31)

d

dt

(
δL

δω2

)
− δL

δθ2
= τ (32)

The solution to the Euler-Lagrange equation is pursued by calculating each partial derivative
in equations 31 and 32.

δL

δω1
= l21ω1(m1 +m2) +m2l1l2ω2 cosψ (33)

d

dt

(
δL

δω1

)
= l21ω̇1(m1 +m2) +m2l1l2ω̇2 cosψ −m2l1l2ω2ψ̇ sinψ (34)

δL

δω2
= m2l

2
2ω2 +m2l1l2ω1 cosψ (35)

d

dt

(
δL

δω2

)
= m2l

2
2ω̇2 +m2l1l2ω̇1 cosψ −m2l1l2ω1ψ̇ sinψ (36)

where ψ = θ1 − θ2.
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δL

δθ1
= (m1 +m2)gl1 sin θ1 −m2l1l2ω1ω2 sinψ (37)

δL

δθ2
= m2gl2 sin θ2 +m2l1l2ω1ω2 sinψ (38)

Substitution of equations 34 and 37 into 31, expansion of ψ, and division by l1 gives equation 39
below.

l1(m1 +m2)ω̇1 +m2l2 cos(θ1 − θ2)ω̇2 +m2l2ω
2
2 sin(θ1 − θ2)− (m1 +m2)g sin θ1 = 0 (39)

Similarly, substitution of equations 36 and 38 into 32, expansion of ψ, and division by m2l2 gives
equation 40 below.

l1 cos(θ1 − θ2)ω̇1 + l2ω̇2 − l1ω
2
1 sin(θ1 − θ2) − g sin θ2 =

τ

m2l2
(40)

After extensive algebraic manipulation of the simultaneous equations 39 and 40, we acquire the
dynamic equations 17 and 18.
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B Dynamic Equation Derivation for Balanced Monoped with r > 0

We now investigate the analysis for the case of r > 0 whereby the system includes a semi-circular
rocker-foot which contacts the floor; see Figure 9. The analysis is approached in the same fashion
as with the case of r = 0, but as we shall find, the non-zero r term complicates the analysis.

The potential energy of the system is given by equation 41 below.

V = g(m1h1 +m2h2)
= m1g(l1 cos θ1 + r) +m2g(l1 cos θ1 + l2 cos θ2 + r) (41)

The kinetic energy of the system is again determined by the velocities of the two masses; it is
given in equation 42 below.

T =
1
2
m1v

2
1 +

1
2
m2v

2
2

=
1
2
m1(ω2

1l
2
1 + 2rω2

1l1 cos θ1 + r2ω2
1) +

1
2
m2[ω2

1l
2
1 + ω2

2l
2
2 + r2ω2

1 +

2l1l2ω1ω2 cos(θ1 − θ2) + 2rω1(ω1l1 cos θ1 + ω2l2 cos θ2)] (42)

The quantity L = T − V is expanded as shown in equation 43.

L =
1
2
m1ω

2
1l

2
1 +

1
2
m2l

2
1ω

2
1 +

1
2
m2l

2
2ω

2
2 +m2l1l2ω1ω2 cos(θ1 − θ2)−

m1gl1 cos θ1 −m2gl1 cos θ1 −m2gl2 cos θ2 −m1gr−m2gr+

(m1 +m2)rω2
1l1 cos θ1 +

1
2
(m1 +m2)r2ω2

1 +m2rω1ω2l2 cos θ2 (43)

As before, a solution to the Euler-Lagrange equation is pursued by calculating each partial
derivative of equations 31 and 32.

δL

δω1
= l21ω1(m1 +m2) +m2l1l2ω2 cosψ +

2rω1l1 cos θ1(m1 +m2) + r2ω1(m1 +m2) +m2rω2l2 cos θ2 (44)
d

dt

(
δL

δω1

)
= l21ω̇1(m1 +m2) +m2l1l2ω̇2 cosψ −m2l1l2ω2ψ̇ sinψ +

2rω̇1l1 cos θ1(m1 +m2) − 2rω2
1l1 sin θ1(m1 +m2) +

(m1 +m2)r2ω̇1 +m2rω̇2l2 cos θ2 −m2rω
2
2l2 sin θ2 (45)

δL

δω2
= m2l

2
2ω2 +m2l1l2ω1 cosψ +m2rω1l2 cos θ2 (46)

d

dt

(
δL

δω2

)
= m2l

2
2ω̇2 +m2l1l2ω̇1 cosψ −m2l1l2ω1ψ̇ sinψ +

m2rω̇1l2 cos θ2 −m2rω1ω2l2 sin θ2 (47)

where ψ = θ1 − θ2.
The right sides are calculated as follows.

δL

δθ1
= (m1 +m2)gl1 sin θ1 −m2l1l2ω1ω2 sinψ − (m1 +m2)rω2

1l1 sin θ1 (48)

δL

δθ2
= m2gl2 sin θ2 +m2l1l2ω1ω2 sinψ −m2rω1ω2l2 sin θ2 (49)

35



Substitution of equations 45 and 48 into 31 gives equation 50.

[(l21 + 2rl1 cos θ1 + r2)(m1 +m2)]ω̇1 + [(m2l2)(l1 cos(θ1 − θ2) + r cos θ2)]ω̇2

+[(m2l2)(l1 sin(θ1 − θ2)− r sin θ2)]ω2
2 − (m1 +m2)l1 sin θ1[g + rω2

1] = 0 (50)

Similarly, substitution of equations 47 and 49 into 32, expansion of ψ, and division by m2l2 gives
equation 51 below.

[l1 cos(θ1 − θ2) + r cos θ2]ω̇1 + l2ω̇2 − l1ω
2
1 sin(θ1 − θ2) − g sin θ2 =

τ

m2l2
(51)
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C Dynamics Derived Using Kane’s Method

Kane’s method was used to formulate the equations of motion used in the full dynamics simulation
of the hopping robot. The names of the bodies, point masses, points and reference frames used
in the nine degree of freedom (9 DOF) model are shown in Figure 20. The I frame is the inertial
frame. Point O is fixed in the inertial frame. The A reference frame (unit vectors a1, a2, a3) is fixed
in body A, the B frame (unit vectors b1, b2, b3) is fixed in body B, etc.

The variable names of the nine degrees of freedom are:

• vaoii1: i1 component of translational velocity of A’s center of mass with respect to an observer
fixed in the inertial frame

• vaoii2: i2 component of translational velocity of A’s center of mass with respect to an observer
fixed in the inertial frame

• vaoii3: i3 component of translational velocity of A’s center of mass with respect to an observer
fixed in the inertial frame

• waia1: a1 component of angular velocity of A with respect to an observer fixed in the inertial
frame

• waia2: a2 component of angular velocity of A with respect to an observer fixed in the inertial
frame

• waia3: a3 component of angular velocity of A with respect to an observer fixed in the inertial
frame

• vpba: translational velocity of point PB with respect to an observer fixed in the A frame

• wrb: angular velocity of body R with respect to an observer fixed in the B frame

• vqb: translational velocity of point Q with respect to an observer fixed in the B frame

AUTOLEV c©, a symbolic manipulator based on Kanes method, was used to generate the C
code simulation of the system dynamics. The equations of motion in the code take the form
[COEF][xdot] = [RHS] where xdot is the column vector comprised of the time derivatives of the
states. The COEF and RHS matrix elements as well as descriptions of all variables that appear in
the equations of motion are provided below.

The independent control systems for the motion of point Q with respect to frame B and for the
rotation of body R with respect to frame B appear in functions called by the dynamics simulation.
The interaction of body A with the ground is also in a function called by the simulation. Ground
interaction is modeled as a stiff spring/damper system. As body A rotates in the inertial frame, the
impact point(s) are computed. Ground spring/damper forces are applied at the contact point(s).

The description of other variables used in the code is as follows:
Variable quantities:
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Figure 20: Hopping Robot Model
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ang1ai: rotation angle 1 of a body 3 3,2,1 set orienting the A frame in the I frame

ang2ai: rotation angle 2 of a body 3 3,2,1 set orienting the A frame in the I frame

ang3ai: rotation angle 3 of a body 3 3,2,1 set orienting the A frame in the I frame

ang3rb: rotation angle 3 of a body 3 3,2,1 set orienting the R frame in the B frame

papb: a2 component of position vector from point PA to point PB

bcq: c3 component of position vector from point BC to point mass Q
Constant quantities:

qm: mass of point mass Q

pm: mass of point mass P

am: mass of body A

bm: mass of body B

rm: mass of body R
inertia matrix of body A for its mass center and axes a1, a2, a3 :




ai11 0 0

0 ai22 0

0 0 ai33




(52)

inertia matrix of body B for its mass center and axes b1,b2,b3 :



bi11 0 0

0 bi22 0

0 0 bi33




(53)

inertia matrix of body R for its mass center and axes r1,r2,r3 :



ri11 0 0

0 ri22 0

0 0 ri33




(54)
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ang1rb: rotation angle 1 of a body 3 3,2,1 set orienting the R frame in the B frame

ang2rb: rotation angle 2 of a body 3 3,2,1 set orienting the R frame in the B frame

ang1ba: rotation angle 1 of a body 3 3,2,1 set orienting the B frame in the A frame

ang2ba: rotation angle 2 of a body 3 3,2,1 set orienting the B frame in the A frame

ang3ba: rotation angle 3 of a body 3 3,2,1 set orienting the B frame in the A frame

ang1cb: rotation angle 1 of a body 3 3,2,1 set orienting the C frame in the B frame

ang2cb: rotation angle 2 of a body 3 3,2,1 set orienting the C frame in the B frame

ang3cb: rotation angle 3 of a body 3 3,2,1 set orienting the C frame in the B frame

paaoa1: a1 component of position vector from point PA to body A’s mass center

paaoa2: a2 component of position vector from point PA to body A’s mass center

paaoa3: b1 component of position vector from point PB to body B’s mass center

pbbob2: b2 component of position vector from point PB to body B’s mass center

pbbob3: b3 component of position vector from point PB to body B’s mass center

bobcb1: b1 component of position vector from body B’s mass center to point BC

bobcb2: b2 component of position vector from body B’s mass center to point BC

bobcb3: b3 component of position vector from body B’s mass center to point BC

bobrb1: b1 component of position vector from body B’s mass center to point BR

bobrb2: b2 component of position vector from body B’s mass center to point BR

bobrb3: b3 component of position vector from body B’s mass center to point BR

brro: r3 component of position vector from point BR to body R’s mass center

brp: r3 component of position vector from point BR to point mass P

grav: acceleration due to gravity

aleno2: half the length of body A

aradius: radius of body A

sprconab: spring constant of ring connecting points PA and PB

natlenab: natural length of ring (ring diameter) connecting points PA and PB

dmpconab: damping constant of ring connecting points PA and PB

torqonr: control torque between body B and body R

frconq: control force between body B and point mass Q

COEF[0][0] = -z[365];
COEF[0][1] = -z[368];
COEF[0][2] = -z[369];
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COEF[0][3] = -z[370];
COEF[0][4] = -z[367];
COEF[0][5] = -z[371];
COEF[0][6] = -z[366];
COEF[0][7] = z[373];
COEF[0][8] = -z[374];
COEF[1][0] = -z[368];
COEF[1][1] = -z[376];
COEF[1][2] = -z[379];
COEF[1][3] = -z[380];
COEF[1][4] = -z[378];
COEF[1][5] = -z[381];
COEF[1][6] = -z[377];
COEF[1][7] = z[382];
COEF[1][8] = -z[383];
COEF[2][0] = -z[369];
COEF[2][1] = -z[379];
COEF[2][2] = -z[385];
COEF[2][3] = -z[388];
COEF[2][4] = -z[387];
COEF[2][5] = -z[389];
COEF[2][6] = -z[386];
COEF[2][7] = z[390];
COEF[2][8] = -z[391];
COEF[3][0] = -z[370];
COEF[3][1] = -z[380];
COEF[3][2] = -z[388];
COEF[3][3] = -z[394];
COEF[3][4] = -z[396];
COEF[3][5] = -z[399];
COEF[3][6] = -z[403];
COEF[3][7] = -z[402];
COEF[3][8] = -z[404];
COEF[4][0] = -z[367];
COEF[4][1] = -z[378];
COEF[4][2] = -z[387];
COEF[4][3] = -z[409];
COEF[4][4] = -z[407];
COEF[4][5] = -z[412];
COEF[4][6] = -z[415];
COEF[4][7] = -z[413];
COEF[4][8] = -z[416];
COEF[5][0] = -z[371];
COEF[5][1] = -z[381];
COEF[5][2] = -z[389];
COEF[5][3] = -z[428];
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COEF[5][4] = -z[431];
COEF[5][5] = -z[425];
COEF[5][6] = -z[433];
COEF[5][7] = -z[432];
COEF[5][8] = -z[434];
COEF[6][0] = -z[366];
COEF[6][1] = -z[377];
COEF[6][2] = -z[386];
COEF[6][3] = -z[403];
COEF[6][4] = -z[415];
COEF[6][5] = -z[433];
COEF[6][6] = -z[438];
COEF[6][7] = z[439];
COEF[6][8] = -z[440];
COEF[7][0] = z[373];
COEF[7][1] = z[382];
COEF[7][2] = z[390];
COEF[7][3] = -z[402];
COEF[7][4] = -z[413];
COEF[7][5] = -z[432];
COEF[7][6] = z[439];
COEF[7][7] = -z[448];
COEF[7][8] = 0;
COEF[8][0] = -z[374];
COEF[8][1] = -z[383];
COEF[8][2] = -z[391];
COEF[8][3] = -z[404];
COEF[8][4] = -z[416];
COEF[8][5] = -z[434];
COEF[8][6] = -z[440];
COEF[8][7] = 0;
COEF[8][8] = -qm;

RHS[0] = -z[496];
RHS[1] = -z[497];
RHS[2] = -z[498];
RHS[3] = -z[499];
RHS[4] = -z[500];
RHS[5] = -z[501];
RHS[6] = -z[502];
RHS[7] = -z[503];
RHS[8] = -z[504];

where:

z[20] = cos(ang1ba);
z[21] = cos(ang2ba);
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z[22] = z[20]*z[21];
z[23] = sin(ang2ba);
z[24] = sin(ang3ba);
z[25] = sin(ang1ba);
z[26] = cos(ang3ba);
z[27] = z[20]*z[23]*z[24] - z[25]*z[26];
z[28] = z[24]*z[25] + z[20]*z[23]*z[26];
z[29] = z[21]*z[25];
z[30] = z[20]*z[26] + z[23]*z[24]*z[25];
z[31] = z[23]*z[25]*z[26] - z[20]*z[24];
z[32] = z[21]*z[24];
z[33] = z[21]*z[26];
z[37] = -paaoa1*z[23] - paaoa3*z[22];
z[39] = paaoa1*z[29];
z[41] = paaoa3*z[29];
z[43] = paaoa1*z[32] - paaoa3*z[27];
z[47] = paaoa3*z[30];
z[49] = paaoa1*z[30];
z[51] = paaoa1*z[33] - paaoa3*z[28];
z[55] = paaoa3*z[31];
z[57] = paaoa1*z[31];
z[59] = pbbob2*z[22] - pbbob1*z[27];
z[60] = pbbob2*z[29] - pbbob1*z[30];
z[61] = -pbbob1*z[32] - pbbob2*z[23];
z[62] = pbbob1*z[28] - pbbob3*z[22];
z[63] = pbbob1*z[31] - pbbob3*z[29];
z[64] = pbbob1*z[33] + pbbob3*z[23];
z[65] = pbbob3*z[27] - pbbob2*z[28];
z[66] = pbbob3*z[30] - pbbob2*z[31];
z[67] = pbbob3*z[32] - pbbob2*z[33];
z[68] = z[37] + z[66];
z[71] = z[43] + z[63];
z[74] = z[51] + z[60];
z[77] = cos(ang1cb);
z[78] = cos(ang2cb);
z[79] = z[77]*z[78];
z[80] = sin(ang2cb);
z[81] = sin(ang3cb);
z[82] = sin(ang1cb);
z[83] = cos(ang3cb);
z[84] = z[77]*z[80]*z[81] - z[82]*z[83];
z[85] = z[81]*z[82] + z[77]*z[80]*z[83];
z[86] = z[78]*z[82];
z[87] = z[77]*z[83] + z[80]*z[81]*z[82];
z[88] = z[80]*z[82]*z[83] - z[77]*z[81];
z[89] = z[78]*z[81];
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z[90] = z[78]*z[83];
z[91] = bobcb2*z[22] - bobcb1*z[27];
z[92] = bobcb2*z[29] - bobcb1*z[30];
z[93] = -bobcb1*z[32] - bobcb2*z[23];
z[94] = bobcb1*z[28] - bobcb3*z[22];
z[95] = bobcb1*z[31] - bobcb3*z[29];
z[96] = bobcb1*z[33] + bobcb3*z[23];
z[97] = bobcb3*z[27] - bobcb2*z[28];
z[98] = bobcb3*z[30] - bobcb2*z[31];
z[99] = bobcb3*z[32] - bobcb2*z[33];
z[100] = z[68] + z[98];
z[103] = z[71] + z[95];
z[106] = z[74] + z[92];
z[109] = z[29]*z[79] + z[30]*z[86] - z[31]*z[80];
z[116] = z[29]*z[84] + z[30]*z[87] + z[31]*z[89];
z[123] = z[29]*z[85] + z[30]*z[88] + z[31]*z[90];
z[130] = z[22]*z[79] + z[27]*z[86] - z[28]*z[80];
z[131] = z[22]*z[84] + z[27]*z[87] + z[28]*z[89];
z[132] = z[22]*z[85] + z[27]*z[88] + z[28]*z[90];
z[133] = z[32]*z[86] - z[23]*z[79] - z[33]*z[80];
z[134] = z[32]*z[87] + z[33]*z[89] - z[23]*z[84];
z[135] = z[32]*z[88] + z[33]*z[90] - z[23]*z[85];
z[154] = cos(ang1rb);
z[155] = cos(ang2rb);
z[156] = z[154]*z[155];
z[157] = sin(ang2rb);
z[159] = sin(ang1rb);
z[161] = z[154]*z[157];
z[164] = z[155]*z[159];
z[165] = z[157]*z[159];
z[170] = bobrb2*z[22] - bobrb1*z[27];
z[171] = bobrb2*z[29] - bobrb1*z[30];
z[172] = -bobrb1*z[32] - bobrb2*z[23];
z[173] = bobrb1*z[28] - bobrb3*z[22];
z[174] = bobrb1*z[31] - bobrb3*z[29];
z[175] = bobrb1*z[33] + bobrb3*z[23];
z[176] = bobrb3*z[27] - bobrb2*z[28];
z[177] = bobrb3*z[30] - bobrb2*z[31];
z[178] = bobrb3*z[32] - bobrb2*z[33];
z[179] = z[68] + z[177];
z[182] = z[71] + z[174];
z[185] = z[74] + z[171];
z[188] = z[29]*z[156] + z[30]*z[164] - z[31]*z[157];
z[189] = z[156]*z[179] + z[164]*z[182] - z[157]*z[185];
z[209] = z[22]*z[156] + z[27]*z[164] - z[28]*z[157];
z[212] = z[32]*z[164] - z[23]*z[156] - z[33]*z[157];
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z[215] = brro*z[188];
z[216] = brro*z[209];
z[217] = brro*z[212];
z[227] = brp*z[188];
z[228] = brp*z[209];
z[229] = brp*z[212];
z[333] = bi11*z[22];
z[334] = bi11*z[29];
z[335] = bi11*z[23];
z[336] = bi22*z[27];
z[337] = bi22*z[30];
z[338] = bi22*z[32];
z[339] = bi33*z[28];
z[340] = bi33*z[31];
z[341] = bi33*z[33];
z[351] = ri11*z[188];
z[352] = ri11*z[209];
z[353] = ri11*z[212];
z[372] = brp*pm + brro*rm;
z[393] = ai11 + z[22]*z[333] + z[27]*z[336] + z[28]*z[339] + z[209]*z[352];
z[395] = z[22]*z[334] + z[27]*z[337] + z[28]*z[340] + z[209]*z[351];
z[397] = z[27]*z[338] + z[28]*z[341] + z[209]*z[353];
z[398] = z[22]*z[335];
z[400] = brp*pm;
z[401] = brro*rm;
z[406] = ai22 + z[29]*z[334] + z[30]*z[337] + z[31]*z[340] + z[188]*z[351] +
bm*(pow(z[68],2)+pow(z[71],2)+pow(z[74],2)) + qm*(pow(z[100],2)+pow(z[103],
2)+pow(z[106],2));
z[408] = z[29]*z[333] + z[30]*z[336] + z[31]*z[339] + z[188]*z[352];
z[410] = z[30]*z[338] + z[31]*z[341] + z[188]*z[353];
z[411] = z[29]*z[335];
z[414] = bm*(z[29]*z[68]+z[30]*z[71]+z[31]*z[74]) + qm*(z[29]*z[100]+z[30]*
z[103]+z[31]*z[106]);
z[416] = qm*(z[85]*z[100]+z[88]*z[103]+z[90]*z[106]);
z[417] = z[80]*z[106];
z[418] = z[84]*z[100];
z[419] = z[87]*z[103];
z[420] = z[89]*z[106];
z[421] = z[79]*z[100];
z[422] = z[86]*z[103];
z[424] = ai33 + z[23]*z[335] + z[32]*z[338] + z[33]*z[341] + z[212]*z[353];
z[426] = z[32]*z[336] + z[33]*z[339] + z[212]*z[352];
z[427] = z[23]*z[333];
z[429] = z[32]*z[337] + z[33]*z[340] + z[212]*z[351];
z[430] = z[23]*z[334];
z[436] = bm*(pow(z[29],2)+pow(z[30],2)+pow(z[31],2)) + qm*(pow(z[29],2)+
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pow(z[30],2)+pow(z[31],2));
z[437] = pow(z[188],2);
z[440] = qm*(z[29]*z[85]+z[30]*z[88]+z[31]*z[90]);
z[441] = z[29]*z[84];
z[442] = z[30]*z[87];
z[443] = z[31]*z[80];
z[444] = z[31]*z[89];
z[445] = z[29]*z[79];
z[446] = z[30]*z[86];
z[448] = ri11 + pm*pow(brp,2) + rm*pow(brro,2);
z[451] = am*grav;
z[452] = bm*grav;
z[453] = grav*pm;
z[454] = grav*qm;
z[455] = grav*rm;
z[483] = z[100]*z[454];
z[484] = z[103]*z[454];
z[485] = z[106]*z[454];
z[488] = z[29]*z[454];
z[489] = z[30]*z[454];
z[490] = z[31]*z[454];
z[492] = brp*z[453];
z[493] = brro*z[455];
z[505] = pow(paaoa1,2) + pow(paaoa3,2) + pow(pbbob1,2) + pow(pbbob2,2) +
pow(pbbob3,2) + 2*paaoa3*pbbob1*z[23];
z[506] = pbbob1*z[29];
z[507] = pbbob2*z[30];
z[508] = pbbob3*z[31];
z[509] = paaoa1*pbbob1*z[22];
z[510] = paaoa1*pbbob2*z[27];
z[511] = paaoa1*pbbob3*z[28];
z[512] = paaoa3*pbbob2*z[32];
z[513] = paaoa3*pbbob3*z[33];
zilch = 0;
z[522] = bobrb1 + pbbob1;
z[523] = bobrb2 + pbbob2;
z[524] = bobrb3 + pbbob3;
z[525] = bobcb1 + pbbob1;
z[526] = bobcb2 + pbbob2;
z[527] = bobcb3 + pbbob3;
z[528] = am + bm + pm + qm + rm;
z[529] = am*paaoa1/z[528];
z[530] = am*paaoa2;
z[532] = am*paaoa3/z[528];
z[533] = (bm*pbbob1+pm*z[522]+qm*z[525]+rm*z[522])/z[528];
z[534] = (bm*pbbob2+pm*z[523]+qm*z[526]+rm*z[523])/z[528];
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z[535] = (bm*pbbob3+pm*z[524]+qm*z[527]+rm*z[524])/z[528];
z[537] = (brp*pm+brro*rm)/z[528];
z[646] = qm/z[528];
z[564] = aleno2 - paaoa1;
z[655] = (bm+pm+qm+rm)/z[528];
z[5] = sin(ang3ai);
z[2] = cos(ang2ai);
z[15] = z[5]/z[2];
z[7] = cos(ang3ai);
z[16] = z[7]/z[2];
ang1aip = z[15]*waia2 + z[16]*waia3;
ang2aip = z[7]*waia2 - z[5]*waia3;
z[17] = tan(ang2ai);
z[18] = z[5]*z[17];
z[19] = z[7]*z[17];
ang3aip = waia1 + z[18]*waia2 + z[19]*waia3;
z[1] = cos(ang1ai);
z[3] = z[1]*z[2];
z[4] = sin(ang2ai);
z[6] = sin(ang1ai);
z[8] = z[1]*z[4]*z[5] - z[6]*z[7];
z[9] = z[5]*z[6] + z[1]*z[4]*z[7];
z[10] = z[2]*z[6];
z[11] = z[1]*z[7] + z[4]*z[5]*z[6];
z[12] = z[4]*z[6]*z[7] - z[1]*z[5];
z[13] = z[2]*z[5];
z[14] = z[2]*z[7];
oaoi1p = vaoii1;
oaoi2p = vaoii2;
oaoi3p = vaoii3;
papbp = vpba;
z[34] = papb - paaoa2;
z[35] = z[22]*z[3] + z[29]*z[8] - z[23]*z[9];
z[36] = z[22]*z[10] + z[29]*z[11] - z[23]*z[12];
z[38] = z[29]*z[13] - z[22]*z[4] - z[23]*z[14];
z[40] = -z[39] - z[22]*z[34];
z[42] = z[41] - z[23]*z[34];
z[44] = z[27]*z[3] + z[30]*z[8] + z[32]*z[9];
z[45] = z[27]*z[10] + z[30]*z[11] + z[32]*z[12];
z[46] = z[30]*z[13] + z[32]*z[14] - z[27]*z[4];
z[48] = z[47] + z[32]*z[34];
z[50] = -z[49] - z[27]*z[34];
z[52] = z[28]*z[3] + z[31]*z[8] + z[33]*z[9];
z[53] = z[28]*z[10] + z[31]*z[11] + z[33]*z[12];
z[54] = z[31]*z[13] + z[33]*z[14] - z[28]*z[4];
z[56] = z[55] + z[33]*z[34];
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z[58] = -z[57] - z[28]*z[34];
z[69] = z[65] + z[42];
z[70] = z[67] + z[40];
z[72] = z[62] + z[48];
z[73] = z[64] + z[50];
z[75] = z[59] + z[56];
z[76] = z[61] + z[58];
z[101] = z[97] + z[69];
z[102] = z[99] + z[70];
z[104] = z[94] + z[72];
z[105] = z[96] + z[73];
z[107] = z[91] + z[75];
z[108] = z[93] + z[76];
bcqp = vqb;
z[126] = z[85]*z[36] + z[88]*z[45] + z[90]*z[53];
ang3rbp = wrb;
z[158] = sin(ang3rb);
z[160] = cos(ang3rb);
z[162] = z[161]*z[158] - z[159]*z[160];
z[163] = z[159]*z[158] + z[161]*z[160];
z[166] = z[154]*z[160] + z[165]*z[158];
z[167] = z[165]*z[160] - z[154]*z[158];
z[168] = z[155]*z[158];
z[169] = z[155]*z[160];
z[180] = z[176] + z[69];
z[181] = z[178] + z[70];
z[183] = z[173] + z[72];
z[184] = z[175] + z[73];
z[186] = z[170] + z[75];
z[187] = z[172] + z[76];
z[190] = z[156]*z[35] + z[164]*z[44] - z[157]*z[52];
z[191] = z[156]*z[36] + z[164]*z[45] - z[157]*z[53];
z[192] = z[156]*z[38] + z[164]*z[46] - z[157]*z[54];
z[193] = z[156]*z[180] + z[164]*z[183] - z[157]*z[186];
z[194] = z[156]*z[181] + z[164]*z[184] - z[157]*z[187];
z[195] = z[29]*z[162] + z[30]*z[166] + z[31]*z[168];
z[196] = z[179]*z[162] + z[182]*z[166] + z[185]*z[168];
z[197] = z[35]*z[162] + z[44]*z[166] + z[52]*z[168];
z[198] = z[36]*z[162] + z[45]*z[166] + z[53]*z[168];
z[199] = z[38]*z[162] + z[46]*z[166] + z[54]*z[168];
z[200] = z[162]*z[180] + z[166]*z[183] + z[168]*z[186];
z[201] = z[162]*z[181] + z[166]*z[184] + z[168]*z[187];
z[202] = z[29]*z[163] + z[30]*z[167] + z[31]*z[169];
z[203] = z[179]*z[163] + z[182]*z[167] + z[185]*z[169];
z[204] = z[35]*z[163] + z[44]*z[167] + z[52]*z[169];
z[205] = z[36]*z[163] + z[45]*z[167] + z[53]*z[169];
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z[206] = z[38]*z[163] + z[46]*z[167] + z[54]*z[169];
z[207] = z[163]*z[180] + z[167]*z[183] + z[169]*z[186];
z[208] = z[163]*z[181] + z[167]*z[184] + z[169]*z[187];
z[210] = z[22]*z[162] + z[27]*z[166] + z[28]*z[168];
z[211] = z[22]*z[163] + z[27]*z[167] + z[28]*z[169];
z[213] = z[32]*z[166] + z[33]*z[168] - z[23]*z[162];
z[214] = z[32]*z[167] + z[33]*z[169] - z[23]*z[163];
z[218] = brro*z[195];
z[219] = brro*z[210];
z[220] = brro*z[213];
z[221] = z[189] + z[218];
z[222] = z[193] + z[219];
z[223] = z[194] + z[220];
z[224] = z[196] - z[215];
z[225] = z[200] - z[216];
z[226] = z[201] - z[217];
z[230] = brp*z[195];
z[231] = brp*z[210];
z[232] = brp*z[213];
z[233] = z[189] + z[230];
z[234] = z[193] + z[231];
z[235] = z[194] + z[232];
z[236] = z[196] - z[227];
z[237] = z[200] - z[228];
z[238] = z[201] - z[229];
z[239] = z[29]*vpba + z[68]*waia2 + z[35]*vaoii1 + z[36]*vaoii2 + z[38]*
vaoii3 + z[69]*waia1 + z[70]*waia3;
z[240] = z[30]*vpba + z[71]*waia2 + z[44]*vaoii1 + z[45]*vaoii2 + z[46]*
vaoii3 + z[72]*waia1 + z[73]*waia3;
z[241] = z[31]*vpba + z[74]*waia2 + z[52]*vaoii1 + z[53]*vaoii2 + z[54]*
vaoii3 + z[75]*waia1 + z[76]*waia3;
z[242] = -z[1]*z[4]*ang2aip - z[2]*z[6]*ang1aip;
z[243] = z[5]*z[6]*ang3aip + z[1]*z[2]*z[5]*ang2aip + z[1]*z[4]*z[7]*ang3aip -
z[1]*z[7]*ang1aip - z[4]*z[5]*z[6]*ang1aip;
z[244] = z[1]*z[5]*ang1aip + z[6]*z[7]*ang3aip + z[1]*z[2]*z[7]*ang2aip -
z[1]*z[4]*z[5]*ang3aip - z[4]*z[6]*z[7]*ang1aip;
z[245] = z[22]*z[242] + z[29]*z[243] - z[23]*z[244];
z[246] = z[1]*z[2]*ang1aip - z[4]*z[6]*ang2aip;
z[247] = z[1]*z[4]*z[5]*ang1aip + z[2]*z[5]*z[6]*ang2aip + z[4]*z[6]*z[7]*
ang3aip - z[1]*z[5]*ang3aip - z[6]*z[7]*ang1aip;
z[248] = z[5]*z[6]*ang1aip + z[1]*z[4]*z[7]*ang1aip + z[2]*z[6]*z[7]*ang2aip -
z[1]*z[7]*ang3aip - z[4]*z[5]*z[6]*ang3aip;
z[249] = z[22]*z[246] + z[29]*z[247] - z[23]*z[248];
z[250] = z[2]*z[7]*ang3aip - z[4]*z[5]*ang2aip;
z[251] = -z[2]*z[5]*ang3aip - z[4]*z[7]*ang2aip;
z[252] = z[29]*z[250] - z[22]*z[2]*ang2aip - z[23]*z[251];
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z[253] = vaoii1*z[245] + vaoii2*z[249] + vaoii3*z[252] - z[22]*vpba*waia3 -
z[23]*vpba*waia1;
z[254] = z[27]*z[242] + z[30]*z[243] + z[32]*z[244];
z[255] = z[27]*z[246] + z[30]*z[247] + z[32]*z[248];
z[256] = z[30]*z[250] + z[32]*z[251] - z[27]*z[2]*ang2aip;
z[257] = z[32]*vpba*waia1 + vaoii1*z[254] + vaoii2*z[255] + vaoii3*z[256] -
z[27]*vpba*waia3;
z[258] = z[28]*z[242] + z[31]*z[243] + z[33]*z[244];
z[259] = z[28]*z[246] + z[31]*z[247] + z[33]*z[248];
z[260] = z[31]*z[250] + z[33]*z[251] - z[28]*z[2]*ang2aip;
z[261] = z[33]*vpba*waia1 + vaoii1*z[258] + vaoii2*z[259] + vaoii3*z[260] -
z[28]*vpba*waia3;
z[262] = (z[27]*waia1+z[30]*waia2+z[32]*waia3)*z[241] + z[253] - (z[28]*
waia1+z[31]*waia2+z[33]*waia3)*z[240];
z[263] = (z[28]*waia1+z[31]*waia2+z[33]*waia3)*z[239] + (z[23]*waia3-z[22]*
waia1-z[29]*waia2)*z[241] + z[257];
z[264] = z[261] - (z[27]*waia1+z[30]*waia2+z[32]*waia3)*z[239] - (z[23]*
waia3-z[22]*waia1-z[29]*waia2)*z[240];
z[265] = z[29]*vpba + z[100]*waia2 + z[35]*vaoii1 + z[36]*vaoii2 + z[38]*
vaoii3 + z[101]*waia1 + z[102]*waia3;
z[266] = z[30]*vpba + z[103]*waia2 + z[44]*vaoii1 + z[45]*vaoii2 + z[46]*
vaoii3 + z[104]*waia1 + z[105]*waia3;
z[267] = z[31]*vpba + z[106]*waia2 + z[52]*vaoii1 + z[53]*vaoii2 + z[54]*
vaoii3 + z[107]*waia1 + z[108]*waia3;
z[268] = (z[27]*waia1+z[30]*waia2+z[32]*waia3)*z[267] + z[253] - (z[28]*
waia1+z[31]*waia2+z[33]*waia3)*z[266];
z[269] = (z[28]*waia1+z[31]*waia2+z[33]*waia3)*z[265] + (z[23]*waia3-z[22]*
waia1-z[29]*waia2)*z[267] + z[257];
z[270] = z[261] - (z[27]*waia1+z[30]*waia2+z[32]*waia3)*z[265] - (z[23]*
waia3-z[22]*waia1-z[29]*waia2)*z[266];
z[271] = vqb*(z[116]*waia2+z[131]*waia1+z[134]*waia3);
z[272] = vqb*(z[109]*waia2+z[130]*waia1+z[133]*waia3);
z[273] = z[188]*vpba + z[190]*vaoii1 + z[191]*vaoii2 + z[192]*vaoii3 +
z[221]*waia2 + z[222]*waia1 + z[223]*waia3;
z[274] = z[195]*vpba + z[197]*vaoii1 + z[198]*vaoii2 + z[199]*vaoii3 +
z[224]*waia2 + z[225]*waia1 + z[226]*waia3 - brro*wrb;
z[275] = z[202]*vpba + z[203]*waia2 + z[204]*vaoii1 + z[205]*vaoii2 +
z[206]*vaoii3 + z[207]*waia1 + z[208]*waia3;
z[276] = z[156]*z[245] + z[164]*z[254] - z[157]*z[258];
z[277] = z[156]*z[249] + z[164]*z[255] - z[157]*z[259];
z[278] = z[156]*z[252] + z[164]*z[256] - z[157]*z[260];
z[279] = (z[159]*z[158]+z[161]*z[160])*wrb;
z[280] = (z[154]*z[158]-z[165]*z[160])*wrb;
z[281] = z[155]*z[160]*wrb;
z[282] = z[29]*z[279] + z[31]*z[281] - z[30]*z[280];
z[283] = z[212]*vpba;
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z[284] = z[22]*z[279] + z[28]*z[281] - z[27]*z[280];
z[285] = z[283] + brro*z[284];
z[286] = z[209]*vpba;
z[287] = z[33]*z[281] - z[23]*z[279] - z[32]*z[280];
z[288] = brro*z[287] - z[286];
z[289] = waia1*z[285] + waia3*z[288] + brro*waia2*z[282] + vaoii1*z[276] +
vaoii2*z[277] + vaoii3*z[278];
z[290] = z[35]*z[279] + z[52]*z[281] + z[162]*z[245] + z[166]*z[254] +
z[168]*z[258] - z[44]*z[280];
z[291] = z[36]*z[279] + z[53]*z[281] + z[162]*z[249] + z[166]*z[255] +
z[168]*z[259] - z[45]*z[280];
z[292] = z[38]*z[279] + z[54]*z[281] + z[162]*z[252] + z[166]*z[256] +
z[168]*z[260] - z[46]*z[280];
z[293] = z[179]*z[279] + z[185]*z[281] - z[182]*z[280];
z[294] = z[32]*z[166]*vpba + z[33]*z[168]*vpba + z[180]*z[279] + z[186]*
z[281] - z[23]*z[162]*vpba - z[183]*z[280];
z[295] = z[181]*z[279] + z[187]*z[281] - z[22]*z[162]*vpba - z[27]*z[166]*
vpba - z[28]*z[168]*vpba - z[184]*z[280];
z[296] = vpba*z[282] + waia1*z[294] + waia2*z[293] + waia3*z[295] + vaoii1*
z[290] + vaoii2*z[291] + vaoii3*z[292];
z[297] = (z[159]*z[160]-z[161]*z[158])*wrb;
z[298] = (z[154]*z[160]+z[165]*z[158])*wrb;
z[299] = z[155]*z[158]*wrb;
z[300] = z[29]*z[297] - z[30]*z[298] - z[31]*z[299];
z[301] = z[179]*z[297] - z[182]*z[298] - z[185]*z[299];
z[302] = z[35]*z[297] + z[163]*z[245] + z[167]*z[254] + z[169]*z[258] -
z[44]*z[298] - z[52]*z[299];
z[303] = z[36]*z[297] + z[163]*z[249] + z[167]*z[255] + z[169]*z[259] -
z[45]*z[298] - z[53]*z[299];
z[304] = z[38]*z[297] + z[163]*z[252] + z[167]*z[256] + z[169]*z[260] -
z[46]*z[298] - z[54]*z[299];
z[305] = z[32]*z[167]*vpba + z[33]*z[169]*vpba + z[180]*z[297] - z[23]*
z[163]*vpba - z[183]*z[298] - z[186]*z[299];
z[306] = z[181]*z[297] - z[22]*z[163]*vpba - z[27]*z[167]*vpba - z[28]*
z[169]*vpba - z[184]*z[298] - z[187]*z[299];
z[307] = vpba*z[300] + waia1*z[305] + waia2*z[301] + waia3*z[306] + vaoii1*
z[302] + vaoii2*z[303] + vaoii3*z[304];
z[308] = (z[195]*waia2+z[210]*waia1+z[213]*waia3)*z[275] + z[289] - (z[202]*
waia2+z[211]*waia1+z[214]*waia3)*z[274];
z[309] = (z[202]*waia2+z[211]*waia1+z[214]*waia3)*z[273] + z[296] - (wrb+
z[188]*waia2+z[209]*waia1+z[212]*waia3)*z[275];
z[310] = (wrb+z[188]*waia2+z[209]*waia1+z[212]*waia3)*z[274] + z[307] - (
z[195]*waia2+z[210]*waia1+z[213]*waia3)*z[273];
z[311] = z[188]*vpba + z[190]*vaoii1 + z[191]*vaoii2 + z[192]*vaoii3 +
z[233]*waia2 + z[234]*waia1 + z[235]*waia3;
z[312] = z[195]*vpba + z[197]*vaoii1 + z[198]*vaoii2 + z[199]*vaoii3 +
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z[236]*waia2 + z[237]*waia1 + z[238]*waia3 - brp*wrb;
z[313] = z[283] + brp*z[284];
z[314] = brp*z[287] - z[286];
z[315] = waia1*z[313] + waia3*z[314] + brp*waia2*z[282] + vaoii1*z[276] +
vaoii2*z[277] + vaoii3*z[278];
z[316] = (z[195]*waia2+z[210]*waia1+z[213]*waia3)*z[275] + z[315] - (z[202]*
waia2+z[211]*waia1+z[214]*waia3)*z[312];
z[317] = (z[202]*waia2+z[211]*waia1+z[214]*waia3)*z[311] + z[296] - (wrb+
z[188]*waia2+z[209]*waia1+z[212]*waia3)*z[275];
z[318] = (wrb+z[188]*waia2+z[209]*waia1+z[212]*waia3)*z[312] + z[307] - (
z[195]*waia2+z[210]*waia1+z[213]*waia3)*z[311];
z[319] = wrb*(z[202]*waia2+z[211]*waia1+z[214]*waia3);
z[320] = wrb*(z[195]*waia2+z[210]*waia1+z[213]*waia3);
z[321] = ai11*waia1;
z[322] = ai22*waia2;
z[323] = ai33*waia3;
z[324] = waia1*z[322] - waia2*z[321];
z[325] = waia3*z[321] - waia1*z[323];
z[326] = waia2*z[323] - waia3*z[322];
z[327] = z[22]*waia1 + z[29]*waia2 - z[23]*waia3;
z[328] = z[27]*waia1 + z[30]*waia2 + z[32]*waia3;
z[329] = z[28]*waia1 + z[31]*waia2 + z[33]*waia3;
z[330] = bi11*z[327];
z[331] = bi22*z[328];
z[332] = bi33*z[329];
z[342] = z[327]*z[331] - z[328]*z[330];
z[343] = z[329]*z[330] - z[327]*z[332];
z[344] = z[328]*z[332] - z[329]*z[331];
z[345] = wrb + z[188]*waia2 + z[209]*waia1 + z[212]*waia3;
z[346] = z[195]*waia2 + z[210]*waia1 + z[213]*waia3;
z[347] = z[202]*waia2 + z[211]*waia1 + z[214]*waia3;
z[348] = ri11*z[345];
z[349] = ri22*z[346];
z[350] = ri33*z[347];
z[354] = ri22*z[195];
z[355] = ri22*z[210];
z[356] = ri22*z[213];
z[357] = ri22*z[319];
z[358] = ri33*z[202];
z[359] = ri33*z[211];
z[360] = ri33*z[214];
z[361] = ri33*z[320];
z[362] = z[345]*z[349] - z[346]*z[348];
z[363] = z[347]*z[348] - z[345]*z[350];
z[364] = z[346]*z[350] - z[347]*z[349];
z[365] = am + bm*(pow(z[35],2)+pow(z[44],2)+pow(z[52],2)) + pm*(pow(z[190],
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2)+pow(z[197],2)+pow(z[204],2)) + qm*(pow(z[35],2)+pow(z[44],2)+pow(z[52],2)) +
rm*(pow(z[190],2)+pow(z[197],2)+pow(z[204],2));
z[366] = bm*(z[29]*z[35]+z[30]*z[44]+z[31]*z[52]) + pm*(z[188]*z[190]+
z[195]*z[197]+z[202]*z[204]) + qm*(z[29]*z[35]+z[30]*z[44]+z[31]*z[52]) +
rm*(z[188]*z[190]+z[195]*z[197]+z[202]*z[204]);
z[367] = bm*(z[68]*z[35]+z[71]*z[44]+z[74]*z[52]) + pm*(z[190]*z[233]+
z[197]*z[236]+z[203]*z[204]) + qm*(z[100]*z[35]+z[103]*z[44]+z[106]*z[52]) +
rm*(z[190]*z[221]+z[197]*z[224]+z[203]*z[204]);
z[368] = bm*(z[35]*z[36]+z[44]*z[45]+z[52]*z[53]) + pm*(z[190]*z[191]+
z[197]*z[198]+z[204]*z[205]) + qm*(z[35]*z[36]+z[44]*z[45]+z[52]*z[53]) +
rm*(z[190]*z[191]+z[197]*z[198]+z[204]*z[205]);
z[369] = bm*(z[35]*z[38]+z[44]*z[46]+z[52]*z[54]) + pm*(z[190]*z[192]+
z[197]*z[199]+z[204]*z[206]) + qm*(z[35]*z[38]+z[44]*z[46]+z[52]*z[54]) +
rm*(z[190]*z[192]+z[197]*z[199]+z[204]*z[206]);
z[370] = bm*(z[35]*z[69]+z[44]*z[72]+z[52]*z[75]) + pm*(z[190]*z[234]+
z[197]*z[237]+z[204]*z[207]) + qm*(z[35]*z[101]+z[44]*z[104]+z[52]*z[107]) +
rm*(z[190]*z[222]+z[197]*z[225]+z[204]*z[207]);
z[371] = bm*(z[35]*z[70]+z[44]*z[73]+z[52]*z[76]) + pm*(z[190]*z[235]+
z[197]*z[238]+z[204]*z[208]) + qm*(z[35]*z[102]+z[44]*z[105]+z[52]*z[108]) +
rm*(z[190]*z[223]+z[197]*z[226]+z[204]*z[208]);
z[373] = z[372]*z[197];
z[374] = qm*(z[85]*z[35]+z[88]*z[44]+z[90]*z[52]);
z[375] = bm*(z[35]*z[262]+z[44]*z[263]+z[52]*z[264]) + pm*(z[190]*z[316]+
z[197]*z[317]+z[204]*z[318]) + rm*(z[190]*z[308]+z[197]*z[309]+z[204]*
z[310]) - qm*(z[80]*z[52]*z[271]+z[84]*z[35]*z[272]+z[87]*z[44]*z[272]+
z[89]*z[52]*z[272]-z[79]*z[35]*z[271]-z[86]*z[44]*z[271]-z[35]*z[268]-z[44]*
z[269]-z[52]*z[270]);
z[376] = am + bm*(pow(z[36],2)+pow(z[45],2)+pow(z[53],2)) + pm*(pow(z[191],
2)+pow(z[198],2)+pow(z[205],2)) + qm*(pow(z[36],2)+pow(z[45],2)+pow(z[53],2)) +
rm*(pow(z[191],2)+pow(z[198],2)+pow(z[205],2));
z[377] = bm*(z[29]*z[36]+z[30]*z[45]+z[31]*z[53]) + pm*(z[188]*z[191]+
z[195]*z[198]+z[202]*z[205]) + qm*(z[29]*z[36]+z[30]*z[45]+z[31]*z[53]) +
rm*(z[188]*z[191]+z[195]*z[198]+z[202]*z[205]);
z[378] = bm*(z[68]*z[36]+z[71]*z[45]+z[74]*z[53]) + pm*(z[191]*z[233]+
z[198]*z[236]+z[203]*z[205]) + qm*(z[100]*z[36]+z[103]*z[45]+z[106]*z[53]) +
rm*(z[191]*z[221]+z[198]*z[224]+z[203]*z[205]);
z[379] = bm*(z[36]*z[38]+z[45]*z[46]+z[53]*z[54]) + pm*(z[191]*z[192]+
z[198]*z[199]+z[205]*z[206]) + qm*(z[36]*z[38]+z[45]*z[46]+z[53]*z[54]) +
rm*(z[191]*z[192]+z[198]*z[199]+z[205]*z[206]);
z[380] = bm*(z[36]*z[69]+z[45]*z[72]+z[53]*z[75]) + pm*(z[191]*z[234]+
z[198]*z[237]+z[205]*z[207]) + qm*(z[36]*z[101]+z[45]*z[104]+z[53]*z[107]) +
rm*(z[191]*z[222]+z[198]*z[225]+z[205]*z[207]);
z[381] = bm*(z[36]*z[70]+z[45]*z[73]+z[53]*z[76]) + pm*(z[191]*z[235]+
z[198]*z[238]+z[205]*z[208]) + qm*(z[36]*z[102]+z[45]*z[105]+z[53]*z[108]) +
rm*(z[191]*z[223]+z[198]*z[226]+z[205]*z[208]);
z[382] = z[372]*z[198];
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z[383] = qm*(z[85]*z[36]+z[88]*z[45]+z[90]*z[53]);
z[384] = bm*(z[36]*z[262]+z[45]*z[263]+z[53]*z[264]) + pm*(z[191]*z[316]+
z[198]*z[317]+z[205]*z[318]) + rm*(z[191]*z[308]+z[198]*z[309]+z[205]*
z[310]) - qm*(z[80]*z[53]*z[271]+z[84]*z[36]*z[272]+z[87]*z[45]*z[272]+
z[89]*z[53]*z[272]-z[79]*z[36]*z[271]-z[86]*z[45]*z[271]-z[36]*z[268]-z[45]*
z[269]-z[53]*z[270]);
z[385] = am + bm*(pow(z[38],2)+pow(z[46],2)+pow(z[54],2)) + pm*(pow(z[192],
2)+pow(z[199],2)+pow(z[206],2)) + qm*(pow(z[38],2)+pow(z[46],2)+pow(z[54],2)) +
rm*(pow(z[192],2)+pow(z[199],2)+pow(z[206],2));
z[386] = bm*(z[29]*z[38]+z[30]*z[46]+z[31]*z[54]) + pm*(z[188]*z[192]+
z[195]*z[199]+z[202]*z[206]) + qm*(z[29]*z[38]+z[30]*z[46]+z[31]*z[54]) +
rm*(z[188]*z[192]+z[195]*z[199]+z[202]*z[206]);
z[387] = bm*(z[68]*z[38]+z[71]*z[46]+z[74]*z[54]) + pm*(z[192]*z[233]+
z[199]*z[236]+z[203]*z[206]) + qm*(z[100]*z[38]+z[103]*z[46]+z[106]*z[54]) +
rm*(z[192]*z[221]+z[199]*z[224]+z[203]*z[206]);
z[388] = bm*(z[38]*z[69]+z[46]*z[72]+z[54]*z[75]) + pm*(z[192]*z[234]+
z[199]*z[237]+z[206]*z[207]) + qm*(z[38]*z[101]+z[46]*z[104]+z[54]*z[107]) +
rm*(z[192]*z[222]+z[199]*z[225]+z[206]*z[207]);
z[389] = bm*(z[38]*z[70]+z[46]*z[73]+z[54]*z[76]) + pm*(z[192]*z[235]+
z[199]*z[238]+z[206]*z[208]) + qm*(z[38]*z[102]+z[46]*z[105]+z[54]*z[108]) +
rm*(z[192]*z[223]+z[199]*z[226]+z[206]*z[208]);
z[390] = z[372]*z[199];
z[391] = qm*(z[85]*z[38]+z[88]*z[46]+z[90]*z[54]);
z[392] = bm*(z[38]*z[262]+z[46]*z[263]+z[54]*z[264]) + pm*(z[192]*z[316]+
z[199]*z[317]+z[206]*z[318]) + rm*(z[192]*z[308]+z[199]*z[309]+z[206]*
z[310]) - qm*(z[80]*z[54]*z[271]+z[84]*z[38]*z[272]+z[87]*z[46]*z[272]+
z[89]*z[54]*z[272]-z[79]*z[38]*z[271]-z[86]*z[46]*z[271]-z[38]*z[268]-z[46]*
z[269]-z[54]*z[270]);
z[394] = z[393] + z[210]*z[355] + z[211]*z[359] + bm*(pow(z[69],2)+pow(
z[72],2)+pow(z[75],2)) + pm*(pow(z[207],2)+pow(z[234],2)+pow(z[237],2)) +
qm*(pow(z[101],2)+pow(z[104],2)+pow(z[107],2)) + rm*(pow(z[207],2)+pow(
z[222],2)+pow(z[225],2));
z[396] = z[395] + z[210]*z[354] + z[211]*z[358] + bm*(z[68]*z[69]+z[71]*
z[72]+z[74]*z[75]) + pm*(z[203]*z[207]+z[233]*z[234]+z[236]*z[237]) + qm*(
z[100]*z[101]+z[103]*z[104]+z[106]*z[107]) + rm*(z[203]*z[207]+z[221]*
z[222]+z[224]*z[225]);
z[399] = z[397] + z[210]*z[356] + z[211]*z[360] + bm*(z[69]*z[70]+z[72]*
z[73]+z[75]*z[76]) + pm*(z[207]*z[208]+z[234]*z[235]+z[237]*z[238]) + qm*(
z[101]*z[102]+z[104]*z[105]+z[107]*z[108]) + rm*(z[207]*z[208]+z[222]*
z[223]+z[225]*z[226]) - z[398];
z[402] = z[352] - z[400]*z[237] - z[401]*z[225];
z[403] = bm*(z[29]*z[69]+z[30]*z[72]+z[31]*z[75]) + pm*(z[188]*z[234]+
z[195]*z[237]+z[202]*z[207]) + qm*(z[29]*z[101]+z[30]*z[104]+z[31]*z[107]) +
rm*(z[188]*z[222]+z[195]*z[225]+z[202]*z[207]);
z[404] = qm*(z[85]*z[101]+z[88]*z[104]+z[90]*z[107]);
z[405] = z[326] + z[22]*z[344] + z[27]*z[343] + z[28]*z[342] + z[209]*
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z[364] + z[210]*z[357] + z[210]*z[363] + z[211]*z[362] + bm*(z[69]*z[262]+
z[72]*z[263]+z[75]*z[264]) + pm*(z[207]*z[318]+z[234]*z[316]+z[237]*z[317]) +
rm*(z[207]*z[310]+z[222]*z[308]+z[225]*z[309]) - z[211]*z[361] - qm*(z[80]*
z[107]*z[271]+z[84]*z[101]*z[272]+z[87]*z[104]*z[272]+z[89]*z[107]*z[272]-
z[79]*z[101]*z[271]-z[86]*z[104]*z[271]-z[101]*z[268]-z[104]*z[269]-z[107]*
z[270]);
z[407] = z[406] + z[195]*z[354] + z[202]*z[358] + pm*(pow(z[203],2)+pow(
z[233],2)+pow(z[236],2)) + rm*(pow(z[203],2)+pow(z[221],2)+pow(z[224],2));
z[409] = z[408] + z[195]*z[355] + z[202]*z[359] + bm*(z[68]*z[69]+z[71]*
z[72]+z[74]*z[75]) + pm*(z[203]*z[207]+z[233]*z[234]+z[236]*z[237]) + qm*(
z[100]*z[101]+z[103]*z[104]+z[106]*z[107]) + rm*(z[203]*z[207]+z[221]*
z[222]+z[224]*z[225]);
z[412] = z[410] + z[195]*z[356] + z[202]*z[360] + bm*(z[68]*z[70]+z[71]*
z[73]+z[74]*z[76]) + pm*(z[203]*z[208]+z[233]*z[235]+z[236]*z[238]) + qm*(
z[100]*z[102]+z[103]*z[105]+z[106]*z[108]) + rm*(z[203]*z[208]+z[221]*
z[223]+z[224]*z[226]) - z[411];
z[413] = z[351] - z[400]*z[236] - z[401]*z[224];
z[415] = z[414] + pm*(z[188]*z[233]+z[195]*z[236]+z[202]*z[203]) + rm*(
z[188]*z[221]+z[195]*z[224]+z[202]*z[203]);
z[423] = z[325] + z[29]*z[344] + z[30]*z[343] + z[31]*z[342] + z[188]*
z[364] + z[195]*z[357] + z[195]*z[363] + z[202]*z[362] + bm*(z[68]*z[262]+
z[71]*z[263]+z[74]*z[264]) + pm*(z[203]*z[318]+z[233]*z[316]+z[236]*z[317]) +
rm*(z[203]*z[310]+z[221]*z[308]+z[224]*z[309]) - z[202]*z[361] - qm*(z[417]*
z[271]+z[418]*z[272]+z[419]*z[272]+z[420]*z[272]-z[421]*z[271]-z[422]*
z[271]-z[100]*z[268]-z[103]*z[269]-z[106]*z[270]);
z[425] = z[424] + z[213]*z[356] + z[214]*z[360] + bm*(pow(z[70],2)+pow(
z[73],2)+pow(z[76],2)) + pm*(pow(z[208],2)+pow(z[235],2)+pow(z[238],2)) +
qm*(pow(z[102],2)+pow(z[105],2)+pow(z[108],2)) + rm*(pow(z[208],2)+pow(
z[223],2)+pow(z[226],2));
z[428] = z[426] + z[213]*z[355] + z[214]*z[359] + bm*(z[69]*z[70]+z[72]*
z[73]+z[75]*z[76]) + pm*(z[207]*z[208]+z[234]*z[235]+z[237]*z[238]) + qm*(
z[101]*z[102]+z[104]*z[105]+z[107]*z[108]) + rm*(z[207]*z[208]+z[222]*
z[223]+z[225]*z[226]) - z[427];
z[431] = z[429] + z[213]*z[354] + z[214]*z[358] + bm*(z[68]*z[70]+z[71]*
z[73]+z[74]*z[76]) + pm*(z[203]*z[208]+z[233]*z[235]+z[236]*z[238]) + qm*(
z[100]*z[102]+z[103]*z[105]+z[106]*z[108]) + rm*(z[203]*z[208]+z[221]*
z[223]+z[224]*z[226]) - z[430];
z[432] = z[353] - z[400]*z[238] - z[401]*z[226];
z[433] = bm*(z[29]*z[70]+z[30]*z[73]+z[31]*z[76]) + pm*(z[188]*z[235]+
z[195]*z[238]+z[202]*z[208]) + qm*(z[29]*z[102]+z[30]*z[105]+z[31]*z[108]) +
rm*(z[188]*z[223]+z[195]*z[226]+z[202]*z[208]);
z[434] = qm*(z[85]*z[102]+z[88]*z[105]+z[90]*z[108]);
z[435] = z[324] + z[32]*z[343] + z[33]*z[342] + z[212]*z[364] + z[213]*
z[357] + z[213]*z[363] + z[214]*z[362] + bm*(z[70]*z[262]+z[73]*z[263]+
z[76]*z[264]) + pm*(z[208]*z[318]+z[235]*z[316]+z[238]*z[317]) + rm*(z[208]*
z[310]+z[223]*z[308]+z[226]*z[309]) - z[23]*z[344] - z[214]*z[361] - qm*(
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z[80]*z[108]*z[271]+z[84]*z[102]*z[272]+z[87]*z[105]*z[272]+z[89]*z[108]*
z[272]-z[79]*z[102]*z[271]-z[86]*z[105]*z[271]-z[102]*z[268]-z[105]*z[269]-
z[108]*z[270]);
z[438] = z[436] + pm*(z[437]+pow(z[195],2)+pow(z[202],2)) + rm*(z[437]+pow(
z[195],2)+pow(z[202],2));
z[439] = z[372]*z[195];
z[447] = bm*(z[29]*z[262]+z[30]*z[263]+z[31]*z[264]) + pm*(z[188]*z[316]+
z[195]*z[317]+z[202]*z[318]) + rm*(z[188]*z[308]+z[195]*z[309]+z[202]*
z[310]) - qm*(z[441]*z[272]+z[442]*z[272]+z[443]*z[271]+z[444]*z[272]-
z[445]*z[271]-z[446]*z[271]-z[29]*z[268]-z[30]*z[269]-z[31]*z[270]);
z[449] = z[364] - z[400]*z[317] - z[401]*z[309];
z[450] = qm*(z[85]*z[268]+z[88]*z[269]+z[90]*z[270]);
z[456] = pow(papb,2);
z[457] = pow(z[456],0.5);
z[458] = papb/z[457];
z[459] = fabs(papb);
z[460] = sprconab*z[458]*(natlenab-z[459]) - dmpconab*vpba;
z[491] = z[460] - z[488]*z[36] - z[489]*z[45] - z[490]*z[53] - z[452]*(
z[29]*z[36]+z[30]*z[45]+z[31]*z[53]) - z[453]*(z[188]*z[191]+z[195]*z[198]+
z[202]*z[205]) - z[455]*(z[188]*z[191]+z[195]*z[198]+z[202]*z[205]);
z[502] = z[491] - z[447];
xatoi11 = z[3];
xatoi12 = z[8];
xatoi13 = z[9];
xatoi21 = z[10];
xatoi22 = z[11];
xatoi23 = z[12];
xatoi31 = -z[4];
xatoi32 = z[13];
xatoi33 = z[14];
ozeta1i1 = oaoi1 + (aleno2-paaoa1)*z[3] - paaoa2*z[8] - paaoa3*z[9];
ozeta1i2 = oaoi2 + (aleno2-paaoa1)*z[10] - paaoa2*z[11] - paaoa3*z[12];
ozeta1i3 = oaoi3 - paaoa2*z[13] - paaoa3*z[14] - (aleno2-paaoa1)*z[4];
ozeta2i1 = oaoi1 - paaoa2*z[8] - paaoa3*z[9] - (aleno2+paaoa1)*z[3];
ozeta2i2 = oaoi2 - paaoa2*z[11] - paaoa3*z[12] - (aleno2+paaoa1)*z[10];
ozeta2i3 = oaoi3 + (aleno2+paaoa1)*z[4] - paaoa2*z[13] - paaoa3*z[14];
alphaqa = atan2(ozeta1i3,ozeta1i1);
salphaqa = sin(alphaqa);
calphaqa = cos(alphaqa);
phiqa = atan2((-salphaqa*xatoi12+calphaqa*xatoi32),(salphaqa*xatoi13-calphaqa*xatoi33));
if(phiqa > twopi)
phiqa -= twopi;

if(phiqa < 0.)
phiqa += twopi;

if(phiqa < pio2 || phiqa > pi3o2)
phiqa += Pi;
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paq1aa1 = aleno2;
paq1aa2 = aradius*cos(phiqa);
paq1aa3 = aradius*sin(phiqa);
paq2aa1 = -aleno2;
paq2aa2 = paq1aa2;
paq2aa3 = paq1aa3;
phiqadt = ang3aip; // approximate phiqadt with A’s roll angle rate
paq1aa1p = 0.;
paq1aa2p = -aradius*phiqadt*sin(phiqa);
paq1aa3p = aradius*phiqadt*cos(phiqa);
paq2aa1p = 0.;
paq2aa2p = paq1aa2p;
paq2aa3p = paq1aa3p;
oq1ai2 = oaoi2 - (paaoa1-paq1aa1)*z[10] - (paaoa2-paq1aa2)*z[11] - (paaoa3-
paq1aa3)*z[12];
oq2ai2 = oaoi2 - (paaoa1-paq2aa1)*z[10] - (paaoa2-paq2aa2)*z[11] - (paaoa3-
paq2aa3)*z[12];
z11lin = oq1ai2-natleniqain;
z12lin = oq2ai2-natleniqain;
z1lin = z12lin;
qaflag = 2;
if(z11lin < z12lin)
{
z1lin = z11lin;
qaflag = 1;

}
z[539] = sin(alphaqa);
z[538] = cos(alphaqa);
z[541] = -z[3]*z[539] - z[4]*z[538];
z[543] = z[13]*z[538] - z[8]*z[539];
z[545] = z[14]*z[538] - z[9]*z[539];
z[547] = z[22]*z[541] + z[29]*z[543] - z[23]*z[545];
z[549] = z[27]*z[541] + z[30]*z[543] + z[32]*z[545];
z[551] = z[28]*z[541] + z[31]*z[543] + z[33]*z[545];
z[563] = z[163]*z[547] + z[167]*z[549] + z[169]*z[551];
z[557] = z[85]*z[547] + z[88]*z[549] + z[90]*z[551];
q1asoi3p = z[533]*z[547] + z[534]*z[549] + z[535]*z[551] + z[537]*z[563] +
z[536]*z[557] + (z[529]-paq1aa1)*z[541] + (z[532]-paq1aa3)*z[545] - z[543]*(
paq1aa2-z[531]);
z[570] = ozeta1i1/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[582] = z[539]*z[570];
z[574] = z[538]*z[570];
z[590] = z[4]*z[582] - z[3]*z[574];
z[600] = -z[8]*z[574] - z[13]*z[582];
z[608] = -z[9]*z[574] - z[14]*z[582];
z[614] = z[22]*z[590] + z[29]*z[600] - z[23]*z[608];
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z[568] = ozeta1i3/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[577] = z[538]*z[568];
z[585] = z[539]*z[568];
z[593] = z[3]*z[577] - z[4]*z[585];
z[602] = z[8]*z[577] + z[13]*z[585];
z[610] = z[9]*z[577] + z[14]*z[585];
z[615] = z[22]*z[593] + z[29]*z[602] - z[23]*z[610];
z[565] = z[564]*z[2];
z[571] = ozeta1i1*z[565]/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[578] = z[538]*z[571];
z[586] = z[539]*z[571];
z[594] = z[3]*z[578] - z[2]*z[538] - z[4]*z[586];
z[603] = z[8]*z[578] + z[13]*z[586];
z[611] = z[9]*z[578] + z[14]*z[586];
z[616] = z[22]*z[594] + z[29]*z[603] - z[23]*z[611];
z[566] = paaoa2*ozeta1i3/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[583] = z[539]*z[566];
z[575] = z[538]*z[566];
z[591] = z[4]*z[583] - z[3]*z[575];
z[599] = -z[539] - z[8]*z[575] - z[13]*z[583];
z[609] = -z[9]*z[575] - z[14]*z[583];
z[617] = z[22]*z[591] + z[29]*z[599] - z[23]*z[609];
z[567] = paaoa3*ozeta1i3/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[584] = z[539]*z[567];
z[576] = z[538]*z[567];
z[592] = z[4]*z[584] - z[3]*z[576];
z[601] = -z[8]*z[576] - z[13]*z[584];
z[607] = -z[539] - z[9]*z[576] - z[14]*z[584];
z[618] = z[22]*z[592] + z[29]*z[601] - z[23]*z[607];
z[569] = z[564]*ozeta1i3/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[579] = z[538]*z[569];
z[587] = z[539]*z[569];
z[595] = z[3]*z[579] - z[539] - z[4]*z[587];
z[604] = z[8]*z[579] + z[13]*z[587];
z[612] = z[9]*z[579] + z[14]*z[587];
z[619] = z[22]*z[595] + z[29]*z[604] - z[23]*z[612];
z[572] = paaoa2*ozeta1i1/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[580] = z[538]*z[572];
z[588] = z[539]*z[572];
z[596] = z[3]*z[580] - z[4]*z[588];
z[598] = z[538] + z[8]*z[580] + z[13]*z[588];
z[613] = z[9]*z[580] + z[14]*z[588];
z[620] = z[22]*z[596] + z[29]*z[598] - z[23]*z[613];
z[573] = paaoa3*ozeta1i1/(pow(ozeta1i1,2)+pow(ozeta1i3,2));
z[581] = z[538]*z[573];
z[589] = z[539]*z[573];
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z[597] = z[3]*z[581] - z[4]*z[589];
z[605] = z[8]*z[581] + z[13]*z[589];
z[606] = z[538] + z[9]*z[581] + z[14]*z[589];
z[621] = z[22]*z[597] + z[29]*z[605] - z[23]*z[606];
z[622] = z[27]*z[590] + z[30]*z[600] + z[32]*z[608];
z[623] = z[27]*z[593] + z[30]*z[602] + z[32]*z[610];
z[624] = z[27]*z[594] + z[30]*z[603] + z[32]*z[611];
z[625] = z[27]*z[591] + z[30]*z[599] + z[32]*z[609];
z[626] = z[27]*z[592] + z[30]*z[601] + z[32]*z[607];
z[627] = z[27]*z[595] + z[30]*z[604] + z[32]*z[612];
z[628] = z[27]*z[596] + z[30]*z[598] + z[32]*z[613];
z[629] = z[27]*z[597] + z[30]*z[605] + z[32]*z[606];
z[630] = z[28]*z[590] + z[31]*z[600] + z[33]*z[608];
z[631] = z[28]*z[593] + z[31]*z[602] + z[33]*z[610];
z[632] = z[28]*z[594] + z[31]*z[603] + z[33]*z[611];
z[633] = z[28]*z[591] + z[31]*z[599] + z[33]*z[609];
z[634] = z[28]*z[592] + z[31]*z[601] + z[33]*z[607];
z[635] = z[28]*z[595] + z[31]*z[604] + z[33]*z[612];
z[636] = z[28]*z[596] + z[31]*z[598] + z[33]*z[613];
z[637] = z[28]*z[597] + z[31]*z[605] + z[33]*z[606];
z[647] = z[85]*z[614] + z[88]*z[622] + z[90]*z[630];
z[648] = z[85]*z[615] + z[88]*z[623] + z[90]*z[631];
z[649] = z[85]*z[616] + z[88]*z[624] + z[90]*z[632];
z[650] = z[85]*z[617] + z[88]*z[625] + z[90]*z[633];
z[651] = z[85]*z[618] + z[88]*z[626] + z[90]*z[634];
z[652] = z[85]*z[619] + z[88]*z[627] + z[90]*z[635];
z[653] = z[85]*z[620] + z[88]*z[628] + z[90]*z[636];
z[654] = z[85]*z[621] + z[88]*z[629] + z[90]*z[637];
z[638] = z[163]*z[614] + z[167]*z[622] + z[169]*z[630];
z[639] = z[163]*z[615] + z[167]*z[623] + z[169]*z[631];
z[640] = z[163]*z[616] + z[167]*z[624] + z[169]*z[632];
z[641] = z[163]*z[617] + z[167]*z[625] + z[169]*z[633];
z[642] = z[163]*z[618] + z[167]*z[626] + z[169]*z[634];
z[643] = z[163]*z[619] + z[167]*z[627] + z[169]*z[635];
z[644] = z[163]*z[620] + z[167]*z[628] + z[169]*z[636];
z[645] = z[163]*z[621] + z[167]*z[629] + z[169]*z[637];
q1asoi3pp = z[646]*z[557]*vqb + z[533]*(z[614]*vaoii3+z[615]*vaoii1+z[616]*
ang2aip+z[617]*z[243]+z[618]*z[244]+z[619]*z[242]+z[620]*z[250]+z[621]*
z[251]) + z[534]*(z[622]*vaoii3+z[623]*vaoii1+z[624]*ang2aip+z[625]*z[243]+
z[626]*z[244]+z[627]*z[242]+z[628]*z[250]+z[629]*z[251]) + z[535]*(z[630]*
vaoii3+z[631]*vaoii1+z[632]*ang2aip+z[633]*z[243]+z[634]*z[244]+z[635]*
z[242]+z[636]*z[250]+z[637]*z[251]) + z[536]*(z[647]*vaoii3+z[648]*vaoii1+
z[649]*ang2aip+z[650]*z[243]+z[651]*z[244]+z[652]*z[242]+z[653]*z[250]+
z[654]*z[251]) + (z[529]-paq1aa1)*(z[590]*vaoii3+z[593]*vaoii1+z[594]*
ang2aip+z[591]*z[243]+z[592]*z[244]+z[595]*z[242]+z[596]*z[250]+z[597]*
z[251]) + (z[532]-paq1aa3)*(z[608]*vaoii3+z[610]*vaoii1+z[611]*ang2aip+
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z[606]*z[251]+z[607]*z[244]+z[609]*z[243]+z[612]*z[242]+z[613]*z[250]) -
paq1aa1p*z[541] - paq1aa3p*z[545] - z[543]*(paq1aa2p-z[655]*vpba) - (paq1aa2-
z[531])*(z[600]*vaoii3+z[602]*vaoii1+z[603]*ang2aip+z[598]*z[250]+z[599]*
z[243]+z[601]*z[244]+z[604]*z[242]+z[605]*z[251]) - z[537]*(z[549]*z[298]+
z[551]*z[299]-z[638]*vaoii3-z[639]*vaoii1-z[547]*z[297]-z[640]*ang2aip-
z[641]*z[243]-z[642]*z[244]-z[643]*z[242]-z[644]*z[250]-z[645]*z[251]);
q2asoi3p = z[533]*z[547] + z[534]*z[549] + z[535]*z[551] + z[537]*z[563] +
z[536]*z[557] + (z[529]-paq2aa1)*z[541] + (z[532]-paq2aa3)*z[545] - z[543]*(
paq2aa2-z[531]);
q2asoi3pp = z[646]*z[557]*vqb + z[533]*(z[614]*vaoii3+z[615]*vaoii1+z[616]*
ang2aip+z[617]*z[243]+z[618]*z[244]+z[619]*z[242]+z[620]*z[250]+z[621]*
z[251]) + z[534]*(z[622]*vaoii3+z[623]*vaoii1+z[624]*ang2aip+z[625]*z[243]+
z[626]*z[244]+z[627]*z[242]+z[628]*z[250]+z[629]*z[251]) + z[535]*(z[630]*
vaoii3+z[631]*vaoii1+z[632]*ang2aip+z[633]*z[243]+z[634]*z[244]+z[635]*
z[242]+z[636]*z[250]+z[637]*z[251]) + z[536]*(z[647]*vaoii3+z[648]*vaoii1+
z[649]*ang2aip+z[650]*z[243]+z[651]*z[244]+z[652]*z[242]+z[653]*z[250]+
z[654]*z[251]) + (z[529]-paq2aa1)*(z[590]*vaoii3+z[593]*vaoii1+z[594]*
ang2aip+z[591]*z[243]+z[592]*z[244]+z[595]*z[242]+z[596]*z[250]+z[597]*
z[251]) + (z[532]-paq2aa3)*(z[608]*vaoii3+z[610]*vaoii1+z[611]*ang2aip+
z[606]*z[251]+z[607]*z[244]+z[609]*z[243]+z[612]*z[242]+z[613]*z[250]) -
paq2aa1p*z[541] - paq2aa3p*z[545] - z[543]*(paq2aa2p-z[655]*vpba) - (paq2aa2-
z[531])*(z[600]*vaoii3+z[602]*vaoii1+z[603]*ang2aip+z[598]*z[250]+z[599]*
z[243]+z[601]*z[244]+z[604]*z[242]+z[605]*z[251]) - z[537]*(z[549]*z[298]+
z[551]*z[299]-z[638]*vaoii3-z[639]*vaoii1-z[547]*z[297]-z[640]*ang2aip-
z[641]*z[243]-z[642]*z[244]-z[643]*z[242]-z[644]*z[250]-z[645]*z[251]);

// call ground interaction function and both control system functions
ground();
linear_actuator();
swinging_arm();

z[461] = paaoa2 - paq1aa2;
z[462] = paq1aa3 - paaoa3;
z[463] = paaoa3 - paq1aa3;
z[464] = paq1aa1 - paaoa1;
z[465] = paaoa1 - paq1aa1;
z[466] = paq1aa2 - paaoa2;
oq1ai1 = oaoi1 - (paaoa1-paq1aa1)*z[3] - (paaoa2-paq1aa2)*z[8] - (paaoa3-
paq1aa3)*z[9];
oq1ai3 = oaoi3 + (paaoa1-paq1aa1)*z[4] - (paaoa2-paq1aa2)*z[13] - (paaoa3-
paq1aa3)*z[14];
z[467] = sprcon13iq1a*(natleniq1a-oq1ai1) - dmpcon13iq1a*(z[8]*(z[463]*
waia1+z[464]*waia3+z[8]*vaoii1+z[11]*vaoii2+z[13]*vaoii3)+z[9]*(z[465]*
waia2+z[466]*waia1+z[9]*vaoii1+z[12]*vaoii2+z[14]*vaoii3)-z[3]*(z[4]*vaoii3-
z[461]*waia3-z[462]*waia2-z[3]*vaoii1-z[10]*vaoii2));
z[468] = signspr1*sprconi2iq1a*(natleniq1a-oq1ai2) - dmpconi2iq1a*signdmp1*(
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z[11]*(z[463]*waia1+z[464]*waia3+z[8]*vaoii1+z[11]*vaoii2+z[13]*vaoii3)+
z[12]*(z[465]*waia2+z[466]*waia1+z[9]*vaoii1+z[12]*vaoii2+z[14]*vaoii3)-
z[10]*(z[4]*vaoii3-z[461]*waia3-z[462]*waia2-z[3]*vaoii1-z[10]*vaoii2));
z[469] = sprcon13iq1a*(natleniq1a-oq1ai3) - dmpcon13iq1a*(z[13]*(z[463]*
waia1+z[464]*waia3+z[8]*vaoii1+z[11]*vaoii2+z[13]*vaoii3)+z[14]*(z[465]*
waia2+z[466]*waia1+z[9]*vaoii1+z[12]*vaoii2+z[14]*vaoii3)+z[4]*(z[4]*vaoii3-
z[461]*waia3-z[462]*waia2-z[3]*vaoii1-z[10]*vaoii2));
z[470] = paaoa2 - paq2aa2;
z[471] = paq2aa3 - paaoa3;
z[472] = paaoa3 - paq2aa3;
z[473] = paq2aa1 - paaoa1;
z[474] = paaoa1 - paq2aa1;
z[475] = paq2aa2 - paaoa2;
oq2ai1 = oaoi1 - (paaoa1-paq2aa1)*z[3] - (paaoa2-paq2aa2)*z[8] - (paaoa3-
paq2aa3)*z[9];
oq2ai3 = oaoi3 + (paaoa1-paq2aa1)*z[4] - (paaoa2-paq2aa2)*z[13] - (paaoa3-
paq2aa3)*z[14];
z[476] = sprcon13iq2a*(natleniq2a-oq2ai1) - dmpcon13iq2a*(z[8]*(z[472]*
waia1+z[473]*waia3+z[8]*vaoii1+z[11]*vaoii2+z[13]*vaoii3)+z[9]*(z[474]*
waia2+z[475]*waia1+z[9]*vaoii1+z[12]*vaoii2+z[14]*vaoii3)-z[3]*(z[4]*vaoii3-
z[470]*waia3-z[471]*waia2-z[3]*vaoii1-z[10]*vaoii2));
z[477] = signspr2*sprconi2iq2a*(natleniq2a-oq2ai2) - dmpconi2iq2a*signdmp2*(
z[11]*(z[472]*waia1+z[473]*waia3+z[8]*vaoii1+z[11]*vaoii2+z[13]*vaoii3)+
z[12]*(z[474]*waia2+z[475]*waia1+z[9]*vaoii1+z[12]*vaoii2+z[14]*vaoii3)-
z[10]*(z[4]*vaoii3-z[470]*waia3-z[471]*waia2-z[3]*vaoii1-z[10]*vaoii2));
z[478] = sprcon13iq2a*(natleniq2a-oq2ai3) - dmpcon13iq2a*(z[13]*(z[472]*
waia1+z[473]*waia3+z[8]*vaoii1+z[11]*vaoii2+z[13]*vaoii3)+z[14]*(z[474]*
waia2+z[475]*waia1+z[9]*vaoii1+z[12]*vaoii2+z[14]*vaoii3)+z[4]*(z[4]*vaoii3-
z[470]*waia3-z[471]*waia2-z[3]*vaoii1-z[10]*vaoii2));
z[479] = z[3]*z[10]*z[468] + z[3]*z[10]*z[477] + pow(z[3],2)*z[467] + pow(
z[3],2)*z[476] + z[8]*z[11]*z[468] + z[8]*z[11]*z[477] + z[8]*z[13]*z[469] +
z[8]*z[13]*z[478] + pow(z[8],2)*z[467] + pow(z[8],2)*z[476] + z[9]*z[12]*
z[468] + z[9]*z[12]*z[477] + z[9]*z[14]*z[469] + z[9]*z[14]*z[478] + pow(
z[9],2)*z[467] + pow(z[9],2)*z[476] - z[454]*z[35]*z[36] - z[454]*z[44]*
z[45] - z[454]*z[52]*z[53] - z[452]*(z[35]*z[36]+z[44]*z[45]+z[52]*z[53]) -
z[453]*(z[190]*z[191]+z[197]*z[198]+z[204]*z[205]) - z[455]*(z[190]*z[191]+
z[197]*z[198]+z[204]*z[205]) - z[3]*z[4]*z[469] - z[3]*z[4]*z[478];
z[480] = z[3]*z[10]*z[467] + z[3]*z[10]*z[476] + z[8]*z[11]*z[467] + z[8]*
z[11]*z[476] + z[9]*z[12]*z[467] + z[9]*z[12]*z[476] + pow(z[10],2)*z[468] +
pow(z[10],2)*z[477] + z[11]*z[13]*z[469] + z[11]*z[13]*z[478] + pow(z[11],2)*
z[468] + pow(z[11],2)*z[477] + z[12]*z[14]*z[469] + z[12]*z[14]*z[478] +
pow(z[12],2)*z[468] + pow(z[12],2)*z[477] - z[451] - z[454]*pow(z[36],2) -
z[454]*pow(z[45],2) - z[454]*pow(z[53],2) - z[452]*(pow(z[36],2)+pow(z[45],
2)+pow(z[53],2)) - z[453]*(pow(z[191],2)+pow(z[198],2)+pow(z[205],2)) -
z[455]*(pow(z[191],2)+pow(z[198],2)+pow(z[205],2)) - z[4]*z[10]*z[469] -
z[4]*z[10]*z[478];
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z[481] = pow(z[4],2)*z[469] + pow(z[4],2)*z[478] + z[8]*z[13]*z[467] + z[8]*
z[13]*z[476] + z[9]*z[14]*z[467] + z[9]*z[14]*z[476] + z[11]*z[13]*z[468] +
z[11]*z[13]*z[477] + z[12]*z[14]*z[468] + z[12]*z[14]*z[477] + pow(z[13],2)*
z[469] + pow(z[13],2)*z[478] + pow(z[14],2)*z[469] + pow(z[14],2)*z[478] -
z[454]*z[36]*z[38] - z[454]*z[45]*z[46] - z[454]*z[53]*z[54] - z[452]*(
z[36]*z[38]+z[45]*z[46]+z[53]*z[54]) - z[453]*(z[191]*z[192]+z[198]*z[199]+
z[205]*z[206]) - z[455]*(z[191]*z[192]+z[198]*z[199]+z[205]*z[206]) - z[3]*
z[4]*z[467] - z[3]*z[4]*z[476] - z[4]*z[10]*z[468] - z[4]*z[10]*z[477];
z[482] = z[463]*z[8]*z[467] + z[463]*z[11]*z[468] + z[463]*z[13]*z[469] +
z[466]*z[9]*z[467] + z[466]*z[12]*z[468] + z[466]*z[14]*z[469] + z[472]*
z[8]*z[476] + z[472]*z[11]*z[477] + z[472]*z[13]*z[478] + z[475]*z[9]*
z[476] + z[475]*z[12]*z[477] + z[475]*z[14]*z[478] - z[454]*z[36]*z[101] -
z[454]*z[45]*z[104] - z[454]*z[53]*z[107] - z[452]*(z[36]*z[69]+z[45]*z[72]+
z[53]*z[75]) - z[453]*(z[191]*z[234]+z[198]*z[237]+z[205]*z[207]) - z[455]*(
z[191]*z[222]+z[198]*z[225]+z[205]*z[207]);
z[486] = z[462]*z[3]*z[467] + z[462]*z[10]*z[468] + z[465]*z[9]*z[467] +
z[465]*z[12]*z[468] + z[465]*z[14]*z[469] + z[471]*z[3]*z[476] + z[471]*
z[10]*z[477] + z[474]*z[9]*z[476] + z[474]*z[12]*z[477] + z[474]*z[14]*
z[478] - z[483]*z[36] - z[484]*z[45] - z[485]*z[53] - z[452]*(z[68]*z[36]+
z[71]*z[45]+z[74]*z[53]) - z[453]*(z[191]*z[233]+z[198]*z[236]+z[203]*
z[205]) - z[455]*(z[191]*z[221]+z[198]*z[224]+z[203]*z[205]) - z[462]*z[4]*
z[469] - z[471]*z[4]*z[478];
z[487] = z[461]*z[3]*z[467] + z[461]*z[10]*z[468] + z[464]*z[8]*z[467] +
z[464]*z[11]*z[468] + z[464]*z[13]*z[469] + z[470]*z[3]*z[476] + z[470]*
z[10]*z[477] + z[473]*z[8]*z[476] + z[473]*z[11]*z[477] + z[473]*z[13]*
z[478] - z[454]*z[36]*z[102] - z[454]*z[45]*z[105] - z[454]*z[53]*z[108] -
z[452]*(z[36]*z[70]+z[45]*z[73]+z[53]*z[76]) - z[453]*(z[191]*z[235]+z[198]*
z[238]+z[205]*z[208]) - z[455]*(z[191]*z[223]+z[198]*z[226]+z[205]*z[208]) -
z[461]*z[4]*z[469] - z[470]*z[4]*z[478];
z[494] = torqonr + z[492]*z[198] + z[493]*z[198];
z[495] = frconq - z[454]*z[126];
z[496] = z[479] - z[375];
z[497] = z[480] - z[384];
z[498] = z[481] - z[392];
z[499] = z[482] - z[405];
z[500] = z[486] - z[423];
z[501] = z[487] - z[435];
z[503] = z[494] - z[449];
z[504] = z[495] - z[450];
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