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1. Introduction 
 
The HPC-Colony Project, a collaboration with Lawrence Livermore National Laboratory, the 
University of Illinois at Urbana-Champaign and IBM, is focused on services and interfaces for very 
large numbers of processors.   
 
Advances in parallel systems in the last decade have delivered phenomenal progress in the overall 
capability available to a single parallel application. Several systems with peak capability of over 
100TF are already available and systems are expected to exceed 1PF within a few years. Despite these 
impressive advances in peak performance capability, the sustained performance of these systems 
continues to fall as a percentage of the peak capability. Initial analysis suggests that key architectural 
bottlenecks (in hardware and software) are responsible for the lower sustained performance and some 
architectural change of direction may be necessary to address the declining sustained performance.  
 
In this proposal we focus on addressing software architectural bottlenecks, in the areas of operating 
system and runtime systems. While the trend towards larger processor counts benefits application 
developers through more processing power, it also challenges application developers to harness ever-
increasing numbers of processors for productive work. Much of the burden falls to operating systems 
and runtime systems that were originally designed for much smaller processor counts. Under the 
Colony project, we are researching and developing system software to enable general purpose 
operating and runtime systems for tens of thousands of processors. Difficulties in achieving a balanced 
partitioning and dynamically scheduling workloads can limit scaling for complex problems on large 
machines. Scientific simulations that span components of large machines require common operating 
system services, such as process scheduling, event notification, and job management to scale to large 
machines. Today, application programmers must explicitly manage these resources.  We address 
scaling issues and porting issues by delegating resource management tasks to a sophisticated parallel 
OS. Our definition of “managing resources” includes balancing CPU time, network utilization, and 
memory usage across the entire machine. We believe a consistent environment that provides newly 
necessary technology (such as fault tolerance) will also provide important efficiencies in system 
administration. 
 

1.1 Purpose 
The primary objective of the Colony Project is to develop technologies that enable application 
scientists to easily scale applications to computing platforms comprised of tens of thousands to 
hundreds of thousands of compute cores. This will be accomplished by addressing several problem 
areas that are known to be key factors when scaling applications to tens of thousands of processors. 
First, by providing a smart runtime system to quickly and dynamically make cpu and memory and 
interconnect resource management adjustments, we remove the burden of achieving applications that 
are highly tuned and load-balanced for a particular execution instance (i.e. a particular input datasets 
and machine platform combination). Second, by providing a full complement of system services 
including the entire Linux system call set, we ease the challenge of developing portable applications 
since lightweight kernels frequently incorporate only a small subset of the POSIX calls prevalent in 
typical large scientific applications. Third, by providing fundamental changes to the Linux kernel that 
reduce variability in context switch times and provide for parallel-aware scheduling across the entire 
machine, we remove the negative impact of synchronizing collectives on bulk-synchronous 
applications. Fourth, by providing fault tolerance mechanisms that utilize our unique migration 
abilities in conjunction with in-memory techniques for minimal overhead, we eliminate the necessity 
for costly frequent application-driven check-points. Our research utilizes full implementations of these 
technologies on systems consisting of tens of thousands of processors. 
 
1.2 Approach 
Among the decisions investigators researching HPC operating system and runtime system issues have 
faced historically are tradeoffs related to capability versus performance. One may choose to utilize an 
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operating system design developed for much smaller general purpose machines such as Unix 
derivatives as a starting point. While this approach does provide many highly desired features 
including support for a broad range of services and interfaces, the lack of any parallel awareness 
confines what may be managed by the system software stack. For instance, scheduling issues can 
dramatically impact scalability of common parallel algorithms.  One may choose a lightweight 
operating system approach such as a custom micro-kernel. A primary goal of this approach is to 
remove services and interfaces from compute nodes, thereby eliminating the difficulties arising from a 
lack of parallel awareness. The challenge faced by this kind of approach is borne by the parallel 
application developer. They may face fixed memory constraints, reduced programming interfaces 
(many times, a partial POSIX programming interface), and reduced programming tools for 
development. 
 
Our approach is based on a general purpose Linux kernel and supporting interfaces and services. 
Important benefits of this approach include the benefits from over 20 years of lessons on Unix-
derivative operating systems, the large number of people contributing to Linux, and the support for 
many features typically missing from lightweight approaches (e.g., full POSIX, program development 
tools, sophisticated memory capabilities, and so on). A primary goal will be to remove performance 
and scalability problems found in general purpose operating systems.  
 
Our deliverables will be software implementations of the Linux kernel, new system services, and a 
parallel runtime, Charm++. The technology will be applicable to cluster-based supercomputers with 
large numbers of processors; BlueGene/L type supercomputers will be used extensively in our work 
and will provide a demonstration platform. The interfaces in our software implementations will be 
generic. They can be implemented in other operating systems, used by other runtime systems on other 
platforms, and will support a wide spectrum of applications. In addition to improving the performance 
of flagship applications, we will develop performance metrics and test cases to quantify the benefits of 
our strategies and to provide a means for comparison with other approaches. 
 
To investigate our strategies, we are implementing our strategies on IBM BlueGene type architectures. 
To our knowledge, BlueGene machines are the largest node count machines currently utilized by the 
HPC community (e.g. 128,000+ processors). Our environment differs from other BlueGene 
environments in that we  will provide a fully functional Linux on BlueGene compute nodes.  
 
2. Project Highlights From Calendar Year 2006 
 
2.1 Linux on BlueGene Compute Nodes 
We continue to develop an all-Linux solution for Blue Gene. The ability to execute Linux on the 
compute nodes of Blue Gene will significantly expand the range of applications for that platform. In 
2006 we completed our design for a compute node Linux. We also got a first prototype Linux solution 
for Blue Gene compute nodes operational. The solution includes the ability to run MPI programs on 
the compute nodes with Linux. We here report our initial experience with this prototype solution. 
 
We have previously reported results that quantify the impact of TLB misses on the performance of 
parallel applications in Blue Gene. More recently, we have done a more detailed study of the 
difference in performance observed when running the same application using either Linux or the 
lightweight Compute Node Kernel (CNK) on the Blue Gene compute nodes. 
 
Figure 1(a) shows the performance of the NAS Parallel Benchmark IS on Blue Gene, running both 
under Linux and CNK. We observe a large performance gap (~2x) between Linux and CNK. The 
lower Linux performance can be explained by the large number of TLB misses that happens with 
Linux, as shown in Figure 1(b). That figure shows number of TLB misses per node, for different 
numbers of compute nodes, when operating with a standard Linux page size of 4 KiB. In comparison, 
CNK configures the TLB of the compute nodes so that there are no TLB misses during execution. 
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(a) (b) 
Figure 1: Performance of NAS Parallel Benchmark under Linux and CNK (a). The 
lower performance under Linux can be explained by the large number of TLB 
misses (b) under Linux. (There are no TLB misses under CNK.) 

 
2.2 Linux Modifications For HPC Scaling 
Since the excessive number of TLB misses is a major source of performance degradation under Linux, 
we started investigating how to avoid or reduce those misses. The first solution we investigated is the 
use of the “Huge TLB file system” feature of Linux. This is an in-memory file system that uses 16 
MiB pinned pages to map virtual to physical memory. Files in the “Huge TLB file system” can be 
memory mapped into the address space of a process. When a process accesses memory in that region, 
the translation goes through the pinned 16 MiB entries in the TLB, and therefore there are no TLB 
misses for that region of memory. 
 
In order to evaluate the impact of reducing the number of TLB misses we modified the IS benchmark 
so that most of the accesses were done against memory mapped through 16 MiB pages. The 
performance results are shown in Figure 2(a). We observe that performance under Linux (magenta 
line) is able to match performance under CNK. (We note that both data and heap segments had to be 
placed in a large page region to get the most benefit.) Figure 2(b) is a direct measurement of TLB 
misses and it shows the great reduction in the number of misses. 
 

  
(a) (b) 

Figure 2: Performance of NAS Parallel Benchmark under Linux with “Huge TLB 
file system”. The application was slightly modified to place both data and heap 
segments in a memory mapped file with 16 MiB TLB entries. We observe a 
drastic reduction in the number of TLB misses (b) and an improvement in 
performance under Linux (a), matching the performance under CNK. 

 
Another well-known source of performance degradation when running parallel applications on a 
Linux-based system is system noise, usually introduced by system services (e.g., daemons) running on 
the same nodes as the computation. To quantify the impact of this noise on the performance of Blue 
Gene, we ran a simple synthetic benchmark. This benchmark consists of 10,000 iterations. Each of 
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those iterations consists of 1ms of work followed by a barrier across all processes in the parallel 
execution. We ran the benchmark in four different configurations: (i) under CNK, (ii) under Linux 
with nothing else in the node, (iii) under Linux with a daemon that wakes every second for 1 ms, with 
the wakeup coordinate across nodes and (iv) under Linux with the same daemon, but the “phase” of 
each daemon is randomly spread over a second. Results are shown in 
 

 
Figure 3: Performance of synthetic benchmark under CNK (lightweight kernel) and 
Linux with or without noise. “Linux with noise” means there is an additional daemon 
process in each node that wakes up for 1ms every second. The daemons in 
different nodes can either wake up all the same time (coordinated noise) or each 
daemon can have its own “phase” randomly distributed over a second 
(uncoordinated noise). (The red, green and blue lines are all on top of each other.)  

 
We observe that significant performance degradation happens only when the daemons are 
uncoordinated. In other words, we do not have to eliminate all the daemons in a compute node Linux, 
but it is important to ensure that the daemons across the nodes get to execute all at the same time. This 
lets the application proceed uninterrupted for a long period of time. 
 
We note that the experiments reported above (large pages, system noise) have been very important in 
quantifying the performance impact of an all-Linux solution for Blue Gene. There are still unresolved 
issues that need to be addressed in the solutions to the performance impact. For example, how can we 
deploy a 16 MiB TLB entry solution in a manner that is transparent to the application programmer? 
Also, how do large pages affect the functionality of other tools (e.g., debuggers) that interact with 
processes using those large pages? In the system noise front, we are still investigating the proper way 
to coordinate daemon execution. 
 
 
2.3 Fault Tolerance Techniques 
We continued our research on fault tolerance techniques for large systems by working on three 
different schemes: in-memory checkpointing, proactive fault tolerance and message-logging. All of 
these schemes are being developed in the context of Charm++ and AMPI, and thus they will become 
available for many MPI codes. We now describe our recent activities for each of these schemes. 
Our in-memory checkpoint scheme adopts the idea of diskless checkpointing, which checkpoints data 
in memory. It uses a coordinated checkpoint strategy. This reporting period, we conducted additional 
tests to assess the effectiveness of this technique on a large machine such as BlueGene/L. In these 
tests, we used a 7-point stencil with 3-D domain decomposition, written in MPI. For a particular 
number of processors, we varied the amount of data per processor. We took multiple checkpoints for 
every run and measured the average time for a checkpoint. Table 1 shows the average time for a 
checkpoint for varying amounts of data per processor on 8,192 and 20,480 processors of BlueGene/L 
at IBM’s T.J.Watson. These results show that the checkpointing overhead increases proportionally to 
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the amount of state in each processor, as one would expect, even for a large BlueGene/L configuration. 
This fact confirms that this technique is useful for this class of system. 
 

Number of Processors Data per Processor (kB) Checkpoint Time(s) 
8192 
8192 
8192 
8192 
8192 

20480 
20480 

80 
300 
1200 
5000 

20000 
80 

20000 

.1613006 

.1626386 

.1801744 

.2370764 

.4174428 

.3777704 

.6924555 
Table 1: Time taken to perform in-memory checkpoints with different amounts of data per BG/L processor 

 
Our proactive fault tolerance scheme is based on the hypothesis that, some faults can be predicted. We 
leverage the migration capabilities of Charm++, to evacuate objects from a processor where faults are 
imminent. During this reporting period, besides conducting additional validation tests with this scheme 
(as reported in [CHAKR2006]), we also integrated this proactive scheme to the regular Charm++ 
codebase. Thus, the technique is now available for Charm++ users willing to test the evacuation 
approach. Currently, the evacuation is triggered by an incoming signal, and we assume that such signal 
could be derived from some condition external to the application. 
 
In our message-logging schemes to tolerate system faults, the major goals are (a) to impose low 
overhead on the forward path (i.e. when there are no failures) and (b) to provide a fast recovery from 
faults, without wasting computation done by processors that have not faulted. During this reporting 
period, we continued to enhance a prototype version of Charm++ that employs this message-logging 
technique, and tested this scheme on large systems. 
 

 
Figure 1: Performance of 7-point stencil on BG/L for different granularity levels 

 
As an example of our tests, we used the same 7-point stencil with 3-D domain decomposition written 
in MPI, as before. The stencil program was written so that in every iteration each MPI task exchanges 
messages with its neighbors and then performs computations for a fixed amount of time. The amount 
of time a task computes in each iteration is called its granularity. Because our message-logging 
protocol creates additional messages between processors, it is important to ensure that these extra 
messages do not become a bottleneck in the execution, even in the case of a fault-free scenario. To 
verify that, we conducted executions of the 7-point stencil employing our message logging protocol, 
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and obtained the data presented in Figure 1. Those plots show the average iteration time for the 7-point 
stencil application for different values of granularity. We show results on four, eight and twenty 
thousand processors, using one processor per node of the BlueGene/L system. In the ideal case, with 
no extra penalty for communication or fault tolerance protocol, the iteration time would be the same as 
the granularity. The results in our plots confirm that our protocol scales to a large number of 
processors for applications with large granularity. When the granularity is smaller, there is a 
significant performance penalty on larger numbers of processors. 
 

Number of Processors 4096 8192 16384 
Memory Used (MB) 6.8 22.57 22.63 

Figure 2: Memory Usage of the Hybrid Load Balancer 
 
2.4 Global Resource Management 
We have developed a new hybrid load balancing algorithm (HybridLB) that is designed for scientific 
applications with persistent computation and communication patterns. We use the automatic run-time 
instrumentation in Charm++ for collecting load data. HybridLB utilizes a load balancing hierarchical 
tree to distribute tasks across processors. This new algorithm takes advantage of Charm++’s processor 
virtualization idea for applications with fine-grained parallelism, and it takes communication into 
account for achieving satisfactory load balancing decisions. More details about this algorithm can be 
found at [ZHENG2005]. 
 
One of the most important goals of the HybridLB is to reduce the usage of the memory taken by the 
load balancing algorithms, including the memory space for the load database. For centralized load 
balancing schemes where a global load database is constructed on a particular processor, the load 
database can easily exceed the memory capacity of a node of BG/L. 
 
We evaluated our new HybridLB with the Lb test program on BlueGene/L at IBM’s T.J.Watson The 
test program creates a large number of objects having size 512 KBytes. These objects communicate in 
a 2D-mesh virtual topology similar to a 2D stencil computation. The hierarchical tree used by 
HybridLB is built as following: every 1024 processors form a load balancing domain at level 1, and 8 
such domains in an 8K-processor simulation form the level-2 load balancing domain; meanwhile, in a 
16K-processor simulation case, there are 16 such level-2 domains. We used greedy-based load 
balancing algorithms (GreedyLB) at level 1 and used a refinement-based load balancing algorithm at 
level 2. We ran this test program and measured the memory usage by the HybridLB load balancer. The 
results are shown in Table 2. 
 
For comparison, we ran the same test with our centralized load balancing strategy. Indeed, the 
centralized scheme ran out of memory when constructing the global load database. We also measured 
the time spent in load balancing by HybridLB, as shown in Table 3. We found that the load balancing 
process itself is not as efficient as we expected. We captured performance traces on BlueGene/L and 
dumped logs for post-mortem analysis. Through this analysis, done with Projections (our performance 
analysis tool), we found that the multicast—sending 1024 messages down a hierarchical tree—is 
responsible for most of the overhead. 
 

Number of Processors 8192 16384 
LB Time 14.70s 23.16s 

Table 3: Load Balancing time of the HybridLB 
 
2.5  Other Activities 
As a complement to our research work, the HPC-Colony project conducted bi-weekly conference calls. 
These teleconferences have been very useful to maintain our team in synchrony with the project 
partners, and to exchange valuable information regarding issues about existing large systems, in 
special the BlueGene/L platform. We had two face-toface meetings with our project partners, one 
during the FastOS meeting in May at Boston, and another in November during SC’2006. 
 
In October, our team utilized the 20 rack BlueGene machine at T.J. Watson Research Center to 
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perform fault tolerance and scalable resource management research. This was done through 
submitting a winning proposal to the Blue Gene Consortium BGW Days competition. A full report of 
our tests is available. 
 
Meanwhile, using resources from other sources, we have been conducting tests with Charm++ based 
applications on the BlueGene/L platform. These tests provide a synergistic complement to our efforts 
in the HPC-Colony project, as they give us a chance to test the new products of our developments 
(e.g. new load balancers) with real scientific codes on a large system. 
 
We maintain an external website as well as a “project internal” website at UIUC. The URLs for those 
sites are the following: 
 

• Colony project’s URL: http://www.hpc-colony.org 
• UIUC site for Colony project: http://charm.cs.uiuc.edu/grants/colony.html 

 
 
3.  Plans for the Upcoming Year 
During this final year of our HPC-Colony project, we are continuing the development of our fault 
tolerance work based on message-logging and its integration to the Charm++ distribution. In addition, 
we are conducting tests where we compare the effectiveness of the various fault tolerance strategies 
available in Charm++.  
 
Meanwhile, we continue to develop new schemes for load balancing, based on observed computation 
and communication characteristics of real applications. According to recent tests with real scientific 
applications, there are situations where our existing load balancers are not able to fully balance the 
load. These cases may arise, for example, when there is work outside the regular objects, such as in 
chare “groups” (a group is a special type of chare that has a unique instance in each processor). For 
these cases, we are creating new policies that take the groups into account for the load balancing 
decisions. 
 
 
4 Publications and Talks 
 
4.1 2006 Publications 
• Tarun Agarwal, Amit Sharma and Laxmikant V. Kalé. Topology-aware task mapping for 

reducing communication contention on large parallel machines, Proceedings of IEEE 
International Parallel and Distributed Processing Symposium 2006, Greece, April 2006. 

• Gengbin Zheng, Chao Huang and Laxmikant V. Kalé. Performance Evaluation of Automatic 
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