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Abstract

We present a quadratic Finite Element approach to discretize the Kohn-Sham equa-
tions on structured non-uniform meshes. A multigrid FAC preconditioner is pro-
posed to iteratively solve the equations by an accelerated steepest descent scheme.
The method was implemented using SAMRALI, a parallel software infrastructure for
general AMR applications. Examples of applications to small nanoclusters calcula-
tions are presented.
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1 Introduction

Density Functional Theory (DFT) is a quantum model that has proved very
successful in real applications, ranging from optical properties of nanostruc-
tures to phase diagrams of various materials. It introduces an independent par-
ticles description of the electronic structure of molecules or materials which
is much simpler to treat than the original many-body Schroedinger equa-
tions[1,2]. Simulating realistic physical systems by DET however is still com-
putationally very demanding. More efficient, scalable numerical algorithms
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that reduce computer time and enable larger simulations are always in de-
mand by chemists, physicists and biologists who are studying phenomenon at
the molecular level.

The finite element (FE) method (see e.g. [3]), a popular solution technique
for partial differential equations, has only recently begun to be used for solv-
ing the Kohn-Sham (KS) equations of Density Functional Theory for realistic
3D applications [4-8]. Traditionally, pseudo-spectral approaches have been the
most popular under the denomination Plane Waves (PW) method. The regu-
lar use of periodic boundary conditions with simple geometries explains this
preference. However, as computer power increases and interest in studying
larger and more diverse systems grows, discretzations using finite differences
or finite elements, often referred to as real-space approaches, have recently
attracted more interest [9]. The first motivation for real-space approaches is
that they are easier to parallelize than pseudo-spectral approaches [10]. An-
other motivation for real-space discretizations is that algorithm complexity
may be reduced from O(N?) to O(N) by representing the electronic struc-
ture using a set of N nonorthogonal strictly localized orbitals [5,11-13]. In
many cases, one can find a representation that spans a subspace very close to
the invariant subspace associated with the occupied electronic states, usually
described in term of eigenfunctions. In this paper, we focus on another mo-
tivation which is that we may refine the mesh locally to reduce the number
of degrees of freedom needed to describe electronic wave functions in regions
where they are very smooth. The use of a locally-refined structured mesh,
when possible, leads to numerically more efficient algorithms. We hope that
all aforementioned advantages of real-space methods can be realized leading
to very efficient algorithms.

Various approaches for 3D DFT calculations using local mesh refinement and
Finite Differences [14-16] and Finite Elements [17,6,18] have been explored.
When using local mesh refinement, one faces the difficulty of building an effi-
cient parallel implementation. A useful DF'T code must be parallel to be com-
petitive with highly optimized, parallel PW codes. Fortunately, one can rely on
existing parallel infrastructure to facilitate the implementation [18]. We have
developed an electronic structure code based on SAMRALI, an object-oriented,
parallel software infrastructure for general AMR applications on structured
grids [19] developed at Lawrence Livermore National Laboratory.

In the present work, we use the pseudopotential approximation which replaces
singular atomic potentials by smoother regular potential functions that include
core electron effects. Beside removing singularities, this approximation also
simplifies the problem by removing degrees of freedom associated with the core
electrons. These electrons are considered frozen since their effect on chemical
binding can often be neglected. In this paper, we have chosen applications
that require only local pseudopotentials; that is, atomic potentials that can



be represented by simple radial functions.

The discussion in this paper is restricted to parallelepiped domains. This is
general enough to treat most solid state applications where the computational
domain has to coincide with a cell invariant under the crystal structure symme-
try. For finite systems surrounded by vacuum, using a parallelepiped domain
is also an appropriate approach. From a computational point of view, this re-
striction allows for the use of structured meshes which facilitates code imple-
mentation and improves numerical efficiency, allowing for instance matrix-free
implementations.

In this paper, we propose a hierarchical Finite Element discretization for DF'T
calculations. For concreteness and to simplify the discussion, we present the
quadratic Finite Element case which is also the special case we have im-
plemented. But the approach can be generalized to higher order finite ele-
ments. An essential difference between our approach and the one proposed by
Tsuchida and Tsukada [4] is the hierarchical formulation we use. This impor-
tant feature allows to use simplified steepest descent directions vectors and to
design a multigrid Poisson solver and preconditioner suited to our discretiza-
tion. We also propose a discrete energy functional consistent with the weak
discrete formulation of the KS equations, which ensures a minimum princi-
ple for the solution of the discretized problem. The weak formulation of the
Kohn-Sham equations and their finite element discretization are introduced
in Section 2. We then present a finite element approach for the full non-linear
Density Functional Theory problem in Section 3. The solvers for the KS equa-
tions and the Poisson problem on structured adaptive meshes are presented
in Section 4. Section 5 describes the implementation of our algorithm using
the tools provided by the SAMRALI library. Finally in Section 6 we illustrate
our numerical approach with accuracy and convergence tests on some simple
electronic structure calculations for beryllium clusters.

2 Kohn-Sham problem and its discretization

2.1 Kohn-Sham equations

We consider a 3D computational parallelepiped domain 2. We are interested
in solving the weak form of the Kohn-Sham equations for 2N electrons, that



is finding N pairs (A®, u®), A®) € R, 4 € V — {0}, such that

/(Vu(i)Vv + q({uD N ) (x)v(x))dx = A /u(i)vdx (1)
0 Q

for all v in the admissible space V. Functions in V should satisfy the essential
boundary conditions, such as zero Dirichlet or periodic boundary conditions,
be continuous, and have first derivatives with finite energy. We are usually
interested in the N lowest eigenvalues A which can be interpreted as single
particle energies for the electronic ground state. In this paper, we limit the
discussion to non-metallic systems, i.e. we assume that those N eigenvalues
are separated from the rest of the spectrum by a finite "band” gap. The
Kohn-Sham potential operator ¢ is nonlinear. In this section, we ignore the
difficulty introduced by this nonlinearity by assuming that ¢ is a fixed scalar
field depending on x only, and write ¢(u)(x) = ¢(x) - u(x). The nonlinearity
will be treated later in section 3.

Defining the L?*(2) scalar product

(u,v) = /u - vdx,

Q

and the bilinear form

a(u,v) = /VUVU +q-u-vdx,
0

Eq. (1) can be written as

We also define
b(u,v) = /Vqudx.
Q

Let S, C V be a finite element space, h > 0 a discretization parameter. The
finite element discretization of Eq. (2) requires finding the lowest eigenvalues

)\g) € I and corresponding eigenfunction u,(f) € Sy, such that

a(ug),vh) = )\,(f) (ug),vh) Yoy, € Sh. (3)

2 Here we neglect the spin of the electrons and assume each electronic orbital is
doubly occupied.



In algebraic notation, Eq.(3) leads to a generalized matrix eigenvalue problem

Ku® =\ pa® (4)

where K and M are the stiffness and mass matrices in the finite element basis.
That is

(K)ZJ = (l( 1?7 (b;)a (M)Z] = ( fa (b;)?
where ¢f are the individual FE basis functions. M is symmetric positive defi-
nite, while K is simply symmetric. M and K are sparse matrices. The vector
u® is defined as the vector representation of uff), i.e. a list of the expansion

coefficients of ugf) in the finite element basis. We also define L to be the matrix
representation of b(.,.) in the finite element basis.

Note that matrices such, as M, K, or L, operate on vectors made of the
FE coefficients of functions in S;,. They generate vectors whose components
should not be considered as coefficients of a function expansion in the FE basis,
but dot products of a function with the FE basis functions. For example, the
coefficient (Mv); = (¢, vp) is the scalar product of the FE function vy, and the
FE basis function ¢$. To distinguish between these different types of vectors,
we denote the vector space of scalar products by elementary FE basis functions
as Sy and we use the superscript * to indicate vectors in S;. This distinction
is important when one considers linear compositions of various vectors, in
iterative algorithms for example.

We are interested in the sum of the N lowest eigenvalue )\g) that satisfy Eq.(4).
We also need the corresponding invariant subspace UM = span{u®, ... u™}.

We will use the matrix notation U = (u(l),...,u(N)) to denote a basis
{u®N  of the subspace UM,

2.2 Finite Element space for structured AMR

We consider functions that are continuous over the whole domain and can
be represented in a polynomial basis within each grid cell. We use the 3D
quadratic serendipity brick elements consisting of eight nodes (cell corners)
and 12 edges values (located in the middle of each edge); e.g., see [20]. In
this approach, the polynomial basis is expressed using 20 functions: 1, z,vy, 2,
22y, 22, xy, xz,yz, 2y, oyt alz, 122 gty y2?, ayz, 2?yz, ayPz, xyz?. We as-
sociate degrees of freedom to the eight nodes and twelve edges of each brick
element. From the polynomial basis, one can build 20 shape functions, each
having the value 1 at one node or edge and the value 0 at all other nodes
and edges. In our hierarchical approach, we expand the solution in a cell in a
basis given by the 8 trilinear shape functions, each of which is 1 at one node



and 0 at all the other nodes, and completed by the 12 shape functions of the
serendipity quadratic basis, each of which is 1 at one of the edges and 0 at all
the nodes and other edges.

In structured adaptive mesh refinement (SAMR), the computational mesh is a
hierarchy of levels of varying spatial mesh resolution. Each level is constructed
from structured mesh components and corresponds to a uniform degree of
mesh spacing. The levels are nested so that the coarsest level covers the entire
computational domain §2 and each successively finer level covers a subdomain
within the next coarser level. The cells on each mesh level are grouped into a
collection of logically-rectangular regions called “patches”. In this paper, we
consider only fixed spatial mesh refinement, but mesh levels can also change
in time as needed.

We use a refinement ratio of 2 in each coordinate direction between consecutive
mesh levels. Thus, in 3D, a refined cell is divided into 8 subcells of equal size
(2x2x2). Instead of using special elements at coarse/fine interfaces, we allow
hanging nodes and edges. Using such a refinement structure, coarse nodes and
edges correspond to fine nodes at a fine-coarse interface (see Fig. 7). Fine edges
at the boundary of a finer level are “slave” edges; the value of a function at
these edge points is defined by quadratic interpolation from 3 fine nodes values
in the edge direction. This is necessary to ensure continuity at the fine-coarse
interface. We also have “slave” nodes at the fine-coarse interface; these are fine
nodes which do not correspond to coarse nodes or edges. No degree of freedom
is associated to “slave” edges and nodes. While still somewhat non-standard,
formulations based on such hanging nodes have been used by others, e.g. see
Ref. [21].

One can view a finite element function in S}, as a linear combination of basis
functions ¢¢. Each basis function is continuous, has local support, takes the
value 1 at exactly one node or edge, is a quadratic polynomial within each
neighboring cell, and has the value 0 outside neighboring cells. No basis func-
tion is associated with a slave node or edge. Instead, to ensure continuity along
the fine-coarse interface, basis functions are built as linear combinations of FE
shape functions in neighboring cells, including FE shape functions associated
to slave nodes and edges. Resulting basis functions have a support consisting
of 3 to 8 cells, depending on whether they are centered on a node or an edge,
and whether they are located in the interior of mesh level or at the interface
between a coarse level and a fine level.



2.3 Mass and stiffness matriz assembly

Computing a matrix entry between two basis functions is done by computing
a contribution from each cell to a given matrix element and summing the con-
tributions over all relevant cells. In practice, cells contributions to the matrix
representation of the Laplacian L and to the mass matrix M are computed an-
alytically beforehand. Evaluating the entries of the stiffness matrix K = L+Q
requires a numerical integration for the term

(65, 95) = [ 65(x)a(x)05 (x)dx
~(Qn)ij = an(95, 05) = > wid (X)q(xk) 05 (Xp)- (5)

The coefficients wy, are the appropriate weights for the numerical quadrature
formula used and x;, are quadrature points within the support of ¢ and ¢f.
To note that this integration is not exact, we denote the numerical integration
of the bilinear form af(.,.) as a(.,.).

We denote by S, the finite dimensional vector space of real functions defined
by their values at the integration points. We define the operator P* : S;, — Sj;
by

(fi)i = (P fa)i Zcbe Xk ) [ (Xi ) Wi, (6)

This operator can be represented by an N, x N, matrix, where [V, is the size
of the Finite Element basis and N, the total number of integration points in

Q.

3 Nonlinear problem: Electronic density and energy functional

As stated earlier, the operator ¢ in the Kohn-Sham equations is actually non-
linear. It explicitly depends on the electronic density p. This density is a
function of u”,i =1,..., N and is given by the general expression

=2 Z yul (x)uf (x) (7)

1,7=1



for the case of N doubly occupied electronic orbitals. The entries of the matrix
M are defined by

Wiy = 9, ),
The electronic density defined by (7) is independent of the particular basis U
chosen to represent the subspace &), In the particular case of orthonormal

functions ugf , M is the identity matrix.

In DFT, the potential operator ¢ is the sum of three contributions:

q=V"*"+Vp] + V=p]. (8)

Vion is a function of the atoms present in a simulation, and depends on their
positions and species only. It is a linear operator representing the sum of radial
functions (atomic local pseudopotentials) centered at the atomic positions. For
the exchange and correlation potential V*¢, we use the so-called Local Den-
sity Approximation (LDA). In this popular model, V™[p](x) = v} 4(p(x)) =
J (p(x)efpa(p(x))) /dp(x) for a given parametrized function €75, 4 [22,23].

The Hartree potential V¥ represents the Coulomb interaction between elec-
trons, which is the electrostatic field generated by the electronic density p. It
can be obtained by solving the Poisson equation

—V2VH = 41p. (9)

However, to avoid long range effects, we introduce a neutralizing charge p;
which cancels out p in the computational domain so that

[ (o) + pulx))dx = 0. (10)

Q

In practice, we construct ps as a sum of Gaussian charges p, located at each
atomic site R, and which neutralizes each atomic pseudopotential individually,

_ Z o _|I'—Ra]2
i) =~ oo (R ) .

Here Z, is the valence charge of atom a, and r? is a parameter chosen appro-
priately. One then solves the Poisson equation

—VPVE = dn(p+ p,). (12)

with zero Dirichlet or periodic boundary conditions to obtain

qg= Vion Vs +Vc[p] +ch[p]



V* is the Coulomb potential resulting from the charge distribution p,. It is
computed analytically by adding the solutions of the radial Poisson problem
associated with each Gaussian charge:

v,(r) = % %ﬁ(w). (13)

a
a=1 TC

This procedure is standard in electronic structure calculations; e.g., see [24].

The potential ¢ is needed at the numerical integration points to evaluate the
stiffness matrix coefficients. It is straightforward to compute V%" at each
integration point by simply evaluating the atomic potentials at these points.
For V*¢, we need p at each integration point. This value is obtained by first
evaluating each function ugf) at the integration points and then using Eq. (7).

To obtain the Coulomb potential V¢ at the integration points, the process is
more complicated. We first solve the Poisson problem (12) discretized using
the same Finite Element approximation applied to the KS equations. We solve
the linear system

IvY = f*, (14)

and then we evaluate the FE solution

v (%) = D (V)5 (x) (15)

)

at the integration points. The loading vector f* on the right hand side of
Eq.(14) is computed by a quadrature formula and its entries are defined by

(£%); = Am(P*(p + ps))i = 4m > 5 (%) (p + ps) (xi)wie. (16)

Here, the sum is over all the integration points in the support of ¢5.
We evaluate the KS energy of a FE solution according to the following defini-

tion

EfS:=Tr(M™'L) + ; " (p(xx)) p(Xx)wy,

# SV VGl + 5 3 (¢ s b (17

— By + Eaigy-



Egeif and Eg;r¢ are quantities that depend only on the atomic positions and
Gaussian neutralizing charges; they do not depend on the the solution of the
electronic structure problem [24]. The N x N matrix L is given by L; =
b(ug), uy ) Since Tr(M~'L) and p do not depend on the representation U of
the invariant subspace U™, the functional (17) is independent of the choice

for U.

This expression is compatible with the discretized KS equations (3) in the
sense that we have the following minimum principle:

Proposition 1 The finite element approximation of the invariant subspace
that minimizes the discretized energy functional EXS (17) admits a basis

{u "N | which satisfies

ah(ugf),vh) = Ag)(u% ,vp), Yo, € Sy, (18)

fori=1,...,N, and q given by (8).

PROOF. We can write Ef as
EXS = EFfi" 4 B¢ + Bl + Ef — Equy + Eaigs

where the various terms are defined by the obvious corresponding terms in
Eq.(17). Since EXS does not depend on the particular basis U of the invariant
subspace U™), we can assume without loss of generality that UTU = I. In
that case, M = I and
; 2
(uh) ()"

We then examine the first-order Varlatlon of the various terms constituting
EES in function of variations of uh subject to the orthonormality constraints

‘F%Z

@
Il
,_.

(u2)7uh )_6l]al7.] ]- '7N- (].9)
For variations 5u§f) of ug),i =1,...,N, we have
SEF™ = QZb(uh ul’ ) (20)
=1

We also have

10



SEj™ = Z(Vi‘m — V) (xk)dp(xx)wi

= ;Z (Voo — Vo) (i )up (x1) 00y, () w. (21)

k

Since by definition, 0(p(x)e*(x)) = v*¢(x)dp(x), we have

5EﬁC=§k:U$C(P(Xk))5P(Xk)wk
:2221}“ p(xx)) uh)(xk)éuh (xp ) wg. (22)

From (14),(15) and (16), v§ = L~1P*(p + ps), and thus

OB = (L' P*(p+ ps)) (x)dp(xs)wi

k
=23 S (LTP(p o+ ps)) (g Sy (i

-
Il
—

>

||
.MZ

s
I
—

; xk)du (Xk>’wk. (23)

Egeip and Eg;5¢ do not depend on U and thus 0E,er = 0 and dEg;r¢ = 0.

Introducing the Lagrange multipliers )\S’j ) corresponding to the orthonormal-
ity constraints of Eq. (19), we obtain from Egs. (20) — (23) and §EXS = 0,
that the minimum of E satisfies

N . .
an( ugf),cguh => N () ugf),(Sug:)) V(Su;f) € Sh.
7j=1

Proposition 1 follows directly from the fact that one can choose an orthonormal
basis U such that A\ = 0 for i # j.

This proposition is very important not only to ensure that an iterative solver
will be strictly converging from above toward the minimum energy, but also
in the evaluation of the atomic forces. Indeed, the Hellman-Feynman theorem
which states that forces can be determined with a single ground state calcu-
lation assumes that the discrete energy at the ground state is at a minimum
with respect to any variation in the electronic wave functions [25].

11



4 Numerical Solvers
4.1 Correction directions

Choosing to represent the invariant subspace we are looking for in a basis
of general nonorthogonal functions, as opposed to a basis of eigenfunctions,
allows more flexibility in the choice of iterative solvers. We use a block accel-
erated preconditioned steepest descent algorithm, independent of the basis U
chosen. The basic ingredient for such an approach is the gradient of the func-
tional (17), which is also the residual of Eq. (4). In the Ritz representation,
and using a block matrix notation, this residual is given by

G =M"KU - UA, (24)

where U is the matrix whose columns are the Ritz vectors, and A is a diagonal
N x N matrix composed of the Ritz values. To avoid the inversion of M, we
replace the residual (24) by an approximate residual

G =M"YKU - MUA) (25)

where M is a diagonal matrix approximating M. We use

(M)s; = 6;5(hi)?, (26)

where h; is the mesh spacing for the largest cell adjacent to node or edge .
The main purpose of this scaling matrix is to weight the coefficients according
to the mesh refinement level. In our experience, this approximation works well
for the quadratic hierarchical FE approach.

It is easy to see that for a general basis of non-orthogonal functions U, G is
given by
G=MYKU - MUM'K))

where K and M are N x N matrices given by

Kij = ah(us)vugj))v Mij = (ug)uugj)>

Suppose we have a trial solution U*). We can iteratively improve U®*) by
simple corrections of the form

U0 = g® _ G (27)

12



where T is a preconditioner and n a real positive coefficient. We propose an
appropriate multigrid preconditioner in Section 4.4.

4.2 Anderson extrapolation scheme

As shown in [13], the convergence of a simple block preconditioned steepest
descent algorithm with fixed shift can be improved significantly by using the
extrapolation scheme of Anderson [26]. In a nonorthogonal basis U, we write
this extrapolation scheme as

oo .=u® 4 i o)) (U= —u®) (28)
j=1

where UY) denote the trial solution at step ¢. The coefficients 9](@ € R are
defined as the solution of the linear system
3 (RO — R, RO _ RE=0) g0 — (RO — B9, RO, (29)

J=1
1=1,...,m.

where R is another iterative sequence associated to the same iterative pro-
cess, for instance the residuals at steps ¢,¢ — 1,.... The solution of Eq. (29)
minimizes the norm of R, defined as the extrapolation of R according to
the scheme (28). In practice, we use (—T'G) as the sequence R®) so that the
solution of Eq. (29) minimizes the preconditioned approximate residual of the
eigenvalue problem. Finally, the new trial solution is computed as

U = g0 4 gRO.
We usually choose a scalar value § between 0.5 and 1.

In the space of nonorthogonal functions representing a basis of an N-dimensional
subspace V, a natural scalar product would be

(VW) =Tr(M*VIMW) (30)

for V and W matrices representing /N vectors of finite element coefficients, and
(M)y; = (uﬁf), u}f)) at step £. The scalar product in Eq. (30) is independent of
any linear mixing within the basis we choose for U¥). It can however become
computationally expensive for large problems. To reduce its cost, we drop the

13



matrix M~ in Eq. (30). The effect of this change is limited by orthonormaliz-
ing the trial solution at regular intervals, say every 20-30 iterations. Numerical
tests show no major difference using this approximation.

Anderson’s extrapolation scheme was designed to iteratively solve nonlinear
equations [26]. In the case of an eigenvalue problem like the KS equations,
the residual vanishes not only for the lowest eigenvalues we are interested in,
but for any set of eigenvalues. In order to avoid the converging to undesired
solutions, some care is required during the first few steps of the iteration when
the trial solution is far from the ground state. In practice, we avoid problems
by starting with a few — 2 to 5 — iterations without extrapolation. Also, a
"safety” interval is used for Gé outside of which the extrapolation is turned
off — for very large absolute values — or truncated to be inside the safety
interval.

4.8 FAC Poisson solver

To solve for the electrostatic potential in DFT, we need an efficient solver
for Eq.(14) discretized on an AMR grid. In this section, we present a multi-
grid Fast Adaptive Composite (FAC) [27] Poisson solver appropriate for our
quadratice FE discretization. An adaptation of this solver will be used in the
next section as a preconditioner for the KS equations iterative solver. Our
FAC solver is based on the underlying idea that one can precondition high-
order finite elements with lower-order elements [28]. To do this, we decompose
the quadratic FE space S} into two complementary subspaces S, =V, + W,
where W), denotes the trilinear finite element space and V}, is the subspace of
the functions in S, with nodal interpolant v’ = 0. Let Iy, and Iy be the nat-
ural injections from V}, and W), respectively, into Sj. In [28] a preconditioner
B for the Laplacian operator L is proposed in the form

B := W Iy I} + Ly Lyt Ly

where Ly, is the Laplacian operator in W), and h is a typical mesh spacing for
a quasi-uniform triangulation.

Based on the same idea of subspace decomposition, we have designed a multi-
grid FAC V-cycle to solve a Poisson problem discretized by hierarchical quadratic
FE on an locally-refined mesh. The algorithm is as follows:

Algorithm 1 FAC Poisson solver for quadratic FE.

(1) Pre-smoothing: carry out vy red-black Gauss-Seidel sweeps, starting with
the edge degrees of freedom, followed by the node degrees of freedom.

14



(2) Coarsen residual r by dropping the edge degrees of freedom, leading to a
trilinear FE residual equation Lv =1

(3) Solve iteratively trilinear FE residual equation on composite grid by FAC
algorithm
o V-cycles with Jacobi smoothing at each level
e Solve trilinear FE problem on the finest uniform global mesh with stan-

dard multigrid solver

(4) Correct quadratic FE trial solution with solution v of trilinear FE residual
equation.

(5) Post-smoothing: carry out vy red-black Gauss-Seidel sweeps, starting with
the edge degrees of freedom, followed by the node degrees of freedom.

The FAC algorithm attempts to iteratively solve the Poisson problem on a
locally-refined mesh using a series of approximate solves (i.e., smoothing steps)
on the uniform mesh levels. When a mesh does not cover the whole computa-
tional domain, boundary conditions are provided by interpolating the current
solution from the next coarser level. To treat the trilinear FE problem on the
coarsest mesh level, we employ a linear solver from the hypre library [29].

4.4 Preconditioning strategy

The utility of a preconditioner to accelerate the iterative solution of the Kohn-
Sham equations has long been recognized in the Plane Waves community
[30]. Typically an equation for the error U on the trial invariant subspace
representation U can be written down as

KU — MSUA = —KU + MUA (31)

where A denotes the diagonal matrix of Ritz values associated with the trial
solution U — Ritz vectors — of the eigenvalue problem (4). In the domain of
highly oscillatory functions, the Laplacian becomes the dominant part of the
operator K — AM and the left hand side of Eq. (31) can be approximated by
LoU. This is valid for the high frequency component of U, precisely the com-
ponents that limit the length of the step in a simple steepest descent with a
fixed shift algorithm. Thus, in Fourier space, one can design a diagonal precon-
ditioner to rescale the weights of various frequency components and damp the
high frequency components [30]. In real-space, a similar preconditioner can be
designed using the multigrid method (e.g., see [31]). For electronic structure
calculations, this has been described in [24] for a finite differences scheme on a
uniform mesh. Here, we apply a similar idea for a quadratic FE discretization
on a locally-refined mesh.
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We use the following preconditioner:

2 B
T— <—L _ M) _ L (32)
(0% (6%

The operator L' is defined by its action on a vector £* € S}. The computa-
tion of u = L~f* is accomplished by applying one V(2,2) multigrid cycle for
the linear system Lu = f* using the FAC scheme described in Section 4.3, but
visiting only the levels with mesh spacing h < H. The coarse level problem
(h = H) is only approximately solved by 4 Jacobi smoothing steps. The pa-
rameter « is an approximation of the largest eigenvalue for the KS operator
on the level with mesh spacing H. The parameter H is problem dependent
and is chosen heuristically by numerical experiments. To understand the form
of this preconditioner, we examine its effect in the low and high frequency do-
main of the FE space. For typical elliptic equations like the Poisson problem,
smoothing sweeps in a multigrid cycle reduce the error in the frequency range
associated to each grid level while leaving lower frequency error components
almost unchanged. Thus, for the high frequency components, L7'L ~ I and
T ~—L'M, effectively damping the high frequency components of £*. In the
low frequency domain (wavelength >> H ), L' ~ 0 and T becomes a simple
steepest descent damping factor a~! for a mesh spacing H.

5 Implementation

The algorithms described in this paper are implemented using the tools pro-
vided by SAMRALI, an object oriented parallel software infrastructure for gen-
eral AMR applications on structured grids [19]. SAMRALI is an object-oriented
C++ software library developed in the Center for Applied Scientific Com-
puting at Lawrence Livermore National Laboratory. SAMRAI simplifies the
implementation of SAMR applications by providing general tools to build dy-
namic locally-refined mesh hierarchies and manipulate data, such as arrays
of node, edge, and cell quantities, on those hierarchies. Each mesh level is
decomposed into patches that are distributed among processors using load
balancing algorithms also provided by the library. Parallel data management
and communication operations, such as exchanging data between patches on
different mesh levels, is provided by the library. In our FE formulation, we
must properly account for nodes and edges around patch boundaries that be-
long to more than one patch, including patches on different levels. This occurs,
for example, when computing a vector in S;. SAMRALI provides tools to sum
contributions from all the patches and get a common node or edge value.

In our KS solver implementation, the stiffness and mass matrices are never
stored. Instead the matrix-vector application is defined using the non-zero
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matrix elements. In our SAMR approach, all the cells are identical at each
level and matrix elements for the Laplacian of the Mass matrix depend on the
refinement level only. For the potential operator, represented by the matrix
Qn, we use Eq.(5) with 27 Gauss quadrature points per cell (O(h®)).

Typically, we treat slave nodes and edges as additional unknowns and enforce
continuity by additional equations. From a practical point of view, operations
on individual patches are carried out uniformly over all the cells within a
patch. Then in a postprocessing step, values at the boundaries are corrected
to take into account the continuity constraints. It means that when computing
elements of vectors in Sj, contributions from a coarser or finer level (e.g., at
coarse-fine mesh boundaries) or from neighboring patches at the same refine-
ment level need to be summed up. In particular, values attributed to slave
nodes or edges FE basis functions are used to compute contributions associ-
ated to coarse-fine interface basis functions.

6 Numerical Results

6.1 Poisson problem

In this section, we apply the FAC algorithm presented in Section 4.3 on a test
Poisson problem. This problem is central in electronic structure calculations
to compute the electrostatic interactions (Eq.(14)). In our algorithm, this is
also relevant for the efficiency of the preconditioner. We evaluate the FAC
algorithm convergence rate for a quadratic FE discretization of

—Au=f, in Q=(=2525)x (=2.5,2.5) x (—2.5,2.5)
u =0, on 0f2.

(33)

The right hand side f is defined by the radial function

1 4 2 /.2 2 /.2
_ —ar /Tc _ pT /Tc
g(r) = T (86 e )

with the origin chosen at (0,0, 0). The integral of the function g over R3 is 0.
In an infinite domain (R?), this problem would admit the exact solution

(erfQ@2r/re) —erf(r/re))

1
) = o
which quickly decays to zero. In Table 1, we present convergence results for the
FAC algorithm. The uniform (coarse) mesh problem is approximately solved
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Table 1

Number of FAC-V(2,2)-cycles needed to reduce the initial error by a factor 1078 in
H' norm for various uniform meshes and number of refinement levels. The mesh is
locally refined in 25% of the total volume for the first level and 5% for the second
level.

No. refinement levels
uniform global mesh | 0 1 2
16 x 16 x 16 12 12 13
32 x 32 x 32 12 12 12
64 x 64 x 64 12 11 12

by hypre asking for a reduction of the residual by a factor 0.1. The results
demonstrate a mesh-independent convergence rate, as well as very similar
convergence rates for locally refined and uniform meshes.

6.2 FElectronic structure calculations

As test applications for DFT calculations, we have chosen Beryllium clusters
made of 4 and 17 atoms. Clusters calculations benefit from local mesh refine-
ment since they usually require computational domains much larger than the
cluster itself to simulate the surrounding vacuum. Figure 2 illustrates a Bey
cluster calculation on a hierarchy made of 2 grid levels. In the present work,
we use the pseudopotential of Beryllium parameterized by Goedecker et al.
[32].

We verified our numerical algorithm by computing the total energy on a do-
main with periodic boundary conditions using various mesh spacings and ob-
serving convergence towards the energy computed by an independent Plane
Waves code. The convergence rate for the energy is O(h*) in the mesh spacing
variable h, which is in agreement with the theoretical convergence rate for the
eigenvalues [33]. This is shown in Fig. 3. We also observe improved efficiency
resulting from local mesh refinement. The results obtained with locally refined
meshes provide the same accuracy as the results obtained on uniform meshes
corresponding to refined regions meshes with a six-fold reduction in number
of degrees of freedom.

We tested our multigrid preconditioner on this same application, using various
Finite Elements meshes. For all the calculations presented in Fig. 4, the coars-
est grid in the multigrid preconditioner was set to 16 x 16 x 16 cells. We show
results using discretizations on 3 different uniform meshes — 16 x 16 x 16,
32 x 32 x 32, and 64 x 64 x 64 — as well as with the two meshes refined locally
in 25% of the volume. The results were obtained using the block Anderson
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extrapolation scheme described in Section 4.2 , with m = 2, and multigrid
preconditioning. In the iterative process, the non-linear potential is updated
at each step, i.e. after every update of the wave functions, to ensure that the
true gradient is always used. The numerical results show a convergence rate
nearly independent of the discretization mesh and the use of local refinement.
This demonstrate the efficiency of the multigrid preconditioner.

We measure the strong parallel scaling on a larger problem: a Be cluster made
of 17 atoms. The solution to this problem involves 34 functions that we repre-
sent on a mesh of 64 x 64 x 64 cells, refined by a factor 2 in 1/8 of the volume
— thus the fine level mesh is also made of 64 x 64 x 64 cells. For this problem,
each level is divided into a number of patches corresponding to the number of
processors. The size of the patches varies from 16 x 32 x 32 cells on 16 CPUs
to 8 X 16 x 16 cells on 128 CPUs. Going from 8 processors to 128, we measure
a parallel efficiency of about 80% which is quite satisfactory for this fixed size
problem. 3

7 Concluding Remarks

In this paper we have presented a finite element method for Density Func-
tional Theory calculations on structured locally refined meshes. We have also
described an efficient multilevel solver for this problem. The algorithm com-
plexity essentially scales like O(M x N?), where M is the size of the finite
element basis used to discretize the problem, and N is the number of elec-
tronic wave functions to compute (see computation of G, M, K for instance).

As mentioned in the introduction, one interesting aspect of any real-space
discretization is the possibility of representing the electronic structure in terms
of spatially localized orbitals to achieve an O(N) computational complexity.
Representing localized orbitals in a finite element basis with adaptive mesh
refinement such as presented above instead of strictly localized functions —
such as proposed in Ref.[12], e.g. — is an idea that we are currently studying.

Finally, to put the method presented above into perspective, we should men-
tion some comparison with the previous work of one of us (J.-L. F.) using finite
differences. For total energy calculations on uniform meshes, the quadratic
finite element method appears to achieve a very similar accuracy and conver-
gence rate as a standard 4*"-order finite difference calculation — measured per
degree of freedom. For the same number of degrees of freedom, our present
(non-optimal) implementation of the finite element approach is somewhat

3 The calculations were carried out on the Lawrence Livermore National Laboratory
1024 nodes Linux cluster MCR.
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slower than our finite difference code, but of the same order of magnitude
(factor ~ 2). Obviously, using local mesh refinement reduces the number of
degrees of freedom and easily compensates for that difference in many cases.
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Fig. 1. Nodes and edges at coarse/fine interface in a quadratic FE method. Green
edges values are defined by quadratic interpolation from 3 fine nodes values in edge
direction.

Fig. 2. Electronic structure calculation of Bey cluster on composite mesh. The two
structured mesh levels and their decomposition in 8 patches are shown. An isosurface
of the electronic density is plotted, surrounding the 4 Be atoms represented by
spheres.
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Fig. 3. Discretization error as a function of mesh spacing for a Bey cluster calculation
with periodic boundary conditions. The reference result is an independent fully
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Fig. 5. Parallel scaling for fixed size problem (Be;7 cluster). The coarse level is made
of 64 x 64 x 64 cells. The mesh is refined in 1/8 of the volume.
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