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Abstract

This report addresses the potential application of probabilistic fracture mechanics computer codes to
support the Proactive Materials Degradation Assessment (PMDA) program as a method to predict
component failure probabilities. The present report describes probabilistic fracture mechanics
calculations that were performed for selected components using the PRO-LOCA and PRAISE computer
codes. The calculations address the failure mechanisms of stress corrosion cracking, intergranular stress
corrosion cracking, and fatigue for components and operating conditions that are known to make
particular components susceptible to cracking. It was demonstrated that the two codes can predict
essentially the same failure probabilities if both codes start with the same fracture mechanics model and
the same inputs to the model. Comparisons with field experience showed that both codes predict
relatively high failure probabilities for components under operating conditions that have resulted in field
failures. It was found that modeling assumptions and inputs tended to give higher calculated failure
probabilities than those derived from data on field failures. Sensitivity calculations were performed to
show that uncertainties in the probabilistic calculations were sufficiently large to explain the differences
between predicted failure probabilities and field experience.
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Executive Summary

The U.S. Nuclear Regulatory Commission (NRC) has supported the research program Proactive
Materials Degradation Assessment (PMDA). The objective of this program has been to predict future
occurrences of materials degradation that may or may not have been observed in the field or in the
laboratory. Evaluations have focused on materials degradation modes associated with operating
environments for specific components, including stress corrosion cracking, fatigue, flow-accelerated
corrosion, boric acid corrosion, thermal embrittlement, and radiation effects. A detailed review addressed
over 2000 components in the primary, secondary, and tertiary systems of specific reactor designs. A
group of experts provided their judgments to score individual components in terms of “degradation
susceptibility” and the “extent of knowledge” available for developing mitigation actions.

This report addresses the possible application of probabilistic fracture mechanics computer codes to
support the PMDA program as a method to predict component failure probabilities. Probabilistic fracture
mechanics calculations are described that were performed for selected components using the PRO-LOCA
and PRAISE computer codes. The calculations address the failure mechanisms of stress corrosion
cracking, intergranular stress corrosion cracking, and fatigue for components and operating conditions
that are known to have failed components in the field. The calculations allowed the two computer codes
to be benchmarked against each other and, more importantly, benchmarked against field experience.

A review of the calculations showed how uncertainties and modeling assumptions can impact
calculated failure probabilities. Comparisons with field experience showed that both codes are capable of
predicting high failure probabilities for the components for which operating conditions have resulted in
field failures. It was found that assumptions made to deal both with uncertainties in the treatment of
degradation mechanisms and with estimates of input parameters can give significantly higher failure
probabilities than those derived from data on field failures. Sensitivity calculations were performed to
address uncertainties associated with residual stresses, operating stresses, and temperatures. Results of
these calculations showed that the identified uncertainties in the probabilistic calculations were
sufficiently large to explain the differences between the predicted and observed failure probabilities.
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1.0 Introduction

The U.S. Nuclear Regulatory Commission (NRC) has supported the research program Proactive
Materials Degradation Assessment (PMDA).® The objective of this program has been to assess the
possible future occurrence of materials degradation in components of light water reactors. A central
intent of the PMDA program has been to predict degradation that may or may not have been observed in
the field or in the laboratory. Another objective is to consider the possibility of unexpected increases in
degradation with time.

The PMDA program has included an assessment, conducted under contract with Brookhaven
National Laboratory, of past and possible future materials degradation in light water reactors. The study
used a Phenomena Identification and Ranking Technique (PIRT)-type of process involving eight experts
from five countries who met to discuss the technical issues and perform individual assessments. The
analyses focused on materials degradation modes associated with operating environments for specific
components, such as stress corrosion cracking, fatigue, flow-accelerated corrosion, boric acid corrosion,
thermal aging embrittlement, and radiation effects for existing plants. The work encompassed passive
components whose failure would lead to release of radioactivity, or would affect safety systems. The
study did not address design issues such as mechanics and thermal hydraulics, the consequences of
degradation, or the failure of active components such as valves and pumps.

A detailed review by the panel of experts addressed over 2000 components in the primary, secondary,
and tertiary systems of pressurized water reactors (PWRs) and boiling water reactors (BWRs). Each
expert individually provided judgments to score individual components in terms of “degradation
susceptibility” and the “extent of knowledge” available for development of mitigation actions. These
inputs were compiled and were used to generate a summary to reflect the collective judgments of the
experts.

This report describes a study performed for NRC by Pacific Northwest National Laboratory (PNNL)
with subcontractor support from the Engineering Mechanic Corporation of Columbus (EMC?) and Sigma
Phase Inc. The study addressed the application of probabilistic fracture mechanics computer codes to
support the PMDA program as a method to predict component failure probabilities. The probability of
failure information would be used in probabilistic risk assessments to evaluate the risk importance of
various components found to be susceptible to future degradation.

This report describes probabilistic fracture mechanics (PFM) calculations that were performed for
selected components using the PRO-LOCA (Rudland et al. 2006, Unpublished®) and PRAISE (Harris
and Dedhia 1992; Harris et al. 1981, 1986) computer codes. One code (PRAISE) was originally
developed for the NRC during the 1980s and has been applied by PNNL and other organizations to a
range of risk-informed applications, most notably for risk-informed inservice inspection. The other code
(PRO-LOCA) is currently being developed for NRC by Battelle Memorial Institute and EMC?, and is

() USNRC. 2005. Proactive Materials Degradation Mechanism Assessment. Draft NUREG/CR
Report. U.S. Nuclear Regulatory Commission, Washington, D.C.

(b) Rudland DL, H Xu, G Wilkowski, N Ghadiali, F Brust and P Scott. Unpublished. Evaluation of
Loss-of-Coolant Accident (LOCA) Frequencies Using the PRO-LOCA Code, Technical Letter Report,
December 2005.
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intended to incorporate the best elements of other PFM codes, advances in the fracture mechanics, and
data on fracture behavior of materials of interest to nuclear pressure boundary components. The scope of
both codes is the prediction of piping failure probabilities for various degradation mechanisms including
failures from preexisting welding flaws, fatigue crack initiation, intergranular stress corrosion cracking
(IGSCC), and primary water stress corrosion cracking (PWSCC). Both codes simulate the progress of
degradation from the initiation of small cracks, to the growth of these cracks to become small through-
wall leaking flaws, and finally the occurrence of large leaks and piping ruptures.

Calculations were performed by PNNL and EMC? to allow the two computer codes to be
benchmarked against each other and, more importantly, benchmarked against field experience. The
objective was to determine the extent to which uncertainties and modeling assumptions may impact
calculated failure probabilities. The comparisons with field experience were intended to establish
whether the codes were capable of predicting relatively high failure probabilities for those components
and operating conditions that have resulted in field failures. Sensitivity calculations were also performed
to address uncertainties associated with residual stresses, applied stresses, and temperatures. Results of
these calculations were intended to identify those uncertainties in the probabilistic calculations that are
sufficiently large to explain the differences between predicted failure probabilities and failure
probabilities based on field experience.

Section 2 provides background on past and present efforts to develop probabilistic fracture mechanics
codes both in the U.S. and overseas. The capabilities and limitations of the two codes (PRAISE and
PRO-LOCA as applied in this report) are summarized along with prior NRC-related applications to
piping integrity issues. Also discussed in Section 2 and in Appendix A are methods that use data from
field experience to estimate failure probabilities as a function of time and plant operating conditions.

Section 3 presents calculations performed with both PRAISE and PRO-LOCA. Results of
calculations for PWSCC, IGSCC, and thermal fatigue are used to benchmark the failure probabilities as
predicted by the two codes. Each set of calculations is also benchmarked against failure probabilities
derived in Appendix A from a field experience database.

Section 4 is a discussion of the model assumptions, the uncertain nature of inputs, and their impacts
on calculated failure probabilities. Another issue is the unexplained differences in crack-growth rates
between laboratory tests and the apparently lower crack-growth rates observed in components under field
conditions as indicated by the lower-than-predicted occurrence rates for relatively large and leaking
cracks. The objective is to reconcile the consistently high failure probabilities predicted by the
probabilistic fracture mechanics calculations relative to the lower failure probabilities indicated by field
experience.

Chapter 5 describes some calculations with the PRAISE code that use a crack initiation model
developed for fatigue cracking. This model is used with inputs based on laboratory data for crack
initiation by PWSCC in Alloy 182. The calculations allowed crack initiation to be predicted with a model
that (with sufficient laboratory data) can account for material, environment, stress, and temperature
effects. Sensitivity calculations address the effects of uncertainties in stresses that could occur, such as
when the combination of operating stress and residual stresses gives calculated stresses that exceed the
material yield strength. Other calculations address variations of stress around the circumference of a pipe
and uncertainties in plant operating conditions.
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Section 6 summarizes the results and conclusions from the probabilistic fracture mechanics
calculations and suggests future calculations that could give predictions of component failure probabilities
that better agree with field experience.
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2.0 Methodology

This section describes the computer codes used for the benchmarking effort along with the methods
and results from an application of a database on reported failure events at operating nuclear power plants.

2.1 Probabilistic Fracture Mechanics Codes

The two PFM codes applied for the calculations in this report are PRO-LOCA (Rudland et al. 2006,
Unpublished®) and PRAISE (Harris et al. 1981, 1986; Harris and Dedhia 1992). These two codes were
developed for the NRC to address piping failures, with PRAISE being developed and enhanced over a
time period starting in the 1980s and PRO-LOCA being a more recent code developed starting in 2003
and seen as a successor to PRAISE. In this section, we briefly describe the features and historical
development of the two codes along with reference to other codes that have also been applied to predict
failure probabilities of nuclear pressure boundary components. The other probabilistic fracture mechanics
codes for piping were not developed for NRC, but by other organizations, and as such are not generally
available in the public domain (Bell and Chapman 2003; Bishop 1997). Excluded from the discussion are
other significant probabilistic fracture mechanics codes, such as FAVOR (Dickson 1994; Dickson et al.
2004; Williams et al. 2004) and VISA-II (Simonen et al. 1986), which were specifically developed to
predict failure probabilities for reactor pressure vessels that are subject to radiation embrittlement.

The first version of PRAISE (Harris et al. 1981) was developed in the 1980s by Lawrence Livermore
National Laboratory under contract to NRC, with the initial application to address seismic-induced
failures of large-diameter reactor coolant piping. This version of the code addressed failures (small leaks
and ruptures) associated with fabrication flaws in welds that were allowed to grow as fatigue cracks until
they either caused the pipe to leak or exceed a critical size needed to result in unstable crack growth and
pipe rupture. The next major enhancement to the code (Harris et al. 1986) addressed IGSCC and
simulated both crack initiation and crack growth. The enhanced code allowed for crack initiation at
multiple sites around the circumference of a girth weld and simulated linking adjacent cracks to form
longer cracks more likely to cause larger leaks and pipe ruptures.

In the early 1990s a version of PRAISE (pc-PRAISE) was developed to run on personal computers
(Harris and Dedhia 1992). The mid-1990s saw the development of methods for risk-informed inservice
inspection, for which there were many new applications of PRAISE. A new commercial version of
PRAISE (winPRAISE) was made available by Dr. David Harris of Engineering Mechanics Technology
that simplified the input to the code with an interactive front end (Harris and Dedhia 1998). During this
same time period, PNNL made numerous applications of PRAISE to apply probabilistic fracture
mechanics to support the development of improved approaches to inservice inspection (Khaleel and
Simonen 1994a, 1994b, 2000; Khaleel et al. 1995; Simonen et al. 1998, Simonen and Khaleel 1998a,
1998b). The objective of this work was to ensure that changes to inspection requirements could be
justified in terms of reduced failure probabilities for inspected components. Other work at PNNL for
NRC (Khaleel et al. 2000) involved evaluations of fatigue critical components that could potentially attain
calculated fatigue usage factors in excess of design limits (usage factors greater than unity).

(a) Rudland DL, H Xu, G Wilkowski, N Ghadiali, F Brust and P Scott. Unpublished. Evaluation of
Loss-of-Coolant Accident (LOCA) Frequencies Using the PRO-LOCA Code, Draft Technical Letter
Report, December 2005.
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The most recent upgrades to PRAISE (Khaleel et al. 2000) were developed to support these fatigue
evaluations, with the upgrade consisting of a model similar to that for IGSCC but directed at predicting
the probabilities of initiating fatigue cracks. This new model was used to develop the technical basis for
changes to Appendix L of American Society of Mechanical Engineers (ASME) Section XI that addresses
fatigue critical locations in pressure boundary components (Gosselin et al. 2005). The PRAISE code has
been extensively documented, successfully applied to a range of structural integrity issues, and has been
available since the 1980s as a public domain computer code. However, the code has not been maintained
and upgraded in an ongoing manner. Upgrades have been performed to meet the needs of immediate
applications of the code and as such have served to fill very specific gaps in capabilities of PRAISE.

The development of the PRO-LOCA code was motivated by an NRC need to address issues related to
loss-of-coolant accident (LOCA) events. The need for an improved probabilistic fracture mechanics code
became evident during an expert elicitation process that was funded by NRC (Tregoning et al. 2005) to
establish estimates of LOCA frequencies and to quantify the uncertainties in the estimates. A version of
the PRO-LOCA code was developed and applied in calculations described in this report. Development of
the code is expected to continue in future years including documentation of the code and preparation of
detailed user instructions needed to support the release of the code to outside organizations.

A report on the status of PRO-LOCA has been prepared by Battelle Memorial Institute and EMC? and
the reader is directed to this report (Rudland et al. Unpublished®) for features and technical basis for
PRO-LOCA. Like PRAISE, the PRO-LOCA code addresses the failure mechanisms of preexisting
cracks, fatigue associated with initiated cracks, and IGSCC. While both codes include calculations for
crack-tip stress intensity factors, the differing computational approaches can give small differences in
numerical results. The two codes have different treatments for stresses due to dead-weight loadings and
due to piping system thermal expansion bending moments. PRO-LOCA accounts for the through-wall
variation of these stresses whereas PRAISE neglects the variation in stress. The PRO-LOCA model for
the initiation and growth of fatigue cracks is essentially the same as that in PRAISE whereas the IGSCC
model differs significantly from the predictive model in PRAISE.

PRO-LOCA has an additional capability to predict failure probabilities for PWSCC. Other improved
capabilities not incorporated in other codes such as PRAISE are in the areas of leak rate predictions and
the prediction of critical crack sizes. These enhancements are largely based on the results of some
20 years of NRC-supported research on the integrity of degraded piping. PRO-LOCA has also
incorporated an improved basis for simulating weld residual stresses.

Other probabilistic fracture mechanics codes for piping have been developed to calculate failure
probabilities for piping. The SRRA code (Bishop 1997; Westinghouse Owners Group 1997) developed
by Westinghouse follows much the same approach as the PRAISE code, but is limited to failures
associated with cyclic fatigue stresses considers only preexisting fabrication flaws. Fatigue crack
initiation has been approximated by assuming a very small initial crack, but with only one initiation site
per weld. Stress corrosion cracking is similarly treated by postulating a very small initial crack, and

(a) Rudland DL, H Xu, G Wilkowski, N Ghadiali, F Brust and P Scott. Unpublished. Evaluation of
Loss-of-Coolant Accident (LOCA) Frequencies Using the PRO-LOCA Code, Draft Technical Letter
Report, December 2005.
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growing the crack according to user-specified parameters for a crack growth equation. The SRRA code
includes an importance sampling procedure that gives reduced computation times compared to the Monte
Carlo approaches used by PRO-LOCA and PRAISE. Also the model can simulate uncertainties in a wide
range of parameters such as the applied stresses.

The European NURBIM (Brickstad et al. 2004) has looked at a number of codes including PRAISE
as part of an international benchmarking study. Included were a Swedish code NURBIT (Brickstad and
Zang 2001), the PRODIGAL code from the United Kingdom (Bell and Chapman 2003), a code developed
in Germany by GRS (Schimpfke 2003), a Swedish code ProSACC (Dillstrom 2003) and another code
(STRUEL) from the United Kingdom (Mohammed 2003). The results of the NURBIM study (Brickstad
et al. 2004; Dillstrom 2003) will not be documented here. The present review concluded that none of the
other benchmarked codes provided capabilities significantly different than or superior to the capabilities
of PRAISE. In any case, the predictions of all such codes are limited in large measure by the quality of
the values that can be established for the input parameters, as well as the validation (or lack of validation)
with service experience.

2.2 Application of Database on Field Experience

This section summarizes methods based on evaluations of data from field experience that are used to
estimate component failure probabilities. A more complete discussion of these methods can be found in
Appendix A. Failure probabilities estimated by detailed evaluations in Appendix A are summarized here
for the components that are addressed by probabilistic fracture mechanics calculations described in
Section 3.0 of the present report.

Application of Data to Estimate Failure Probabilities — Risk-informed evaluations require realistic
estimates of pipe failure rates and rupture frequencies that relate to specific combinations of materials,
degradation mechanisms, and plant operating conditions. As described in Appendix A, there are basically
five approaches for estimating piping reliability:

(1) Structural reliability modeling (SRM) based on probabilistic fracture mechanics,
(2) Analytical modeling using Markov theory and statistical analysis of service data,
(3) Direct statistical estimation using service data,

(4) Expert judgment/expert elicitation, and

(5) Any combination of (1) through (4).

The discussion below addresses statistical estimation using service data (Method 3). The term
“failure” can in general imply any degraded state requiring remedial action. Remedial actions include
repairs and replacements with or without more resistant material. Precise definitions of failure are
important to make distinctions between different through-wall flaw sizes that have different effects on
plant operation and safety. In recent risk-informed applications (Tregoning et al. 2005), the definitions of
structural failure modes listed in Table 2.1 were used.
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Table 2.1. Example Definitions of Structural Failure for PWR LOCA

Mode of Structural Equivalent Pipe Break Peak Through-wall

Failure Diameter (EBD) [mm] Flow Rate (FR) [kg/s]

Perceptible Leak >0 FR>0

Large Leak 15 <EBD <50 0.5<FR<Z5

Small Breach 50 <EBD <100 5<FR<20

Breach 100 <EBD <250 20 <FR <100

Large Breach 250 <EBD <500 100 <FR <400

Major Breach EBD > 500 FR > 400 (6,300 gpm)

In reporting results of the benchmarking calculations, an additional “failure” mode of crack initiation
was defined that included cracks of less than through-wall depth.

The database PIPExp-2006 (Lydell and Olsson 2006; OECD 2005, 2006) was applied to estimate
failure frequencies. With emphasis on light water reactors (LWRs) and covering the period 1970 to the
present, PIPExp-2006 is a frequently updated and maintained database on pipe failures in commercial
nuclear power plants worldwide. Currently the database includes 6600 pipe failure reports plus an
additional 465 records on water hammer events that challenged or degraded the structural integrity of an
affected piping pressure boundary.

Table 2.2 summarizes input data and results from the Appendix A evaluations of service experience
for the selected components. The number of welds found to have through-wall cracks is seen to be very
small — ranging from zero to seven reported events per component category. Because the number of
events has been small, there are large statistical uncertainties in estimates of frequencies of through-wall
cracks. Uncertainties are particularly large for the pressurizer surge nozzle and pressurizer spray nozzle,
because there have been only two cases of repairs (cracks with less than through-wall depths) and no
cases of through-wall cracks.

In cases with no reported failures for a particular component of interest, there are however methods
that can be applied to estimate (or bound) failure frequencies. Two approaches can be characterized as
follows:

(1) A bounding frequency is calculated based on the assumption that one failure occurs. The key input is
then the number of relevant weld-years of operation for which no failures have been reported for the
component of interest. The results can be viewed as an upper bound to the failure frequency. As an
example, the present evaluations in effect assumed a single weld with a through-wall crack in the
pressurizer spray line nozzle weld. In this case, there have been reported cracks (less than through-
wall) that have required repairs, which makes it credible that a through-wall crack could occur.
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Table 2.2. Summary of Input Data and Results from Estimation of Failure Frequencies from Database on Operating Experience

Number of Mean Frequency of
Number of Cracked/Repaired Number of Welds with Through-Wall Flaw
Component/Inspection Location Weld-Years Welds Through-Wall Cracks [1/Weld-Year]
PWR Hot Leg All: 10,784 2@ 1@ 9.1x10°®
Bi-metallic Weld 2-Loop: 2,510
(RPV Nozzle-to-Safe-end) 3-Loop: 3,570
4-Loop: 4,704
PWR Pressurizer Spray Case 1© 1x 3621 = 3,621 1 0 1.5x10°
Line Nozzle @ _ -
Bi-Metallic Weld Case 2 5 x 3621 = 18,105 5 1 2.1x 10
Case 3© 1 x 3621 = 3,621 1 Assume 1 7.3x10°
PWR Pressurizer Surge Case 10 2 x 3621 =7,242 2 0 1.2 x10°
Line Nozzle Case 20 _ . 1 P
Bi-Metallic Weld ase 7 x 3621 = 25,347 1.6 x 10
Case 3™ 2 x 3621 = 7,242 2 Assume 1 43 x10°
BWR Reactor Recirculation 25,137 120 7 2.8x10*®
12-inch Weld (pre-1988)
U.S. BWR/3 & BWR/4
BWR Reactor Recirculation 19,551 72 5 26x10%0

28-inch Weld (pre-1988)
U.S. BWR/3 & BWR/4

(@) Service experience through December 2005.

(b) This is a composite failure rate under assumption of equal susceptibility to PWSCC in 2-loop, 3-loop, and 4-loop PWR plants with bi-metallic welds.
(c) Case 1 accounts for existing service experience with bi-metallic pressurizer spray line bi-metallic welds.

(d) Case 2 assumes equal PWSCC susceptibility for bi-metallic pressurizer spray line weld and relief line welds — 5 welds per plant.

(e) Same as Case 1 except that the flaw found at Millstone-3 is assumed to be near or at through-wall.
(f) Case 1 accounts for existing service experience with bi-metallic surge line welds (hot-leg side and pressurizer side).
(g) Case 2 assumes equal PWSCC susceptibility for bi-metallic surge line welds, pressurizer spray line weld, and pressurizer relief line welds (7 welds per

plant).

(h) Same as Case 1 except that 1 of 2 flaws in the service experience is near or at through-wall.

(i) Average failure rate across all welds in a typical Reactor Recirculation System.




(2) The population of components is expanded to include a larger base of components that have similar
materials, designs, and operating conditions as the particular component of interest. The success of
this approach requires appropriate judgments regarding components that should be included in the
larger population. By considering more components, the relevant data is more likely to show some
actual failure events and will cover a much larger number of weld-years of operation. By expanding
the population, estimated failure frequencies can either increase (the number of events increases
significantly) or can decrease (a much larger number of weld-years of operation with no significant
increase in failure events).

PWR Hot-Leg Bi-Metallic Weld — This example considered the bi-metallic hot-leg weld at the joint
between the reactor coolant piping and the reactor pressure vessel nozzle. The database showed one
event with a through-wall crack (V.C. Summer event of 2000). Consideration of cracked welds with less
than though-wall crack depths added another event (Ringhals-4). The calculated failure frequency is
listed in Table 2.2 as 9.1 x 10~ per weld-year based on the number of relevant welds per plant and the
number of reactor years of operation up to the year 2000. With the additional Ringhals-4 event, the

frequency increases to 1.5 x 10™. In this evaluation, the relevant population was limited to the hot leg.
Other bi-metallic welds in PWR plants (PWR cold-leg weld and other PWR bi-metallic welds of piping
of various diameters) were excluded from consideration. There was some failure experience for the hot
leg (although limited to one event) and the higher temperature of the hot leg and other unique attributes of
the hot leg can justify a special evaluation for this component.

PWR Pressurizer Surge Nozzle Bi-Metallic Weld — This example considered the bi-metallic weld at
the joint between the surge line and the pressurizer. The database showed no events with a through-wall
crack. Consideration of cracked welds with less than though-wall crack depths showed two events. Two
calculated failure frequencies are listed in Table 2.2 as 1.2 x 10® and 1.6 x 10” per weld-year based on
the number of relevant welds per plant (one) and the number of reactor years of operation up to the year
2005. In this evaluation, two assumptions were made regarding the relevant population. In one case, the
population was limited only to surge line nozzle welds. In the other case, bi-metallic welds in PWR
plants (other PWR bi-metallic welds in piping of various diameters but not the hot-leg weld) were
included. The order of magnitude difference in the two estimated failure frequencies comes from the
different number of weld-years of operations between the two assumptions regarding the population of
relevant welds and failure history (the difference is due to one through-wall flaw).

PWR Pressurizer Spray Line Nozzle Bi-Metallic Weld — This example considered the bi-metallic
weld at the joint between the spray line and the pressurizer. The database showed no events with a
through-wall crack. Consideration of cracked welds with less than though-wall crack depths showed two
events. Two calculated failure frequencies are listed in Table 2.2 as 1.5 x 10® and 2.1 x 10 per weld-
year based on the number of relevant welds per plant (one) and the number of reactor years of operation
up to the year 2005. In this evaluation, two assumptions were made regarding the relevant population. In
one case the population was limited only to spray line nozzle welds. In the other case bi-metallic welds in
PWR plants (other PWR bi-metallic welds in piping of various diameters but not the hot-leg weld) were
included. The order of magnitude difference in the two estimated failure frequencies comes from the
different number of weld-years of operation between the two assumptions regarding the population of
relevant welds and the failure history (one through-wall flaw).

2.6



BWR Reactor Recirculation 12-Inch Weld — This example considered the circumferential welds in
stainless steel piping in the BWR recirculation systems for time periods pre-1988 before mitigation
measures (augmented inspections, water chemistry improvements, etc.) were implemented at BWR
plants. The database showed seven events with through-wall cracks. Consideration of cracked welds
with less than though-wall crack depths added 120 events. The calculated failure frequency (through-wall
cracks) is listed in Table 2.2 as 2.8 x 10™* per weld-year based on the number of relevant welds per plant
and the number of reactor years of operation up to the year 1988. In this case, because of the reasonable
number of reported failure events and the already broad scope of the selected population, there was no
reason to consider a wider population of welds to provide a more robust basis for estimating a failure
frequency.

BWR Reactor Recirculation 28-Inch Weld — This example considered the circumferential welds in
stainless steel piping in the BWR recirculation systems for time periods pre-1988 before mitigation
measures (augmented inspections, water chemistry improvements, etc.) were implemented at BWR
plants. The data based showed five events with through-wall cracks. Consideration of cracked welds
with less than though-wall crack depths added 72 events. The calculated failure frequency (through-wall
cracks) is listed in Table 2.2 as 2.6 x 10™ per weld-year based on the number of relevant welds per plant
and the number of reactor years of operation up to the year 1988. In this case, because of the reasonable
number of reported failure events and the already broad scope of the selected population, there was no
reason to consider a wider population of welds to provide a more robust basis for estimating a failure
frequency.
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3.0 Benchmarking of PRO-LOCA and PRAISE

The benchmarking effort had the dual objectives of (1) comparing calculated failure probabilities with
failure probabilities derived from data from failure events at operating plants, and (2) comparing the
calculated failure probabilities from the PRO-LOCA (Rudland et al. 2006) and PRAISE codes (Harris
et al. 1981, 1986; Harris and Dedhia 1992; Khaleel et al. 2000). The cases for the benchmarking were
selected to cover a range of degradation mechanisms (fatigue, IGSCC, and PWSCC) and for components
that have experienced service-related degradation. Therefore, the calculated probabilities could be
compared to probabilities estimated from a database on reported service failures.

The specific components selected were

o dissimilar metal Alloy 182 welds in PWR primary coolant systems subject to PWSCC,
o stainless steel welds in BWR recirculation systems subject to IGSCC, and
o thermal fatigue nozzles connected to a PWR primary coolant pipe.

Details of the component designs, materials, temperature/environmental conditions, and the sources
and levels of stress imposed during plant operation are described. Results of the probabilistic fracture
mechanics calculations are presented along with failure probabilities obtained from the evaluations of
data on service failures that are described in Appendix A.

A detailed description of the two PFM codes is beyond the scope of this report. Details of the codes
will be discussed only in the context of particular calculations covered by the benchmarking effort.
Particular attention is given to those details of the fracture mechanics models that may explain differences
in calculated probabilities and failure probabilities as indicated by field failures.

Crack-tip stress intensity factors for the PRAISE code required that complex through-wall variations
in stresses be evaluated. For this purpose, calculations were performed external to PRAISE with the
TIFFANY code (Dedhia et al. 1982) to generate input values for the “g-functions” used by PRAISE.

3.1 PWR Hot Leg Bi-metallic Weld - PWSCC

This set of calculations addressed the Alloy 182 weld connecting the hot-leg piping to the reactor
pressure vessel nozzle. This case corresponded to the leakage location reported for the V.C. Summer
plant that occurred in 2000. Specific parameters for this calculation were:

e Temperature = 216°C (600°F)

o Inner Diameter = 737 mm (29.0 in.)

e Wall Thickness = 63.5 mm (2.5 in.)

e Number of Circumferential Subunits = 44 (subunit length ~ 50 mm (2 in.)
e Residual and Operational Stresses — see Figure 3.1 and Figure 3.2

o Depth of Initiated Cracks =3 mm (0.12 in.)

o Length of Initiated Cracks = 10 mm (0.39 in.)
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Figure 3.1.
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Figure 3.2. Stress Input for Hot-Leg Weld with 15% Grid Out and Repair

Modeling Considerations — Although the PRAISE code does not have an explicit option to simulate

PWSCQC, it does have an option to simulate piping failures due to fatigue loading, both from the growth of
preexisting fabrication flaws and from flaws that initiate by fatigue during the service life of the
component. It was possible to address PWSCC with the existing fatigue model in PRAISE. The
equations in PRAISE for predicting crack initiation and crack growth by fatigue (Khaleel et al. 2000) and
PWSCC were established to be mathematically equivalent to those in PRO-LOCA (Rudland et al. 2006).
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The time scale for PWSCC was interpreted in terms of the cycles per year for the application of the
fatigue model. The sustained operating stresses and temperatures were provided to PRAISE as inputs for
a cyclic stress transient. The constant for the Paris types of fatigue crack growth law was appropriately
adjusted in accordance with a specific number of cycles of stress per year of plant operation. The
structure of the PRAISE code is also designed to simulate probabilities of crack initiation. The user must
provide a subroutine with appropriate equations for crack initiation such as the equations described in the
documentation for the PRO-LOCA.

For the hot-leg calculations, the PRO-LOCA and PRAISE codes used common inputs for the multiple
cracking models. These inputs specified the number of potential crack initiation sites (44) and the
dimensions of the initiated cracks. At this point the code then began the simulation of the crack growth
process using a fracture mechanics model.

Crack initiation was predicted using equations described in documentation for the PRO-LOCA code.
These equations had been developed by W. Shack of Argonne National Laboratory (ANL) for Alloy 600
and Alloy 182 based on service-related cracking data of Alloy 600 control rod drive mechanism (CRDM)
nozzles (Shack 2003). These equations use a Weibull distribution function to simulate the scatter in crack
initiation times with a triangular distribution to characterize the uncertainty in the scale parameter of the
Weibull function. In each case, the calculated initiation times were adjusted for the effects of temperature
using an Arrhenius relationship with activation energy of 210 kJ/mole (50 kcal/mole). In addition, the
CRDM data were adjusted for a higher stress in a dissimilar metal butt weld compared to the CRDM
component (stress ratio = 1.0/0.75). This ratio was assumed to be a common value applicable to butt
welds in general, independent of such factors as pipe-wall thickness. The CRDM initiation equations,
appropriate to the entire component, were transformed to give values appropriate to a smaller subunit of
the CRDM. In this regard, the predicted times to initiate one or more cracks in a particular component
become a function of the number of subunits. Larger components will be predicted to have initiated
cracks sooner than smaller components.

Stress Inputs — Two residual stress distributions were addressed using the equation and parameters of
Table 3.1 (Cases 1 and 2). In this table the coefficients (Gors, Girs, O2rs, O3rs and c4rs) define polynomial
correlations of residual stress distributions that were established by finite-element calculations. The
parameter oy is the yield stress of the weld material. The more bounding distribution of Case 2 described
a weld that had experienced a grind out at the inside surface of the pipe to a depth of a/t = 15%. The other
stresses, as indicated in Figure 3.3 and Figure 3.4, were associated with the internal pressure, dead-weight
loading, and a thermal expansion bending moment acting on the pipe cross section.

Results of Calculations — Figure 3.3 and Figure 3.4 show calculated probabilities as a function of time
for (1) crack initiation (initiation of one or more cracks) and (2) through-wall cracking. The numerical
agreement between PRO-LOCA and PRAISE is seen to be excellent. Both codes predict a 50%
probability of crack initiation at about 10 years and a 50% probability of a through-wall crack by about
20 years for Cases 1 and 2. The model developed for PRO-LOCA and also used for these PRAISE
calculations to simulate crack initiation times gives results that are independent (for a given temperature)
of the estimated stress at the inner surface of the pipe. Therefore, the crack initiation curves for the two
residual stress distributions (Figure 3.1 and Figure 3.2) for Cases 1 and 2 are identical. However, crack
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Table 3.1. Residual Stress Distributions for Dissimilar Metal Welds
(x = distance from inner surface; t = wall thickness)

X X > X ¥ X ¢
Oywrs =Ogrs T Ojgrs _t * Oy ? + 0y, ? *+0yps T

oy Used, | 6, Used,
Case | Grs/0y | Girs/Oy | Girs/Gy | O3rs/Gy | G4rs/Oy MPa ksi Comment

1 0.750 | -9.271 | 27.711 [-32.912 | 14979 | 213.3 30.9 |Hotleg— Alloy 182 weld at
324°C (615°F), using maximum
stress in weld/butter
2 1.300 | -1.084 |-33.189 | 73.310 |-39.381 213.3 30.9 |Hot leg— Alloy 182 weld at
324°C (615°F), using maximum
stress in weld/butter, 15% ID
grind out

3 1.728 | -5.494 | -10.655 | 32.048 |-16.535 | 213.3 30.9 |Surge line — Alloy 182 weld at
324°C (615°F), 15% ID grind out

4 | -0.500 | -6.427 | 33.158 |-41.320 | 15.734 | 2133 | 30.9 |Spray line — Alloy 182 weld at
324°C (615°F)

growth rates are a function of the residual and operating stresses. There are different curves for through-
wall crack probabilities (Figure 3.3 and Figure 3.4) for Cases 1 and 2, with Figure 3.4 indicating less time
to grow cracks to through-wall depths because there are higher stresses associated with the 15% grind out
and repair case.

Comparison with Service Experience — Service failure data were evaluated to estimate a probability
of through-wall cracking for the hot-leg weld based on operating experience. From Appendix A it is
noted that cracking has been observed in the PWR hot-leg weld with through-wall cracks observed at the
V.C. Summer plant and part through-wall cracking at the Ringhals plant in Sweden. A failure frequency
was calculated based on the number of reported failures, the number hot-leg—to—vessel welds, and the
number of plant years of operation. The resulting frequency of through-wall cracks as given in
Appendix A was 9.1 x 107 failures per weld per year after about 20 years of operation. Using a plant
availability of 80 percent, 20 years of plant operation would correspond to 16 years in the PFM
calculations. At 16 years (from Figure 3.3 and Figure 3.4), the PFM calculations give cumulative
probabilities of through-wall cracking ranging from 0.1 (Figure 3.3) to 0.4 (Figure 3.4). In contrast, the
operating data gives a cumulative probability of 20 x (9.1 x 10”) = 1.82 x 10~ per weld or one cracked
weld out of a total population of 550 welds. Assuming 100 PWR plants covered by the database and
four welds per plant, the operating experience shows that one or two plants would have experienced leaks
at this hot-leg weld of interest.

Conclusions — The PFM models over-predict the probability of through-wall PWSCC cracks in the
hot-leg weld by a factor of about 100. These results, along with other results reported below, suggest that
the fracture mechanics models and/or the inputs to the models do not adequately represent the hot-leg
welds in the population of PWR plants of interest. It is noted that the one hot-leg failure (V.C. Summer)
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Figure 3.3. Calculated Failure Probabilities for Hot- Leg Weld without 15% Grid Out and Repair
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Figure 3.4. Calculated Failure Probabilities for Hot-Leg Weld with 15% Grid Out and Repair

had an inner-diameter (ID) weld repair and associated weld residual stresses, which may not be
representative of other welds. The calculations (Figure 3.3) for a more representative weld (without
repairs) showed a somewhat lower calculated failure probability, but even this probability was
significantly greater than expected from operating experience. Additional reasons for the predictions of
relatively high-failure probabilities are discussed in Section 4. Sensitivity calculations are performed in
Section 5 for the hot-leg case that show that an alternative PFM model for crack initiation along with
refined estimates of operating stresses predicts probabilities more consistent with field experience.
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3.2 PWR Surge Nozzle Weld — PWSCC

This set of calculations addressed the Alloy 182 weld connecting the surge line to the pressurizer.
Specific parameters for this calculation were

e Temperature = 345°C (653°F)

e Inner Diameter =282 mm (11.12 in.)

e Wall Thickness = 35.7 mm (1.41 in.)

e Number of Circumferential Subunits = 44

o Residual Stress = See Figure 3.5

o Depth of Initiated Cracks =3 mm (0.12 in.)

e Length of Initiated Cracks = 10 mm (0.39 in.)

500
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Figure 3.5. Stress Input for Pressurizer Surge Nozzle Weld with 15% Grind Out and Repair

Modeling Considerations — The PRO-LOCA and PRAISE codes used common inputs for the
multiple-cracking simulation. These inputs specified the number of potential crack sites (44) and the
dimensions of the initiated cracks. Starting with the initiated crack size, the model then began the
simulation of the crack-growth process using a fracture mechanics model.

Crack initiation times were predicted using equations described in documentation for the PRO-LOCA
code. These equations had been developed by W. Shack of Argonne National Laboratory for Alloy 600
and Alloy 182 based on service-related cracking data for Alloy 600 CRDM nozzles. The equations use a
Weibull distribution function to simulate the scatter in crack-initiation times with a triangular distribution
to characterize the uncertainty in the scale parameter of the Weibull function. In each case, the calculated
initiation times were adjusted for temperature effects using an Arraheius relationship with activation
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energy of 210 kJ/mole (50 kcal/mole). Except for an adjustment to account for the higher temperature of
the surge nozzle, the calculated initiation times were the same as for the previous hot-leg example. As for
the hot-leg example, the CRDM data correlation was adjusted for a higher stress in a dissimilar metal butt
weld compared to the CRDM component (ratio = 1.0/0.75). Again, this stress ratio was assigned a
common value applicable to all butt welds independent of factors such as pipe-wall thickness.

Stress Inputs — The residual stress distribution and operating stresses were as shown in Figure 3.5.
The operating stresses were associated with the internal pressure, dead-weight loading, and a thermal
expansion bending moment acting on the pipe cross section.

Results of Calculations — Figure 3.6 shows the calculated failure probabilities as a function of time for
(1) crack initiation (initiation of one or more cracks) and (2) through-wall cracking. The numerical
agreement between PRO-LOCA and PRAISE is seen to be excellent. Both codes predict a 50%
probability of crack initiation by about 3 years and a 50% probability of a through-wall crack by about
6 years.
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0.8 1 ———— PRO-LOCA
> Probability of
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Figure 3.6. Calculated Failure Probabilities for Pressurizer Surge Nozzle Weld with 15% Grind Out and
Repair

Comparison with Service Experience — Service failure data were evaluated to estimate a probability
of through-wall cracking based on operating experience. A failure frequency was calculated in
Appendix A based on the number of reported failures. There were two reported events for the surge
nozzle location in the mode of cracked or repaired welds, but no failures that involved through-wall
cracks. A failure frequency was calculated with consideration of the welds in the relevant population of
plants and the corresponding number of plant years of operation. The resulting frequency of through-wall
cracks as listed in Table 2.2 was estimated to be 1.2 x 107 failures per weld per year. Using a plant
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availability of 80 percent, plant operation for 6 years would correspond to 4.8 years for the PFM
calculations. At 4.8 years (from Figure 3.6), the probabilistic fracture mechanics calculations predict a
cumulative probability of through-wall cracking about 0.50. In contrast, the operating data gives a
cumulative probability of 6 x (1.2 x 10°) = 7.2 x 10 per weld.

Conclusions — The PFM calculations are seen to over predict the probability of through-wall PWSCC
cracks in the surge nozzle by about four orders of magnitude. Possible reasons for the large difference are
discussed below. Based on sensitivity calculations performed for the hot leg in Section 5, an alternative
PFM model for crack initiation along with refined estimates of operating stresses and temperatures would
be expected to predict probabilities more consistent with field experience.

3.3 PWR Spray Nozzle Weld - PWSCC

This set of calculations addressed the Alloy 182 weld connecting the small-diameter spray line to the
pressurizer. Specific parameters for this calculation were

e Temperature = 345°C (653°F)

o Inner Diameter = 87.4 mm (3.44 in.)

e Wall Thickness = 13.5 mm (0.531 in.)

o Number of Circumferential Subunits = 44

e Residual Stress = See Figure 3.7

o Depth of Initiated Cracks =3 mm (0.12 in.)

o Length of Initiated Cracks = 10 mm (0.39 in.)

Modeling Considerations — The PRO-LOCA and PRAISE codes used common inputs for the
multiple-cracking model. These inputs specified the number of potential crack sites (11) and the
dimensions of the initiated cracks. PWSCC crack initiation was predicted using the equations described
in the documentation for the PRO-LOCA code. These equations were proposed by W. Shack of ANL for
Alloy 600 and Alloy 182 based on service-related cracking data for Alloy 600 CRDM nozzles. These
equations use a Weibull distribution function to simulate the scatter in crack-initiation times with a
triangular distribution to characterize the uncertainty in the scale parameter of the Weibull function. In
each case, the calculated times to crack initiation were adjusted for the effects of temperature using an
Arrhenius relationship with activation energy of 210 kJ/mole (50 kcal/mole). Again, the CRDM cracking
data were adjusted for a higher stress in a dissimilar metal butt weld compared to the CRDM component
(ratio = 1.0/0.75).

Stress Inputs — Two residual stress distributions of Figure 3.7 and Figure 3.8 were used. The spray-
line example presented unusual difficulties because the best-estimate residual stresses of Figure 3.7 gave
compressive residual stress at the inner surface. The result was a very low level of tensile total stress
(48 MPa or 7 ksi) at the inner surface location where the PWSCC cracks were assumed to initiate. In the
model, the crack initiation times were predicted by the ANL equations as adopted by the PRO-LOCA
code. Therefore, the initiation times were not related to the tensile stress of 48 MPa (7 ksi). Rather,
initiation times were calculated by equations that considered the estimated stress level for the individual
weld. The operating stresses, as indicated in Figure 3.7 and Figure 3.8, were associated with internal
pressure, dead-weight loading, and a thermal expansion bending moment acting on the pipe cross section.
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Figure 3.8. Stress Input for Pressurizer Spray Nozzle Weld with Residual Stress Reduced by Factor of
0.25

For the best-estimate residual stress (Figure 3.7), calculations with PRAISE were found to give zero
probabilities for through-wall cracks, because the initiated PWSCC cracks were predicted not to grow.
The low stress levels at the inner surface of the pipe gave crack-tip stress intensity factors too small to
exceed the threshold value (9.0 MPaVmeter or 8.19 ksiVin.) needed for the growth of cracks by PWSCC.
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It was then proposed that the residual stress distribution of Figure 3.7 may have been an unrealistic
representation of the actual stresses. Therefore, the scale factor (material yield strength) used to estimate
residual stresses were arbitrarily adjusted downward (to 25% of the nominal yield strength). The
modified residual stress (Figure 3.8), when added to the operating stresses, then gave an inner-surface
stress of about 139 MPa (20 ksi), which gave a crack-tip stress intensity factor for the initiated crack
(depth of 3 mm or 0.12 in.), which was slightly greater than the threshold value for crack growth. The
adjusted distribution of residual stress was used for purposes of the benchmarking calculations.

Results of Calculations — Figure 3.9 shows calculated failure probabilities as a function of time for
(1) crack initiation (initiation of one or more cracks) and (2) through-wall cracking. The numerical
agreement between PRO-LOCA and PRAISE is again seen to be excellent. Both codes predict a
50% probability of crack initiation by about 4 years and a 50% probability of a through-wall crack by
about 6 years.
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Figure 3.9. Calculated Failure Probabilities for Pressurizer Spray Nozzle Weld

Comparison with Service Experience — Failure data were evaluated to estimate a probability of
though-wall cracking based on operating experience. A failure frequency was calculated (see
Appendix A) based on the number of reported failures, the number of dissimilar metal spray line welds,
and the number of plant years of operation. The resulting frequency (from Table 2.2) of through-wall

cracks came to 1.6 x 107 failures per weld per year. Using a plant availability of 80 percent, 8 years of
plant operation would correspond to about 6 years for the PFM calculations. At 6 years (from

Figure 3.9), the calculations give a cumulative probability of through-wall cracking of about 0.5. In
contrast, the operating data gives a cumulative probability of 8 x (1.6 x 10°) =1.28 x 10™.

Conclusions — The PFM calculations are seen to over predict the probability of through-wall PWSCC
cracks in the spray nozzle by about four orders of magnitude. Possible reasons for the large difference are
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discussed in Section 4, but are at least partly attributable to the arbitrary assignment of residual stress
inputs. Based on sensitivity calculations performed for the hot leg in Section 5, an alternative PFM model
for crack initiation along with refined estimates of operating stresses and temperatures would be expected
to predict probabilities more consistent with field experience.

3.4 BWR Stress Corrosion Cracking

This calculation addressed IGSCC of a stainless steel weld in the recirculation system of a BWR
plant. The material was taken to be 304 grade stainless steel and the environment corresponded to normal
water chemistry with no credit taken for any of the mitigation measures to prevent IGSCC implemented
after about 1987. The intent was to model the circumstances before actions such as described in NUREG-
0313 (Hazelton and Koo 1988) were implemented. Specific parameters for this calculation were

e Temperature = 288°C (550°F)

o Inner Diameter = 324 mm (12.75 in.)

e Wall Thickness = 17.2 mm (0.678 in.)

e Number of Circumferential Subunits = 44

e Residual Stress = See Figure 3.5

o Depth of Initiated Cracks =3 mm (0.12 in.)

o Length of Initiated Cracks = 10 mm (0.39 in.)

Modeling Considerations — Calculations were performed only with the PRO-LOCA code because
revision of PRAISE to use updated equations for IGSCC crack initiation and growth was beyond the
scope of the study. The PRO-LOCA model simulated the effects of multiple cracking on weld integrity.
Inputs prescribed the number of potential crack sites (44) and the dimensions of the initiated cracks.

Stress Inputs — Operating stresses were associated with the internal pressure, dead-weight loading,
and thermal expansion bending moments, which together give an operating stress of 141 MPa (20.41 ksi).
Details of calculations are described in an ASME paper (Rudland et al. 2006). The oxygen level during
steady operation was 0.20 ppm, the coolant conductivity was 0.20 us/cm, and the degree of sensitization
was 7.04 C/cm’.

Results of Calculations — Figure 3.10 and Figure 3.11 show calculated failure probabilities as a
function of time for both crack initiation and for through-wall cracks. PRO-LOCA predicted a probability
for crack initiation at 20 years of about 50 percent. The probability of a through-wall crack does not
attain 50 percent until about 40 years. Figure 3.10 uses a logarithmic scale to present the same failure
probabilities as shown in Figure 3.11. The logarithmic scale allows the plot to show relatively small
calculated probabilities from PRO-LOCA for the larger sizes of pipe breaks. The Category 1 LOCA
(>378 liter/min [100 gal/min]) is seen to reach a probability of about 1.0 x 107 after 40 years of plant
operation, whereas the larger LOCA categories are limited to much lower probabilities on the order of
1.0 x 10™
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Comparison with Service Experience — Failure data from field experience were used to estimate a
probability of through-wall cracking. The relevant data were for BWR recirculation piping with nominal
pipe sizes in the range of 305 mm (12 in.) and for operating data covering the time period prior to about
1988. Corrective actions (e.g., improved water chemistries and residual stress reductions) were
implemented for the post-1988 time periods, and field data show reductions in frequencies of cracking

events. For the through-wall cracking, the data gives a failure frequency of 2.80 x 10™* per weld per
calendar year (Table 2.2). The corresponding failure rate from the PFM calculations assumed that the
plants operated over 80 percent of each calendar year. Figure 3.10 shows a 20 percent cumulative
probability of failure after about 15 years of full-power operation. This gives a failure frequency of
0.20/(0.8 x 15) =1.67 x 10 or about 60 greater than the observed rate from field experience. Sensitivity
calculations for IGSCC of BWR piping have been performed by D.O. Harris using the PRAISE code
(Tregoning et al. 2005). These results show that uncertainties in modeling IGSCC (e.g., levels of welding
residual stresses) can explain the differences between calculated and observed failure probabilities.

Conclusions — In summary, the PRO-LOCA model over predicted the probability of through-wall
IGSCC cracks in the BWR piping welds by a factor of about 60. These results, along with other results
reported below, suggest that some revisions to the fracture mechanics model and the inputs to the model
are needed to achieve a better correlation between predicted and observed failure probabilities.

3.5 PWR Thermal Fatigue

Probabilistic calculations with the PRAISE code simulated fatigue crack initiation and growth for
conditions of thermal fatigue applicable to the nozzle cracking that occurred at the Oconee-2 plant. This
event resulted in a through-wall leaking crack as described in the licensing event report Licensing Event
Report (LER) No. 270/97-001 (USNRC 1997). Fracture mechanics calculations were performed with the
PRAISE code for the charging inlet nozzle shown by Figure 3.12.

The cracking was attributed to the loss of a thermal sleeve, which protected the inner surface of the
nozzle from fluctuating fluid temperatures. Upon loss of the thermal sleeve, it is believed that thermal
fatigue stresses caused fatigue cracks to initiate in a relatively short time period (one year or less). A
through-wall crack was found after the plant operating staff detected leakage. The leakage was observed
to increase significantly over a period of a few hours and the plant shut down. The leaking crack was
subsequently found to extend over a large fraction of the pipe circumference as indicated in Figure 3.13.

Modeling Considerations — The object of the benchmark calculation was to determine if the PRAISE
code would (1) predict a very high probability for a through-wall crack within a time period of one year
or less and (2) predict linking cracks from multiple initiation sites to give a long through-wall crack
extending over half the pipe circumference.
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Stress Inputs — The dimensions of the 76-mm (3-in.) Schedule 160 nozzle are shown in Figure 3.12.
Although possible thermal fatigue loadings have been evaluated (Boman et al. 2000), there remain
uncertainties regarding the thermal hydraulic conditions that imposed cyclic thermal stresses to the
cracked weld. For purposes of the present calculations, it was assumed that cyclic fluid temperatures
were imposed in a uniform manner about the circumference of the nozzle. The differences in system fluid
temperatures near the nozzle were known to exceed 149°C (300°F) and this presented a potential for high
thermal stress at the nozzle. Because results of finite element stress calculations were not available, the
PFM calculations considered a range of cyclic stresses. A large number of stress cycles were assumed to
have occurred over a short period of one year (at a rate of one cycle per minute).

Results of Calculations — Probabilistic calculations were performed for several values of cyclic stress
ranging from 207 MPa to 517 MPa (30 ksi to 75 ksi). Results of failure probability calculations are
shown in Figure 3.14 through Figure 3.18. The highest level of stress (517 MPa or 75 ksi) is seen
(Figure 3.14) to give a calculated probability of failure exceeding 50 percent in about 150 days. On the
other extreme, the lowest value of stress (207 MPa or 30 ksi) gave only a small probability (about 0.03)
for the initiation of a fatigue crack and an even lower probability for a through-wall crack. The results for
the lowest stress indicted that a crack would grow to a through-wall depth over a time period as long as
two years. At the lowest stress levels, crack initiation is predicted to occur in a fraction of the nozzles,
even when cyclic stresses were applied for several years. This is a result of scatter in the fatigue-
endurance limit that is part of the crack initiation model used by the PRAISE code.
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Figure 3.14. Calculated Failure Probabilities for Thermal Fatigue of Weld in 63.5-mm (2.5-in.)
Diameter Nozzle for Cyclic Stress of 517 MPa (75 ksi)
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Figure 3.17. Calculated Failure Probabilities for Thermal Fatigue of Weld in 63.5-mm (2.5-in.)
Diameter Nozzle for Cyclic Stress of 207 MPa (30 ksi)
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Table 3.2 is an output table generated by PRAISE that shows the degree to which cracks have
initiated and grown to various depths and lengths. Cracks were simulated to start at potential initiation
sites extending around the circumference of the nozzle. Table 3.2 shows that small cracks are predicted
to initiate at the various sites around the circumference. It is also seen that a large fraction of the these
cracks are later predicted to link with cracks at adjacent sites such that over time a large fraction of the
pipe circumference becomes cracked, consistent with the crack configuration (Figure 3.13) observed on
the Oconee-2 nozzle.

Comparison with Field Experience — In summary, an application of the PRAISE code demonstrates
the ability of probabilistic fracture mechanics to predict failure probabilities consistent with field failures.
The predictions also demonstrate that the multiple-cracking feature of the fracture mechanics model can
predict long circumferential flaws also consistent with field failures. Although the calculations were
performed only with the PRAISE code, similar results would be expected from the PRO-LOCA code
given the similarity of the fracture mechanics models used by the two codes.
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Table 3.2. Output Table from PRAISE with Characteristics of Simulated Cracks and Extent of Linking

of Multiple Cracks
At time (yrs) 2.00
.00< ash <= .30
% circumf. [ALL JIL 12 1L 2 1L 3 1L 4 1L
.0- 20.0 o] 0 0 0 0
20.0- 40.0 (o] 0 0 0 0
40.0- 60.0 (o] 0 0 0 0
60.0- 80.0 o] 0 0 0 0
80.0-100.0 o] 0 0 0 0
.30< a/h <= .60
% circumf. [ ALL JIL 2 1L 2 1L 3 1L 4 1L
.0- 20.0 74] 74 0 0 0
20.0- 40.0 o] 0 0 0 0
40.0- 60.0 o] 0 0 0 0
60.0- 80.0 (o] 0 0 0 0
80.0-100.0 (o] 0 0 0 0
.60< ash <= .80
% circumf. [ ALL JIL 12 1L 2 1L 3 1L 4 1L
.0- 20.0 21] 21 0 0 0
20.0- 40.0 17] 4 13 0 0
40.0- 60.0 (o] 0 0 0 0
60.0- 80.0 o] 0 0 0 0
80.0-100.0 o] 0 0 0 0
.80< ash <= .95
% circumf. [ALL JIL 12 1L 2 1L 3 1L 4 1L
.0- 20.0 1] 1 0 0 0
20.0- 40.0 14] 10 4 0 0
40.0- 60.0 2] 2 0 0 0
60.0- 80.0 o] 0 0 0 0
80.0-100.0 o] 0 0 0 0
.95< as/h <= 99.00
% circumf. [ ALL JIL 2 1L 2 1L 3 1L 4 1L
.0- 20.0 13] 13 0 0 0
20.0- 40.0 66| 2 64 0 0
40.0- 60.0 161] 10 85 66 0
60.0- 80.0 267] 6 55 142 64
80.0-100.0 496 0 40 155 221
>0 >0.3h >0.6h >0.8h >.95h
Uncracked 0 0 0 0 0
0 - 20% 0 0 0 7 10
20-40% 25 25 40 53 65
40-60% 161 161 167 165 161
60-80% 318 318 297 279 268
>80% 496 496 496 496 496
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4.0 Reconciliation of Calculated and Observed Failure Probabilities

The objective of this section is to reconcile the higher failure probabilities predicted by probabilistic
calculations compared to the probabilities derived from field experience. The previous section of this
report described calculations with the PRO-LOCA and PRAISE codes for selected LWR components.
These calculations addressed failure mechanisms for particular components that have been susceptible to
service-induced cracking. While the two codes can predict essentially the same failure probabilities, both
codes predicted significantly higher failure probabilities than probabilities derived from data on field
failures. In this section, we discuss uncertainties in the fracture mechanics calculations that can explain
the differences between calculated and observed failure probabilities.

4.1 Model and Input Uncertainties

Probabilistic fracture mechanics codes have been developed by various organizations to address
specific damage mechanisms such as fatigue and stress corrosion cracking. Such codes have,
nevertheless, failed to predict field failures, most often because the codes did not address a relevant
failure mechanism experienced in the field. For example, certain fatigue models only consider failures
from the growth of fabrication flaws and do not consider the initiation of fatigue cracks. When the
relevant mechanisms have been addressed, the probabilistic models have then been able to predict the
occurrence of failure mechanisms that are consistent with field experience. However, these calculations
(as illustrated by the results of Section 3 and the piping fatigue calculations of NUREG/CR-6674 [Khaleel
et al. 2000]) have tended was to over predict failure probabilities. The following suggests some reasons
for this trend:

Welding Residual Stresses — Inputs for residual stresses in the calculations of Section 3 were based on
finite-element calculations that simulated the welding processes. Experimental stress measurements have
also been made on some piping welds, but such measurements are expensive and seldom performed.
There are no available residual stress measurements for bi-metallic welds to compare with the stresses
from the finite-element calculations.

The finite-element calculations of residual stresses assumed a sequence of weld passes and heat
inputs and used estimated material properties both at the high temperatures during welding and over the
range of temperatures as the weld cools. For any particular weld, the actual welding parameters could
differ in detail from those assumed in calculations, and the finite-element modeling also has uncertainties.
Some welds can be subject to repairs involving local grind outs of weld passes and welding. Some of the
calculations described in Section 3 explicitly accounted for such repairs, and the resulting stress inputs
and the calculated failure probabilities show significant effects of such repairs.

The stress inputs used in Section 3 also did not account for changes in residual stresses that can occur
during construction and after welds go into plant operation. For example, a safe-end bi-metallic weld
may experience additional residual stress changes from welding of the other side of the safe end to the
pipe loop. Hydro testing of the piping system can cause yielding and redistribution of the original
residual stresses. Service stresses are also superimposed on residual stresses. If residual stresses are
already at or near yield, the additional operational stress of a cyclic nature and over long time periods
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could cause decreases in peak stresses and associated stress redistributions. Section 5 presents sensitivity
calculations that predict significant effects of such yielding and stress redistribution.

Crack Initiation Predictions — The PRO-LOCA and PRAISE calculations of Section 3 have predicted
the initiation of PWSCC cracking in piping welds by application of cracking experience for CRDM
nozzles. Factors have been applied to crack initiation times to account for effects of temperature and
stress levels in welds versus the CRDM component. Another approach for predicting crack initiation is
presented in Section 5, which makes use of laboratory data. Both approaches are subject to uncertainties.
While both methods account for effects of temperature and stress, there are no explicit treatments of other
parameters related to material characteristics and environmental conditions that also impact crack
initiation. The randomness in crack-initiation times that is related to variability in these other parameters
is not modeled other than indirectly through the statistical distributions used with predictive equations for
crack initiation.

Crack-Growth Rates — Section 4.2 provides a detailed discussion of uncertainties in crack-growth
rates for PWSCC. As noted above, calculated failure probabilities have been higher than those derived
from field experience. This is an indication that cracks may not grow as fast as predicted from laboratory
data. The same trend has been noted in the literature by others. Various explanations have been offered
including retardation from ligaments in the wake of growing stress corrosion cracks. Other explanations
involve effects of corrosion products within the crack on the local chemistry at a crack tip. Observations
of changes in the aspect ratios of growing cracks have indicated faster growth rates where a crack
intersects the surface compared to slower growth rates for the crack front within the wall thickness.
Another issue is the appropriate value (or even if such a value exists) for a threshold stress intensity factor
for crack growth.

Circumferential Stress Variations — The PFM calculations have assumed a uniform distribution of
stress around the pipe circumference, where some stress categories (dead weight and thermal expansion
bending moments) will contribute to circumferential stress variations. The calculations have
conservatively assumed that all stresses extend at peak values around the full circumference. An account
of circumferential stress variations will reduce predicted probabilities of crack initiation at locations of
lower stresses and also reduce crack-growth rates at the lower stress locations. Section 5 presents
sensitivity calculations that predict effects of circumferential-stress variations.

Temperatures — Predicted crack initiation times and growth rates for stress corrosion cracking
(IGSCC and PWSCC) are sensitive to temperature. The probabilistic calculations were based on nominal
temperatures for the welds of interest. Actual temperatures could differ from these nominal temperatures.
Design temperatures are conservative or bounding values, such that the use of design temperatures as
inputs to probabilistic calculations will result in the over-prediction of failure probabilities. The
probabilistic codes do not allow for the explicit treatment of uncertainties in temperatures. Section 5
presents sensitivity calculations that predict the possible effects of temperature uncertainties.

Temperature Factor — The results of Section 3 show a strong effect of temperature on calculated
failure probabilities for PWSCC. Temperature effects are based on an Arrhenius equation that requires an
input for activation energy. This activation energy was taken to be 50 kcal/mole for crack initiation and
31 kcal/mole for crack growth. Uncertainties in these two values could have a significant impact on the
calculated failure probabilities.

4.2



Reporting of Field Data — There are uncertainties in the failure probabilities estimated from failures as
reported from the field. The reporting for the PIPExp-2006 database on the number of through-wall crack
failures is believed to be relatively complete. However, the numbers of failure events for through-wall
cracks have been small (in many cases, no failures for the component of interest), which increases the
statistical uncertainty for the estimated frequencies because the number of events is very small. Upper
and lower bounds for failure frequencies can nevertheless be estimated based on the number of reported
events, the number of components, and reactor operating years covered by the database. The numbers are
larger for cracks that have less than through-wall depths. However, the reported numbers for such
cracked welds are likely to be less than the actual numbers of such cracked welds because of cracks that
go undetected due to nondestructive examination (NDE) limitations.

Multiple-Cracking Model — The multiple-cracking models used in PRO-LOCA and PRAISE
represent a best effort to account for the initiation, growth, and linking of cracks around the circumference
of a weld. The circumference dimensions of the subunits has been assigned to be generally consistent
with observed cracks in failed components and/or from consideration of the size of laboratory specimens
used to generate crack initiation data. The dimensions (depths and lengths) of the initiated cracks are
based in part on judgments regarding the size of an initiated crack that can be detected for the test
procedure. Another consideration is that the initiated crack depth should be sufficiently large that fracture
mechanics methods can be applied to predict crack growth. Another important modeling consideration is
the criteria used to predict the linking of growing cracks in adjacent circumferential subunits. Both PRO-
LOCA and PRAISE apply the ASME Section XI flaw proximity rule to determine when two adjacent
flaws should be linked. Alternatives to this rule have been considered but have not been implemented
into either code. Alternative rules could delay the occurrences of crack linking and thereby give
somewhat lower probabilities for through-wall cracks. The effects on predicted probabilities of the larger
categories of leaks would be greater than for the probabilities of through-wall cracks.

Independence/Correlation of Crack Initiation and Growth Rates — The probabilistic treatments of
crack initiation and crack growth are based on assumptions regarding statistical correlations between
sampled parameters. Initiation times for the circumferential subunits of a given weld have been assumed
to be independent, such that the crack initiation in one subunit does not imply an increased probability of
initiation for other subunits of the same weld. The development of the PRO-LOCA code has included
evaluations of various strategies to simulate correlations between crack initiations for the subunits, but
these were not included in the version of the code used for calculations described in this report.
Introduction of such correlations would increase the probability of linking cracks in adjacent subunits,
with a resulting increase in the probabilities of through-wall cracks. Both codes use a common sample
parameter to predict the growth of all cracks in a given weld. This approach (correlation between
subunits) differs from that used to simulate crack initiation (independence between subunits). There is no
correlation between the random sampling for crack initiation and the sampling for crack-growth rates.
For example, a crack that initiates relatively early in life does not have a higher-than-average crack-
growth rate. Introduction of such a correlation between crack initiation and growth would serve to
increase the probability of through-wall cracks.

Insights from NUREG/CR-6674 Calculations — PRAISE calculations of NUREG/CR-6674 (Khaleel
et al. 2000) predicted that many leaks should have occurred in PWR and BWR piping systems, while no
such leaks have been reported. A review of the possible reasons for this inconsistency noted that the
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cyclic stress inputs used in the calculations were based on conservative inputs originally developed for
design-fatigue calculations. Some of the conservatism was removed by reducing the number of cycles to
a number that was more consistent with operating experience. Cyclic-stress magnitudes were still
believed to be unrealistically high because (1) actual thermal transients during operation are often less
severe than assumed in the design-stress calculations and (2) load pairs were estimated from conservative
design methods which assume worst-case sequences of transients. This approach can give some very
high cyclic stresses not experienced during service. The calculations of NUREG/CR-6674 also accounted
for reactor-water environmental effects on fatigue crack initiation that required assumptions regarding
strain rates for each stress cycle along with environmental parameters such as oxygen content. Lacking
exact details of plant-operating conditions, the calculations used somewhat conservative inputs. Although
individual inputs were each consistent with possible operating conditions, it is unlikely that all of the
conservative inputs would be present at the same time for any given component. The PRAISE model did
not allow for explicit modeling of such uncertainties.

4.2 Crack-Growth Rate Considerations

The probabilistic fracture mechanics calculations with PRO-LOCA and PRAISE illustrate that
predictions of crack-growth rates (and crack initiation) are subject to large uncertainties and variability.
Calculations have, therefore, characterized growth parameters with statistical-distribution functions. The
assumption is that the scatter in crack-growth rates growth in the field can be estimated from the observed
scatter in laboratory measurements. The following discussion describes some recent information from
laboratory studies of PWSCC crack-growth rates. The concern is that a systematic bias may exist for
growth rates for field conditions relative to growth rates from laboratory measurements, both in terms of
average growth rates and the level of scatter in growth rates. A better understanding of such biases could
help to develop improved fracture mechanics models that could give better agreement between predicted
failure probabilities with plant-operating experience.

The growth of stress corrosion cracks in structural alloys used for nuclear applications is intrinsically
a variable process because of variations in local metallurgical characteristics and crack-driving stresses.
Stress corrosion cracking is not dominated by a single variable and, therefore, determination of thresholds
for cracking and crack-growth rates requires an understanding of the controlling variables such as stress
intensity (Amzallag et al. 2002), corrosion potential, pH, temperature (Andresen 1998), alloy composition
and purity, alloy strength, grain boundary condition, etc. (Andresen 2005).

Laboratory tests are intended to provide insights into the processes that influence cracking and to
provide evidence for susceptibility to cracking. However, quantification of susceptibility requires crack-
growth rate measurements under well-controlled conditions and, if possible, for conditions relevant to
cracking of components in the field. Without controlled conditions, data on measured crack rates present
a very wide scatter that makes interpretation and application of the data difficult because trends in the
data are not reproducible. To obtain reproducible data, testing should follow well-prescribed procedures
(Andresen 1998). Testing procedures should include control of the mechanical driving force (crack-tip
stress intensity), temperature, water chemistry, and characterization of the alloy metallurgy. In this
regard, compact-tension specimens are specifically designed and fabricated to specifications that promote
crack growth. Test specimens are notched, side-grooved, and fatigue pre-cracked to introduce a well-
defined straight crack front with a sharp tip, conditions that may not exist for cracks growing in
components under field conditions.
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Crack growth is often observed to become retarded after a period of laboratory testing (Andresen
1998). Inhomogeneity in metallurgy along the crack path (White et al. 2005) can cause changes in the
direction of the crack growth, crack branching, changes in cracking mode (intergranular versus
transgranular), creation of remaining ligaments in the crack wake, and other ill-defined resistance for
crack growth. After observing a retardation of crack growth, testing procedures often impose light fatigue
cycling to restore the crack growth back to the original rate. The procedure of light fatigue cycling can
give more reproducible crack-growth rates that are useful for quantifying alloy susceptibility for cracking,
but may not be representative of the conditions that control crack growth under field conditions.

Stress corrosion cracking in service can differ from cracking in the laboratory. Although laboratory
conditions are meant to replicate the service conditions as closely as possible, the characterization of
uncertain field conditions presents a challenge. Service cracks must first initiate before they can grow,
unlike laboratory pre-cracked specimens. This makes estimates of crack-growth rates difficult (Amzallag
et al. 2002), because the time and crack size that defines the initiated crack is difficult to estimate. Also, a
major challenge for evaluating service cracks is defining the actual stress intensity driving crack growth
in structures having complex variations in metallurgical characteristics and local stresses caused by such
factors as welding or surface cold-working (Amzallag et al. 2002). Apart from the calculation of stress
intensity factors, service cracks are non-ideal cracks in terms of crack fronts, remaining ligaments, and
mode of cracking. Specimens fabricated for testing will also have different metallurgical characteristics
compared to materials (including weld deposits) fabricated for service. These differences may complicate
measurements of crack-growth rates. The service chemical and thermal histories are not as constant as in
laboratory tests. Chemistry control (Morin et al. 1993) at operating plants may have improved in recent
years. Temperature variations during periodic shut downs may induce a low-temperature cracking (Mills
et al. 2002) effect that deviates from that seen in laboratory tests.
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5.0 Calculations Using Laboratory Data for Initiation of PWSCC

It has been noted that the PRO-LOCA model for the initiation of PWSCC cracks applies a
probabilistic correlation for the time-to-crack initiation that was derived from data on service cracking
observed in CRDM nozzles. This model allows for adjustments to account for stress levels and operating
temperatures relative to the stresses and temperatures relevant to the CRDM data. In this section, we
describe an alternative probabilistic method for predicting the imitation of PWSCC cracks that is based on
laboratory test data. This model explicitly accounts for surface-stress levels that would be provided as
inputs to PRO-LOCA. The crack-growth rates are predicted using the same specified stress inputs. The
discussion below describes the alternative crack-initiation model and then applies this model in a set of
sensitivity calculations that address the effects of stress and temperature.

5.1 Calculational Method

In reviewing the PRO-LOCA calculations and making comparisons with the PRAISE code, it was
noted that PRAISE uses a probabilistic model to predict the number of cycles to initiate fatigue cracks
given the cyclic stress level and the material and environmental parameters. In this section we describe a
probabilistic crack initiation model that was developed for PWSCC crack initiation, which was
implemented as an adaptation of the existing fatigue cracking initiation model in PRAISE. The section
concludes with a set of demonstration calculations for an Alloy 182 weld in the hot leg of a PWR.

In the PRAISE calculations, PWSCC crack imitation times are treated as an equivalent number of
fatigue cycles for crack initiation. This allowed the PRAISE code to treat PWSCC by using an existing
code capability that was developed to simulate the initiation of fatigue cracks. The model is presented in
this report as an exploratory effort. The predicted failure probabilities from the model appear to be
reasonable and consistent with field experience. However, further work is needed to seek additional
PWSCC data and to refine the statistical treatment of the data. Refinements of the predictive equations
could be used in the future with the PRO-LOCA code.

The proposed PWSCC models closely follow the approach developed in past work for fatigue and
stress corrosion applications of PRAISE. A family of curves relates the crack initiation times to the
applied stress, temperature, and environmental parameters. Each curve from the family of curves
corresponds to a different probability of crack initiation. The parameters for the probabilistic curves are
related in part to the scatter in the laboratory test data compared to the best fit curve.

Figure 5.1 was reproduced from documentation for the PRO-LOCA code. The data on this plot came
from work by Amzallag et al. (2002), and the curve shown in Figure 5.1 was originally developed for
possible use in PRO-LOCA calculations (Scott 1991, 1996), although no calculations based on the
Amzallag data were performed because another formulation was adopted. This adopted formulation did
not use laboratory data, but rather was based on adjustments to data on reported field failures for
Alloy 600 control rod drive nozzles. As indicated in Figure 5.1, the best-fit curve to the Amzallag data
(Scott 1991, 1996) would predict very long times to crack initiation for relatively low stresses in the range
of 320 MPa (46 ksi). For application to the crack initiation model of the PRAISE code, PNNL developed
statistical fits to the data presented in Figure 5.1. The statistical correlations generated a family of curves
to describe the scatter in the data as shown by Figure 5.2 and Figure 5.3. The collection of curves on each

5.1



figure represents the scatter in the data corresponding to the indicated standard deviations or percentiles
relative to the best fit curve.
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Figure 5.1. Power Law and Scott-Type Fits of Amzallag Data as Presented in Draft Report on PRO-
LOCA Report (Amzallag et al. 2002)
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Figure 5.2. Probabilistic Treatment of Amzallag Data with Data Scatter Evaluated in Terms of Time to
Failure
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Figure 5.3. Probabilistic Treatment of Amzallag Data with Data Scatter Evaluated in Terms of Stress

A procedure much like that used by Argonne National Laboratory to represent fatigue crack initiation
data (Keisler et al. 1995) was applied to derive equations to describe the PWSCC data. The scatter in the
data were represented by differences in the data points relative to the best-fit curve as measured either in
the vertical direction (stress scale) in Figure 5.2 or the horizontal direction (time scale) in Figure 5.3.
Treatment of the variability relative to the stress scale (Figure 5.3) was selected as most suited for
predictions of crack initiation at lower stress levels.

The equations used to generate the curves of Figure 5.3 can be applied to obtain various other
presentations of the trends for crack initiation by PWSCC as indicated by Figure 5.4 and Figure 5.5.
Effects of temperature on crack initiation times are addressed using an Arrhenius dependence taking the
activation energy as 50 kcal/mole.

Because the predicted times to crack initiation were derived from laboratory specimen tests, these
times were used to predict crack initiation for the subunits of the larger component. This approach is the
same as that used in PRAISE for predicting crack initiation from fatigue and IGSCC. The size of the
subunits was taken to be on the order of 50.8 mm (2 in.), which is consistent with assumptions in PRAISE
for fatigue and IGSCC cracking and also consistent with PRO-LOCA calculations. The depth of the
initiated crack at the start of the crack-growth simulation was 3 mm (0.12 in.), again consistent with prior
PRAISE and PRO-LOCA models. In the calculations presented below, the initial crack length was taken
to be 10 mm (0.4 in.), or the same as that used in Section 3.

53



1.E+00 1
1 414 MPa (60 ksi)

c

2 345 MPa (50 ksi)

K o

=

T LE-01 3

X ]

Q 4

®© ] 276 MPa (40 ksi)

(@) |

-

o |

2

= (o) (o)

-_cas 1E-02 - 315 "F (600 "F)

a ]

o ]

o ]
1 207 MPa (30 ksi)

C:\PRAISE PWSCC\AMZALLAG LIFE CURVE\DISTRIBUTION OF INITIATION TIMES METRIC
1.E-03 —rrrrrr —rrr —rr

0.1 1.0 10.0 100.0

Time, Years

Figure 5.4. Probabilistic Representation of Amzallag Data for Temperature of 315°C (600°F)
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5.2 Application to Hot-Leg Bi-metallic Weld

This section describes sensitivity calculations that apply the model for the initiation of PWSCC as
presented in Section 5.1. These calculations also simulated the subsequent growth of the initiated cracks,
using the same methods and crack-growth rate equations as used in Section 3. The hot-leg example of
Section 3.1 was revisited for demonstrating an alternative crack-initiation model. In sensitivity
calculations, results of calculations predict the reductions in probabilities of through-wall cracks that are
associated with revised inputs for residual stresses, operational stress, and temperatures.

5.2.1 Baseline Case

Using the PRAISE code, probabilistic fracture mechanics calculations were performed for the PWR
hot-leg example as described in Section 3.1. The times to initiate cracks by PWSCC were simulated
using the same stress-time relationships that were used to generate the plots of Figure 5.3. Calculations
were performed for both cases of residual stress (Figure 3.1and Figure 3.2) that were used for the
benchmark calculation for the PWR hot leg.

Results for calculated probabilities of crack initiation and through-wall cracking (as a function of
time) are shown in Figure 5.6 and Figure 5.7. Failure probabilities shown in Figure 5.7 are related to the
very high surface stress caused by an inner surface grind out and subsequent repair welding. It is seen
that PRAISE predicts very early times (one year or less) for crack initiation. The plots of Figure 5.6 and
Figure 5.7 also show for comparison the crack-initiation times from the PRO-LOCA code, where these
initiation times were derived from cracking experience of Alloy 600 CRDM nozzles. The calculated
crack-initiation times from PRO-LOCA are somewhat longer (about 10 years for a 50% probability)
compared to only a few years as predicted by PRAISE using the initiation model of Figure 5.3.

In summary, exploratory calculations with PRAISE were performed. The calculations demonstrated
that laboratory data for crack initiation of PWSCC can be used as the basis for a PFM model. With this
model it is possible to treat the effects of stress and temperature in an explicit manner using a common
stress input for both crack initiation and crack growth. Results of the calculations appear to give results
similar to those from the PRO-LOCA code. As with the PRO-LOCA model for crack initiation, the
predicted failure probabilities for the baseline stress inputs are greater than indicated by plant-operating
experience. However, as shown by the sensitivity calculations described in Section 5.2.2, considerations
of a redistribution of stresses to reduce peak-surface stresses results in predicted failure probabilities in
better agreement with operating experience. These calculations should, nevertheless, be considered
exploratory in nature until future work can be based on application of additional data for crack initiation
times and on improved correlations and statistical treatment of the crack initiation data.

5.2.2 Effects of Stress Redistributions

The very short predicted times to crack initiation from PRAISE, as shown in Figure 5.6 and
Figure 5.7, are a direct result of the high stresses at the inner surface. These high stresses come largely
from inputs for residual stresses based on finite element calculations. As noted above, there are
uncertainties in the residual stresses, because there are no data on measured stresses in components such
as the hot-leg weld as they would exist after extended periods of service and after repeated cycling of
stress and temperature.
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Figure 5.7. Calculated Failure Probabilities for Hot-Leg Weld — With Initiation Predicted Using
Amzallag versus CRDM Data — With 15% Grid Out and Repair
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In the calculations presented below, it was postulated that the peak surfaces are unrealistically high
because of uncertainties in the finite-element calculations of residual stresses and/or stress relaxation after
welding. Depending on the yield strength of the weld and surrounding base metal, the inside-surface
stresses (residual stresses plus operational stresses) may exceed yield. Bi-metallic welds will also see
excursions in temperature and associated cyclic stresses related to the thermal-expansion mismatch
between the materials at the weld location. For the present calculations, the stress redistribution was
treated as entirely the result of local yielding. These calculations assumed possible “yield strengths” of
207, 241, and 276 MPa (30, 35, and 40 ksi). These values are lower than believed representative for the
Alloy 182 weld metal, but served as a convenient means to address the uncertainties in peak stresses that
exist in a service-exposed weld.

The redistribution of stresses was evaluated with the resulting through-wall stress profiles shown in
Figure 5.8 and Figure 5.9. In each case, if the stress exceeded the assumed yield stress at a given
location, the stress at that location was reduced to the yield stress. The resulting axial load at that location
was then calculated and compared with the axial load prior to the redistribution of stress. An increment
of uniform axial stress was then added to restore the axial load to the original level. This process of
adjustment was repeated until required incremental adjustments converged to zero.
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Figure 5.8. Stress Inputs Accounting for Yielding and Stress Redistribution — Hot-Leg Weld Without
15% Grid Out and Repair
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Figure 5.9. Stress Inputs Accounting for Yielding and Stress Redistribution — Hot-Leg Weld With 15%
Grid Out and Repair

Figure 5.8 and Figure 5.9 show substantial reductions in peak stresses at the inner and outer surfaces,
but relatively smaller reductions in stresses through the majority of the wall thickness. Therefore, the
redistribution of stress should give a relatively large increase in the time required to initiate a crack, but a
smaller effect on the time to grow the crack to a through-wall depth.

Figure 5.10 and Figure 5.11 show the results of PRAISE calculations that accounted for the reduced
levels of peak stresses. The effect, as expected, was to significantly increase the predicted times to crack
initiation and also to extend the time period needed to grow the cracks to through-wall depths. The
results gave more predictions for probabilities of through-wall cracks, which were more consistent with
plant-operating experience. Crack-initiation probabilities at 40 years were reduced from 90 to 100
percent to values as low as 20 percent (for yield strength of 207 MPa or 30 ksi). Calculated through-wall
crack probabilities were also greatly reduced, particularly at times early in the plant life. For example,
Figure 5.10 shows a through-wall crack probability of over 50 percent after 10 years; whereas, with
stresses adjusted for a 207 MPa (30 ksi) yield strength, the probability is reduced to less than 1 percent.

In summary, reductions in peak stresses have a significant effect on calculated failure probabilities.
With the selection of a suitable value for specified yield strength, it was possible with the PWSCC
initiation model to use PRAISE to generate predicted failure probability curves that are similar to those
based on the crack-initiation model of the PRO-LOCA code. Results of calculations appear to be
reasonable and able to predict probabilities more consistent with plant-operating experience once the
redistribution of stresses associated with a reduction in peak-surface stresses is addressed.
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Figure 5.10. Calculated Failure Probabilities with Effect of Yielding and Stress Redistribution for Hot-
Leg Weld — Initiation Predicted Using Amzallag CRDM Data — Without 15% Grid Out and
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Figure 5.11. Calculated Failure Probabilities with Effect of Yielding and Stress Redistribution for Hot
Leg Weld — Initiation Predicted Using Amzallag CRDM Data — With 15% Grid Out and
Repair
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5.2.3 Effects of Circumferential Stress Variation

The calculations just presented above considered the highest stressed location around the
circumference of the pipe and assumed that all locations are stressed at this maximum level. In practice,
some portion of the maximum stress is due to thermal expansion bending moments and dead-weight
loadings. Both of these loadings will give stresses with circumferential variations, such that at 180° from
the worst-case location the stresses will attain minimum levels. Although circumferential variations in
welding residual stresses are neglected, it is possible that some variations in residual stresses can also
occur and add to the variations from the other sources.

Sensitivity calculations were performed to quantify the potential effects of stress variations on
calculated failure probabilities. These calculations applied an existing capability in the PRAISE code.
Two cases were evaluated. One case assumed a 20 percent difference in stress at the minimum location
relative to the maximum stress location. The other case was viewed as a bounding case for which the
20 percent value was increased to 50 percent.

Figure 5.12 and Figure 5.13 show the calculated probabilities of crack initiation and through-wall
cracks, respectively. The baseline case assumed a redistribution of peak stresses to a limiting 241-MPa
(35-ksi) level, but no circumferential variation. The calculations show a significant effect of
circumferential-stress variations. Late in plant life (e.g., 40 years) the crack initiation and through-wall
crack probabilities are reduced by a factor of about two. The differences in probabilities at times early in
the plant life (10-20 years) are even greater with an order of magnitude difference being predicted.
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Figure 5.12. Calculated Probabilities of Crack Initiation with Effects of Circumferential Stress Variation
and Stress Redistribution for Hot-Leg Weld — Initiation Predicted Using Amzallag CRDM
Data — Without 15% Grid Out and Repair
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Figure 5.13. Calculated Probabilities of Through-Wall Crack with Effects of Circumferential Stress
Variation and Stress Redistribution for Hot-Leg Weld — Initiation Predicted Using
Amzallag CRDM Data — Without 15% Grid Out and Repair

5.2.4 Combined Effects Including Temperature Uncertainties

Figure 5.14 summarizes trends from the sensitivity calculations to address the effects of the stress
inputs to the probabilistic model. The additional factor of temperature uncertainty was covered by
calculations that reduced the operating temperature to 302°C (575°F) from 316°C (600°F). The lower
temperature reduces calculated leak probabilities by a factor of about two.

The results of Figure 5.14 were compared with failure probabilities from plant-operating experience.
In this case the operating data indicated a cumulative failure probability for the hot-leg weld after
20 years equal to 2.94 x 10~ per weld. From the calculations for Figure 5.14, the cumulative through-
wall crack probability for 20 years of operation was 2.7 x 10~. This probability corresponds to a value
from the lowest of the curves shown in Figure 5.14 and accounts for the combined effects of (1) stress
reductions for a yield strength of 35 ksi, (2) a 20 percent variation in stress about the circumference of the
pipe, and (3) an actual operating temperature of 302°C (575°F) compared to the nominal temperature of
316°C (600°F).

In summary, several conservatisms in the original PFM calculation were addressed with plausible,

reasonable modifications to input parameters. The results brought the difference between the calculated
and observed failure probabilities from a factor of 100 to a difference of less than 10 percent.
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6.0 Summary and Conclusions

This report has addressed the possible application of probabilistic fracture mechanics computer codes
to support the PMDA program as a method to predict component failure probabilities. The present report
has described PFM calculations that were performed for selected components using the PRO-LOCA and
PRAISE computer codes. The calculations have addressed the failure mechanisms of stress corrosion
cracking, intergranular stress corrosion cracking, and fatigue for components and operating conditions
that are known to have failed components in the field. The calculations allowed the two computer codes
to be compared with each other and, more importantly, benchmarked both codes against the field
experience.

The calculations have shown how uncertainties and modeling assumptions can impact calculated
failure probabilities. Comparisons with field experience showed that both codes are capable of predicting
high-failure probabilities for the components for which operating conditions are known to have produced
field failures. It was found that uncertainties in the treatment of degradation mechanisms and in estimates
of input parameters can give failure probabilities significantly higher than failure probabilities based on
reported field failures. Sensitivity calculations were performed to address uncertainties associated with
residual stresses, operating stresses, and temperatures. Results of these calculations showed that the
identified uncertainties in the probabilistic calculations were sufficiently large to explain the differences
between the predicted and observed failure probabilities. It was not possible, within the scope of the
present work, to identify the specific elements of the PFM model and/or inputs that should be refined to
achieve better agreement of the predictions with plant-operating experience.
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Appendix A

Use of Service Experience Data to Assess the Failure
Probability of Piping Components

A.1 Objective

This appendix documents results and insights of a recent demonstration of the use of pipe-failure data
to calculate weld “failure” rates and “rupture” frequencies. The demonstration is concerned with five
primary coolant system inservice inspection locations: (1) PWR reactor coolant hot leg bi-metallic weld
between reactor pressure vessel nozzle and hot-leg pipe, (2) PWR pressurizer spray line bi-metallic
nozzle-to-safe-end weld (pressurizer side), (3) PWR pressurizer surge line bi-metallic nozzle-to-safe-end
weld (hot-leg side), (4) BWR reactor recirculation 711-mm (28-in.) austenitic stainless steel weld, and
(5) BWR reactor recirculation 305-mm (12-in.) austenitic stainless steel weld.

In this appendix, the term “failure” includes any degraded state (including part-through-wall flaw,
through-wall flaw without active leakage, through-wall flaw with active leakage, and any significant
structural failure) requiring repair or replacement with or without plant shutdown. The term “rupture”
implies a significant structural failure; however, it does not convey information about the magnitude of a
pressure boundary failure in terms of peak through-wall flow rate. For safety-related piping, a “rupture”
normally implies a pressure boundary failure of sufficient magnitude to activate a standby safety system
to compensate for any losses in primary water inventory. In this demonstration, all calculated weld
failure frequencies are for through-wall flaws with or without active leakage.

A.2 Introduction

With the implementation of risk-informed in-service inspection (RI-ISI), methodology has followed
requirements for more realistic pipe failure rates and rupture frequencies that relate to specific
combinations of degradation mechanisms and inspection locations. There are basically five approaches
for estimating piping reliability:

(1) Structural reliability modeling (SRM) based on probabilistic fracture mechanics
(2) Analytical modeling using Markov theory and statistical analysis of service data
(3) Direct statistical estimation using service data

(4) Expert judgment/expert elicitation

(5) Any combination of (1) through (4).

The Loss-of-Coolant-Accident (LOCA) Frequency Elicitation Project (Draft NUREG-1829)
(Tregoning et al. 2005) includes applications of all five approaches. Associated with each of the listed
approaches are strengths and weaknesses (or limitations). The strengths relate to issues such as model
realism, maturity (as measured by number of applications, ease of application, and acceptance by peers),
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extent of formal peer review, ability to treat uncertainties, and proven capability to solve different types of
problems. The limitations (could) relate to issues concerned with difficulty of reproducing results
(unknown verification), effort involved in preparing input data, compatibility with the requirements of
risk-informed applications, or lack of demonstrated capability to solve the types of problems encountered
in risk-informed applications for categorizing passive components. This appendix is concerned with the
following questions about the validity of piping reliability estimates derived by SRM:

e [s it possible to validate SRM results by using service-experience data? According to some
researchers the answer to this question ranges from an “almost no” to a “definite no” (Chapman and
Fabbri 2000). An underlying argument rests on an assumed premise that there is not enough service
data of sufficient quality to support meaningful quantitative assessments. Moreover, since the
existing service data represents no more than a historical record of past piping performance, the use of
service data in predictive piping reliability analysis is not possible.

o If the answer to the first question were to be “yes”, despite warranted and un-warranted
apprehensions, concerns or reservations, what are the requirements for formal validation and what
constitutes a “valid result”? There are different views on the requirements for quantitative piping
reliability analysis. There has been considerable progress in the development and application of pipe
failure databases, however. Do the lessons learned in this work provide any relevant insights for the
validation of SRM results?

A.3 Piping Component Reliability Analysis

Efforts to develop comprehensive, application-oriented databases on the service experience with
piping components and systems have been underway for as long as there have been commercial nuclear
power plants. These efforts and results have been recorded in a large number of articles in volumes of
scientific journals, and in published technical reports. A current state-of-the-art perspective on the roles
of service-data collections in the assessment of piping reliability is documented (Fleming 2004; Lydell
and Olsson 2006; OECD 2005, 2006). For a database to be fit for risk-informed applications it has to
meet stringent data quality requirements. Lydell and Olsson (2006) divide existing databases into three
categories. These categories reflect levels of data quality and fitness-for-use:

e Category 0 database. This is a “hybrid” database, which includes some high-level features of a
Category 1 and/or Category 2 database, but it is not a standalone, computerized database intended for
use by multiple users. It has not undergone any independent peer review, and it is not subject to any
maintenance. Usually a Category 0 database is developed for a single application.

e Category 1 database. This is a comprehensive collection of raw data (or field data) on specified types
of piping components with or without a database quality assurance program in place, but usually with
direct access to source data. Typically this type of database has a single user (can be a person or an
organization), with sporadic or periodic database maintenance to support high-level evaluations of
failure trends.

o Category 2 database. This type of database is expected to support Grade 3 or 4 probabilistic risk
assessment (PRA) applications as defined in the Nuclear Energy Institute’s “PRA Peer Review
Process Guidance” (NEI-00-02; NEI 2000). In risk-informed applications, such as RI-ISI, data
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quality is particularly important and necessitates consideration for traceability and reproducibility of
derived reliability parameters (see Section A.8) including the source data producing database query
results, and data processing and the statistical analysis of query results. From a user perspective, a
Category 2 database should include detailed and correct information on failure events so that database
queries generate relevant and complete results. That is, detailed information with respect to the
unique reliability attributes and influences factors of piping and specific locations. OECD (2005)

includes further details on the structure and quality requirements for a Category 2 database.

(a)

A simple model of piping reliability makes direct use of information as recorded in a Category 2
database. Equation (A.1) is a representation of this model:

where o,

Pitx

Ai
Pik{RX‘F}

M;
L

M, M,
Pix = Zpilor = zﬂ‘ikl:z,'k {R|F}, (A.1)
k=1 k=1

Total frequency of major structural failure R for piping component i for rupture mode x.
A “structural failure” assumes a significant peak through-wall flow rate well in excess of
Technical Specification limits (see below for further details). The term “structural
failure” is nebulous—apart from implying a structural failure, it does not convey
information about its significance (for example, through-wall flow rate).

Frequency structural failure for piping component i due to damage or degradation
mechanism k for failure mode x

= Failure rate of piping component i due to damage mechanism &
= Conditional probability of “structural failure” in mode x for piping component i given

presence of damage or degradation mechanism &

= Number of different damage degradation mechanisms for component i
= Integrity management factor for component i and damage or degradation mechanism ;

this factor accounts for variable integrity management strategies such as leak detection,
volumetric NDE, etc., that might be different than the components in a pipe-failure
database.

The term “failure” implies any degraded state requiring remedial action. Types of remedial actions
include repair (temporary or permanent); induction heat stress improvement; in-kind replacement; or
replacement using new, more resistant material. Depending on how this model of piping reliability is to
be used, the precise definition of failure may be, and usually is, important. For example, it may be
important to make a distinction between different through-wall flaw sizes and their localized or global
effects on plant operation and safety. Localized effects include collateral damage (for example, damage
to adjacent line or a jet stream causing damage to adjacent pipe insulation). Global effects include
flooding of equipment areas or buildings. In recent risk-informed applications the following definitions
of structural failure modes have been used (Table A.1):

(a) Copies of OECD (2005) may be obtained from the OPDE Project’s U.S. National Coordinator at the
Nuclear Regulatory Commission (Andrea Valentin, adw1@nrc.gov).
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Table A.1. Example of Definition of Structural Failure

Mode of Structural Equivalent Pipe Break Peak Through-wall
Failure Diameter (EBD) [mm] Flow Rate (FR) [kg/s]
Large Leak 15 <EBD <50 0.5<FR<5
Small Breach 50 <EBD <100 5<FR <20
Breach 100 <EBD <250 20<FR <100
Large Breach 250 <EBD <500 100 <FR <400
Major Breach EBD > 500 FR > 400 (6300 gpm)

Risk-informed applications often require assessments of specified failure modes corresponding to
unique consequences as included in a PRA. For example, in internal flooding PRAs, it could be
necessary to evaluate impacts of specific spray events on adjacent, safety-related equipment. Hence,
initiating event frequency of a “large leak” could be required for any through-wall flaw of sufficient size
to generate a spray effect. Another example could be the plant-specific assessment of a high-energy line
break (HELB) initiating an event of sufficient magnitude to activate fire protection sprinklers in a specific
area of a Turbine Building. In general, a point estimate of the frequency of pipe failure, 4, is given by
the following expression:

Mk

A = TNT (A.2)
where  n; = The number of failure (all modes including cracks, leaks, and ruptures are included)

events for pipe component i due to damage mechanism £.

T; = The total exposure time over which failure events were collected for pipe component i,
normally expressed in terms of reactor years (or calendar years).

N; = The number of components per reactor year that provided the observed pipe failures for
component i.

fie = The fraction of number of components of type i that are susceptible to failure from

degradation/damage mechanism (DM) “k” for conditional failure rates given
susceptibility to DM “k”; this parameter is set to 1 for unconditional failure rates.

When the parameter f; is applied, the resulting failure rates and rupture frequencies are referred to as
conditional failure rates as they are conditional on the susceptibility of the component to specific damage
or degradation mechanisms. That is, for each component that these models are applied to, the damage
mechanism susceptibility is known.

When the damage mechanism susceptibility is not known in advance, the above equations are

combined under the condition f;; = 1 to obtain the following expression for the point estimate of the
rupture frequency:
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Depending on the type of piping system under consideration, the conditional failure probability may
be obtained by direct statistical estimation, or through probabilistic fracture mechanics, or expert
judgment. Ultimately, an estimated conditional failure probability needs to reflect existing service
experience as well as structural integrity characteristics.

A Bayesian approach can be used to develop uncertainty distributions for the parameters in
Equations (A.1) through (A.3). Prior distributions are developed for the parameters A and Py{R, JF, '} and
these prior distributions are updated using the evidence from the failure and exposure data as in standard
Bayes’ updating. The resulting posterior distributions for each parameter on the right side of
Equation (A.1) are then combined using Monte Carlo sampling to obtain uncertainty distributions for the
frequency of structural failure.

A critical step in applying Equations (A.1) through (A.3) is to correctly define the exposure term
(number of exposed components and corresponding time period). This definition is rooted in detailed
knowledge of relevant piping system design parameters (for example: material, flow conditions, type of
welds) and in-service inspection practice. Not only does this knowledge have to account for a specific
system, it has to account for a cross-section of different designs used for a particular type of system. For
example, some reactor vendors use bi-metallic welds in primary coolant piping, while others do not. The
degradation susceptibility differs significantly depending on material selections.

An integral aspect of Category 2 databases is the inclusion of detailed piping design information and
piping component population data for a broad range of representative reactor vendor designs. Querying a
database on failure event populations must go hand-in-hand with queries of corresponding component
populations.

Rules for querying a database must be founded on an analyst’s knowledge about piping design,
structural integrity of piping, and degradation susceptibilities of different piping systems. Also a database
must include sufficient technical detail so that queries account for unique service conditions, water
chemistry parameters, and material properties. High-level database insights (Figures A.1 and A.2)
provide a first level of defense against incorrect applications.
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According to Figure A.1, the database insights change quite dramatically depending on how a query
is formulated and what data filters are applied. From the perspective of statistical reliability parameter
estimation, indiscriminate pooling of failure data could lead to incorrect results. Some high-level
database insights include:

e ASME III Class 1 piping. The BWR-specific experience mainly consists of IGSCC in medium- to
large-diameter piping. There have been no significant pipe failures due to IGSCC. Post-1987
(approximately), different types of IGSCC mitigation strategies have been implemented by all BWR
plant operators. The PWR-specific experience consists almost exclusively of small-diameter socket
weld failures and small-diameter, bi-metallic welds on cold-leg, hot-leg piping and pressurizer
instrument line connection. There have been no significant pipe failures due to PWSCC, and the
flaws that have been detected by visual inspection or nondestructive examination are almost
exclusively short and axially oriented.

¢ Non-Code piping (extraction steam, feedwater heater drain and vent, and condensate piping). In
general, compared with the PWR-specific experience, BWR plants experience fewer instances of pipe
degradation and failure due to flow-accelerated corrosion (FAC) in carbon steel piping. This
difference is attributed to different water chemistries and secondary-side water chemistry treatment
programs.

Using the same service data as displayed in Figure A.1, four sets of data consisting of the fraction of
the total event population for respective safety class are plotted in Figure A.2. These plots represent the
conditional pipe failure probability as a function of peak through-wall flow rate. For comparison,
included in Figure A.2 are two theoretical correlations for conditional pipe failure probability:

o Aggregate State-of-Knowledge (Draft NUREG-1829, Tregoning et al. 2005). This plot is for BWR
primary piping and is the result of an expert elicitation process, but unlike the result presentation in
Draft NUREG-1829, which includes plots of p;,, Figure A.2 shows R,|F" and the overall pipe failure
rate is estimated directly from the available service data. It is to be noted that the Draft NUREG-1829
does not account for small-diameter piping failure.

e Beliczey-Schulz correlation (Beliczey and Schulz 1987). The four data points representing this
correlation in Figure A.2 correspond to failed 19-mm, 51-mm, 76-mm, and 102-mm (¥%4-in., 2-in.,
3-in., and 4-in.) Class 1 and 2 piping in a PWR, respectively. This correlation represents a mid-1980s
German “aggregate state-of-knowledge” about the likelihood of structural failure. It is based on
analysis of German service data, PFM, and experimental fracture mechanics studies. According to
this German research, the probability of structural failure can be estimated from:

Pi{RJF} = (9.6 x DN/2.5 + 0.4 x DN*/25) (A.4)

where DN = nominal pipe size in [mm]; according to Beliczey and Schulz (1987), the correlation
applies for piping of nominal size 254 mm (10 in.) or less.

o Except for the “Aggregate State-of-Knowledge (Draft NUREG-1829)” and “Beliczey-Schulz
(1987)”, the remaining data plots in Figure A.2 represent observed pipe failure events. For Class 1
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piping, all significant structural failures have involved small-diameter piping (instrument lines
<25.4-mm [1-in.] diameter).

In totality, Figure A.2 is a snapshot of where we stand today. Obviously, the shape of an experience-
based line in the chart would change should significant pipe failures occur in the future.

The uncertainty in the conditional pipe failure probability in Equation (A.4) is treated using the Beta
Distribution. This distribution takes on values between 0 and 1 and is defined by two parameters A and B
(or oo and B in some textbooks). In reliability analysis the distribution is often used to express the
uncertainty in failure rates per demand. The mean of the Beta Distribution is given by:

Mean = A/(A + B) (A.S)

If A =B =1, the Beta Distribution takes on a flat distribution between 0 and 1. If A =B =1, the
distribution is referred to as Jeffrey’s non-informative prior and is a U-shaped distribution with peaks at
0 and 1. Expert opinion can be incorporated by selecting A and B to match up an expert estimate of the
mean probability. For example, to represent an expert estimate of 1 x 102, A =1 and B = 99 can be
selected. These abstract parameters can be associated with the number of failures and the number of
successes in examining service data to estimate a conditional pipe failure probability in Equation (A.4).

Selecting appropriate A and B parameters is not a trivial task. Many different combinations of A and
B will produce the same mean value. Insights from probabilistic fracture mechanics could be utilized in
defining application- and location-specific A and B parameters.

A.4 Influence of Inspection and Leak Detection

Embedded in service data are underlying details of contributing causes of a degraded or failed state
(high weld-residual stresses, sensitization of weld-heat-affected zone, lack of weld fusion, localized
unfavorable flow conditions, failed inspections, design and construction defects, etc.). Obviously, an
expression such as Equation (A.1) does not account for the physics of degradation or failure in any
explicit way. On the other hand, if a database is of sufficient technical depth and the queries are
appropriately defined, then the resulting parameter estimates would portray the effect of operating
conditions, material characteristics, and loading conditions.

Markov modeling (Fleming 2004; Modarres 1993) is an established technique for analyzing
interactions between degradation/damage mechanisms that cause degradation or failure, and inspection,
detection and repair strategies that can reduce the probability that failure occurs, or that surface-breaking
cracks and through-wall flaws will progress to major structural failure before being detected and repaired.
This technique starts with a representation of a “system” in a set of discrete and mutually states.

Figure A.3 is a representation of a general four-state Markov model of piping component reliability.
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Piping Reliability States:

S = Success (or undamaged state),
C = Crack (non-through wall flaw),
F = Leaking through-wall flaw (leak rate is within Technical

Specification limit),

L = Large leak (leak rate in excess, or well in excess of

Technical Specification limit — a “structural failure”).

State Transitions:

¢

Occurrence of non-through wall flaw

As

Occurrence of small leak given an undamaged state (‘S”)

Ac

Occurrence of small leak given a flaw (‘C’)

Ps

Occurrence of large leak given no flaw

pPc

Occurrence of large leak given a non-through wall flaw

PF

Occurrence of large leak given a small leak

Y7

Detect and repair a through-wall flaw

(0]

Inspect and repair a non-through wall flaw

Figure A.3. Four-State Markov Model of Piping Component Reliability

The “states” in Figure A.3 refer to various degrees of piping system degradation. That is, the
existence of flaw(s), through-wall leak, or major structural failure. The flaws can be wall thinning,

pitting, or cracking. In Markov model theory the processes shown in Figure A.3 can be specified by a set
of differential equations (or Markov state equations) and their associated initial conditions. All Markov

model parameters shown in Figure A.3 (and as listed in Section A.8) are estimated using service data.

The failure frequencies obtained from Markov models are time-dependent. The reliability function for

the Markov model, r(?), is given by:

r®)=1-L1H)=S@1)+C1)+F@

where

and hazard rate A(z)

SH+CH+FH+Ly=1

h(t)=- (r@)" dr)/dt = (1 — L(2))" dL(@)/dt.

The hazard rate, /(2), is the time-dependent frequency of structural failure (“L”). It startsatt=0

(beginning of plant life) and gradually increases towards an asymptotic hazard rate. The hazard rate is not
to be confused with the cumulative or annual average lifetime frequency of structural failure, quantities

often generated by probabilistic fracture mechanics methods.
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A.5 Data Specializations

Pipe failure is a function of sometimes complex interrelationships between pipe size (diameter and
wall thickness), material, flow conditions, pressure and temperature, method of fabrication, loading
conditions, weld residual stresses, etc. These relationships should always be embedded in a Category 2
reliability database and accessible for parametric evaluations. For circumferential welds their location
within a piping system and residual stresses represent strong reliability influence factors. It is sometimes
desirable to develop specialized weld failure rates to reflect these influences. For a weld of type “i”
(defined by its location in a pipe line) and size “j” (defined by the nominal pipe diameter), the failure rate
can be expressed as follows:

A= Fy/(Wii x T) (A9)

and with
Si=Fy/F (A.10)
Ay = WW; (A.11)

[T
1

the failure rate of weld of type “i”” and size “” is expressed as

Aij = (F x Sy)/(Wyy x T) (A.12)

Aij = S x A< 4 (A.13)

[I3%4]

, size

[Y3%4]
1

where = Failure rate of a susceptible weld of type

= Failure rate of a susceptible weld of size “j”

= Number of size “j” weld failures

= Number of type “i” and size “j” weld failures

= Size “j” weld count

W; = Type “i” and size “j” weld count

Susceptibility (Sj) = The service experience shows the failure susceptibility to be correlated with the
location of a weld relative to pipe fittings and other in-line components (flanges,
pump casings, valve bodies). For a given pipe size and system, the
susceptibility is expressed as the fraction of welds of type “i;” that failed due to
a certain degradation mechanism. This fraction is established by querying the
database.

Attribute (4;) = In the above expressions the attribute (4) is defined as the ratio of the total
number of welds of size )" to the number of welds of type “i”. 4jjis a
correction factor and accounts for the fact that piping system design and layout
constraints impose limits on the number of welds of a certain type. For
example, in a given system there tends to be more elbow-to-pipe welds than, for

example, pipe-to-tee welds.

SEmse
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Combining a global (or averaged) failure rate with the weld configuration dependency provides
failure rates that account for known or assumed residual stresses. Typically, a final weldment attaching a
spool piece to, say, a heat exchanger nozzle or vessel nozzle tends to be the most vulnerable weld
assembly in a piping system.

A.6 Case Studies

The results of five case studies are presented in this section. The case studies are applications of the
PIPExp database and the concepts discussed in Sections A.3 through A.5 to derive current estimates of
failure rates for selected BWR- and PWR-specific inservice inspection areas.

Defining an appropriate exposure term (the denominator in Equation A.2 or A.3) is not trivial. It
requires detailed knowledge of piping system design features and degradation susceptibilities. As an
example, PWR primary system design information such as that found in JAEA-TECDOC-1361 (IAEA
2003) was used for the PWR inspection areas considered in this study.

For the BWR inspection areas, the calculations have been set up to produce unconditional weld
failure rates as represented by Equation (A.3). For the PWR inspection areas, the calculations have been
set up to produce conditional weld failure rates as represented by Equation (A.2). These rates represent
specific locations and degradation susceptibilities, whereas the BWR-specific rates are averaged across
reactor recirculation system weld populations representative of General Electric BWR/3 and BWR/4 plant

types.

e Case 1. Bi-metallic weld between reactor pressure vessel nozzle and PWR reactor coolant hot-leg
pipe. This is the location where V.C. Summer and Ringhals Unit 4 (both 3-loop Westinghouse
plants) have experienced cracking attributed to PWSCC; in the former case, a through-wall flaw was
discovered, and in Ringhals Unit 4, the flaw was non-through-wall. The analysis is concerned with
the calculation of the frequency of a through-wall flaw in this location using the available service
experience. Input data for the calculation and the results are summarized in Figure A.4. Included for
comparison are calculated weld failure frequencies for other reactor coolant inspection locations.

e Case 2. Bi-metallic weld in pressurizer spray line. To date non-through-wall cracks have been found
at Millstone-3 (October 2005). This may not be a service-induced flaw, however. A pre-emptive
weld overlay repair has been performed under the assumption of the presence of PWSCC. This
calculation considers three different assumptions concerning the interpretation of the service data:

Assumption 1: The service data consists of the weld-overlay repair performed at Millstone-3 in
October 2005. Evidence is 0 (zero) through-wall flaws.

Assumption 2: The calculation accounts for all relevant service data involving bi-metallic welds
in the pressurizer spray line and pressurizer relief lines. Assume five susceptible welds per plant.

Assumption 3: This calculation assumes that the weld flaw discovered at Millstone-3 was at or
near through-wall.



e Case 3. Bi-metallic nozzle-to-safe-end weld (hot-leg side) of PWR pressurizer surge line. Three
Mile Island Unit 1 and Tihange-2 (this plant is located in Belgium) have experienced non-through-
wall cracking in this area that is attributed to PWSCC. There have been no reports of through-wall
flaws for this inspection location. Input data for this calculation and the results are summarized in
Figure A.6. This calculation considers three different assumptions concerning the interpretation of
the service data:

Assumption 1: The service data consists of the non-through-wall flaws in bi-metallic surge line
welds at Three Mile Island-1 and Tihange-2. Evidence is 0 (zero) through-wall flaws.

Assumption 2: This calculation assumes that the two bi-metallic surge line welds and the
pressurizer spray line and relief line welds are equally susceptible to PWSCC.

Assumption 3: This calculation assumes that one of the two weld flaws discovered at Three Mile
Island-1 and Tihange-2 was at or near through-wall.

e Case 4. BWR reactor recirculation 28-in. austenitic stainless steel welds. This case pertains to the
frequency of through-wall flaws given implementation of IGSCC-mitigation measures consisting of
weld-overlay repair and hydrogen water chemistry. The calculation is limited to U.S. service
experience involving IGSCC in BWR/3 and BWR plants. The effect of IGSCC mitigation on the
failure frequency is at least a factor of 10 reduction factor. Additional details of the analysis are
documented in Appendix D of Draft NUREG-1829. The results are summarized in Figure A.7.

e Case 5. Same as Case 4 but for 12-in. welds. The results are summarized in Figure A.7.

Unlike the experience with PWSCC in medium- and large-diameter primary coolant piping, the
service experience with IGSCC in BWR primary coolant piping includes on the order of 1200 records for
non-through-wall and through-wall cracks. With this volume of failure data, it is relatively
straightforward to explicitly account for the effects of IGSCC mitigation.

Embedded in the service data are the effects of different inservice inspection programs, evolving
NDE reliability, augmented inspections, etc. Markov modeling makes it possible to characterize these
effects and to address the impact of different assumptions about the probability of detecting (POD) non-
through-wall flaws. Figure A.8 shows the time-dependent failure frequency for a bi-metallic pressurizer
spray line nozzle-to-safe-end weld. The calculation uses an assumption of annual ISI with POD = 50%
and POD = 90%.
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Figure A.4. Case 1: Calculated Failure Frequency for Bi-Metallic Weld in PWR Reactor Coolant Hot-
Leg Piping — NPS is the nominal pipe diameter (inch)
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Figure A.S. Case 2: Calculated Failure Frequency for Bi-Metallic Weld in PWR Pressurizer Spray Line
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Figure A.6. Case 3: Calculated Failure Frequency for Bi-Metallic Weld in PWR Pressurizer Surge Line
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A.7 Statistical Estimation Approach vs. PFM

The derived weld failure rates represent bounding-type estimates for “perceptible leakage.” That is,
through-wall flaws that are discovered through bare-metal inspections rather than active leakage picked
up by a leak detection system and/or monitoring system for radioactivity. Summarized in Figure A.9 are
the results for the three PWR inspection locations. In comparing the results, the reader must bear in mind
the different underlying assumptions. As demonstrated, the results are quite sensitive to the assumptions
made about service data interpretation as well as to the formulation of the exposure terms.
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Assumption #2) Assumption #2)

Figure A.9. Calculated Bi-metallic Weld Failure Rates for Three PWR Primary Piping Inspection
Locations

Comparisons of results from applications of SRM and statistical estimation approaches to the same or
similar problem are documented in Simola et al. (2004) and Tregoning et al. (2005). To perform
meaningful comparisons it is very important to document the assumptions of each respective approach.
Furthermore, whenever statistical analysis of service data is pursued, it becomes essential that the
database supporting the analysis fulfills certain minimum data quality requirements.

For weld failure modes up to and including perceptible through-wall leakage, the difference between
outputs from SRM models, and statistical estimation approaches should be well within an order of
magnitude. Should the difference be larger, the assumptions behind respective calculation need
revisiting.
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A.8 List of Piping Reliability Parameters

Table A.1 provides a list of piping reliability parameters that define variables used in this appendix to
develop failure probabilities for piping components.

Table A.1. Examples of Piping Reliability Parameters Derived from a Category 2 Database

Intended Application and
Data Source and Strategy Extent of Demonstrated
Symbol Description for Estimation Database Application
Aik Failure rate of pipe The failure rate is estimated Probabilistic safety assessment
component “i”” due to directly using time-to-failure (PSA) (LOCA frequency,
degradation or damage (TTF) data or indirectly viaan | internal flooding, HELB
mechanism “k” operating piping failure data frequency) and risk-informed
exchange (OPDE) database applications (RI-ISI).
query to obtain a failure count | Extensive insights available
over a certain observation from past database (DB)
period and for a certain piping | applications.
component population.
TTF Time to Failure Obtained directly via OPDE Can be used in predictive
database query. reliability analysis to determine
pipe replacement intervals.
Hazard plotting techniques (or
Weibull analysis) use TTF data
directly to estimate reliability
parameters. This analysis
approach has been used
extensively to analyze IGSCC
data and raw water pipe failure
data.
Py {R\|F} | Conditional pipe failure Obtained directly via OPDE PSA (LOCA frequency,
probability. Index “x” refers | database query, Bayesian internal flooding, HELB
to mode (or magnitude) of estimation strategy, PFM frequency) and RI-ISI.
failure as defined by through- | (SRM), or expert elicitation. Extensive insights available
wall peak flow rate threshold from past DB applications.
value.
Iy Structural integrity manage- | Obtained through application Extensive insights from past
ment factor for component of the Markov model of piping | application of the Markov
“1” and damage or degrada- reliability (iterative analysis). model.
tion mechanism “k”. This is
an adjustment factor to
account for variable integrity
management strategies such
as leak detection, volumetric
NDE, etc., that might be
different than the
components included in a
pipe failure database.
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Data Source and Strategy

Intended Application and
Extent of Demonstrated

Symbol Description for Estimation Database Application

Rik Number of failures (all Obtained directly via OPDE PSA (LOCA frequency,
modes, including cracks, database query. internal flooding, HELB
leaks, and significant frequency) and RI-ISI.
structural failures) Extensive insights available

from past DB applications.

fix The fraction of number of Obtained directly via OPDE RI-ISI program development

components or type “i” that database query, from (e.g., A-risk evaluations).

are susceptible to failure “Degradation Mechanism

from degradation or damage | Analysis” tasks of RI-ISI

mechanism “k” for program development projects,

conditional failure rates or via engineering judgment.

given susceptibility to “k”;

this parameter is set to 1 for

unconditional failure rates.

N The number of components Input from piping system Piping population databases
per reactor year (or calendar | design reviews (size, weld have been developed as
year) that provided the counts, pipe lengths, and addressed in Task 1 report.
observed pipe failures for material data) specific to an
component “i” application. Required for

estimation of Aj.

T Total exposure time over Obtained directly via OPDE
which failures were collected | database query. Required for
for pipe component “i”; estimation of .
normally expressed in terms
of reactor years (or calendar
years)

) Occurrence rate of a flaw Obtained directly via OPDE Input to Markov model of
(non-through-wall) database query, or can be piping reliability.
estimated as a multiple of the
rate of leaks based on ISI
experience.
As Occurrence rate of leak from | Service data for leaks and Input to Markov model of
a no-flaw state reasoning that leaks without a piping reliability.
pre-existing flaw are only
possible for selected damage
mechanism from severe
loading.

Ve Occurrence rate of a leak Service data for leaks for Input to Markov model of
from a flaw state selected conditions and piping reliability.

degradation mechanisms.

s Occurrence rate of a Service data for “structural Input to Markov model of

“structural failure” from a
no-flaw state

failure” and reasoning that
“structural flaws” without a
pre-existing degradation are
only possible for selected
damage mechanisms and
system-material combinations.

piping reliability.
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Data Source and Strategy

Intended Application and
Extent of Demonstrated

Symbol Description for Estimation Database Application
Pc Occurrence rate of a through- | Service data for leaks for Input to Markov model of
wall leak from a flaw (non- selected conditions and piping reliability.

through-wall) state degradation mechanisms.

POF Occurrence rate of “structural | Estimates of physical Input to Markov model of
failure” from a through-wall | degradation rates and times to | piping reliability.
flaw state failure converted to equivalent

failure rates, or estimates of
water hammer challenges to the
system in degraded state.
Y7, Repair rate via leak detection | Model of equation for x, and Input to Markov model of
P, estimates of Ppp, Ty, Tk. piping reliability.
# (T, +Ty)

Pip Probability that a through- Estimate based on presence of | Input to Markov model of
wall flaw is detected given leak detection system, technical | piping reliability; supports
leak detection or leak specification requirements, and | sensitivity analyses to address
inspection frequency of leak inspection. impact of different assumptions

DB generates qualitative on piping reliability.
insights. Reliability of leak

detection systems is high.

Quantitative estimate based on

expert judgment.

Ti1 Mean time between Estimate based on method of Input to Markov model of
inspections for through-wall | leak detection; ranges from piping reliability.
flaw immediate to frequency of

routine inspections for leaks or
ASME Section XI-required
system leak tests.
w Repair rate via NDE Model of equation for w, and Input to Markov model of
P P, estimates of P, Pgp, Ty, Tr. piping reliability.
@ (T + 1)

Py Probability that a flaw will be | Estimate based on specific Input to Markov model of
inspected (index “T”) per inspection strategy; usually piping reliability.
inspection interval done separate for ASME

Section XI (or equivalent) and
RI-ISI programs.

Prp Probability that a flaw will be | Estimate based on NDE Input to Markov model of
detected given that the weld | reliability performance data piping reliability.
or pipe section is subjected to | and difficulty of inspection for
NDE. Also referred to as particular inspection site.

POD. OPDE provides qualitative
insights about NDE reliability.
Tkt Mean time between Based on applicable inspection | Input to Markov model of

inspections

program; can be “never” or 10
years for ASME XI piping.

piping reliability.
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Intended Application and

Data Source and Strategy Extent of Demonstrated
Symbol Description for Estimation Database Application
Tr Mean time to repair once Obtained directly via OPDE Input to Markov model of
detected query. The mean repair time piping reliability.

includes time to tag out, isolate,
prepare, repair, leak test, and
tag-in.
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