
TeraGrid 2007, Madison WI

VisPort: Web-Based Access to Community-Specific
Visualization Functionality

M. Pauline Baker, Randy Heiland, Edward Bachta, and Manirupa Das

Abstract. The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from
any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to
support remote access. Users employ browser-based client applications to choose data and services, set parameters, and
launch visualization jobs. Visualization products – typically images or movies – are viewed in the user’s standard Web
browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies
heavily on XML, and introduces the notion of visualization informatics – the formalization and specialization of information
related to the process and products of visualization.

Index Terms. Visualization informatics, visualization provenance, visualization metadata, remote visualization, interaction
history, Web services.

 _________________  __________________

1 INTRODUCTION

Visualization has become an indispensable tool for
many researchers in computational science.
Numerous visualization tools have been developed
for the desktop, offering a spectrum of visual
representations for observed data and simulation
output and accommodating a variety of file formats.
Several tools have been developed with an emphasis
on high-performance computing, utilizing distributed
and parallel visualization algorithms and rendering
schemes, such as ParaView [1], VisIt [2] and EnSight
Gold [3]. As data sets have become larger and larger,
high-performance computing centers have installed
large-scale, special-purpose visualization engines at
their sites. In similar spirit, but on a smaller scale,
individual research teams and academic departments
have installed their own clusters, outfitted for
visualization work. In both cases, users have
expressed needs for utilizing these resources from
afar. The TeraGrid community has responded by
producing tools supporting remote access, including
the TeraGrid visualization portal TGViz [4] at
Argonne National Labs (ANL) and the VisEnable
system [5] at Texas Advanced Computing Center
(TACC).

• M. Pauline Baker, baker@iu.edu.
• Randy Heiland, heiland@iu.edu.
• Edward Bachta, ebachta@iupui.edu.
• Manirupa Das, das20@iupui.edu.
• All authors at Pervasive Technology Labs at Indiana University,

IUPUI (Indiana University Purdue University Indianapolis)

2 VISPORT

The VisPort visualization portal is an experiment in
providing Web-based access to visualization
functionality from any place and at any time [6].
VisPort adopts a service-oriented architecture to
encapsulate visualization functionality and to support
remote access. Users employ a browser-based client
application to interact with the system, to set
parameters and launch visualization jobs.
Visualization products – typically images or movies –
are viewed in the user’s standard Web browser.

VisPort seeks to provide visualization capability
that is customized for specific communities, because
customization is closely linked to ease of use. VisPort
currently includes functionality that evolved from our
collaborations with the Terascale Supernova Initiative
(TSI, a SciDAC Phase 1 program), the Inverse Ocean
Modeling group (IOM, an NSF ITR project), and the
Linked Environments for Atmospheric Discovery
(LEAD, also funded by NSF). Finally, VisPort
introduces the notion of visualization informatics – the
formalization and specialization of information
related to the process and products of visualization.

2.1 Service-Oriented Architecture

As shown in Figure 1, VisPort consists of (a) one or
more service engines hosting visualization
applications, (b) Web-based client applications, and
(c) a server that acts as the entry point to the system,
serving up the user interface applications and keeping
records of user activity.

TeraGrid 2007, Madison WI

Fig. 1. VisPort components. VisPort users access VisPort
functionality through Web-based client interfaces.

VisPort services for data manipulation, analysis,
and visualization generate output products and save
them to the local file system of the machine hosting
the service. A service might produce an alternate
form of the data itself, but service products are more
commonly of graphical form – imagery, movies, or
geometry. VisPort’s services are wrapped as SOAP-
based Web services. The current VisPort
implementation includes two flavors of services:
(1) C++ services, running on Windows and using
.NET to host the service, and (2) Python services,
running on Linux and using ZSI [7] and Twisted [8] to
support Web services and hosting. All of the current
VisPort visualization services rely on VTK [9] for
visualization algorithms to convert data to graphical
form. Services are written to accept a collection of
input parameters and to output graphics, which might
be one or more images, movies, and/or geometry sets.
During the course of completing a job, a service saves
its output products as files on the local file system.
When a service is finished executing a SOAP request,
a SOAP response message is sent back to the client to
signify completion of the task.

Once visualization functionality is encapsulated
and wrapped as a Web service, clients can be written
using any of the languages or tools that can issue
SOAP requests. Because of its large installed base,
cross-platform availability, support for SOAP-based
Web services, rich feature set, and easy-to-use
authoring environment, we chose Adobe’s
Macromedia Flash for the current set of VisPort client
applications. The user interface, shown in Figure 2,
consists of an overall framework that supports
browsing through data sets, exploring the services
available for various data sets, reviewing the list of
jobs that have been launched, and viewing
visualization products from the current or previous
user sessions. Also, in response to user choice about
services to apply to a particular data set, the client
application loads customized interface panels for
manipulating the service parameters and sending a
request to a service for activity. An example of a
service interface panel is shown in Figure 3.

Figure 2. The VisPort interface. VisPort’s user interface, written in
Macromedia Flash, supports browsing through data sets, services,
jobs, products, and sessions.

2.1.1 TeraGrid Connection

VisPort includes a mechanism to make use of high-
performance resources, especially Indiana
University’s Big Red machine (512 IBM JS21 Blades,
each with two dual-core PowerPC 970 processors and
8GB of memory, connected by PCI-X Myrinet 2000).
Selected VisPort services, running on Globus-enabled
hosts, act as a proxy and delegate their visualization
tasks to companion visualization applications
executing on Big Red. In this case, the proxy service
handles the task of retrieving TeraGrid user
credentials from the NCSA MyProxy Server. The
proxy service forwards these credentials to Big Red as
part of launching the job. The proxy service also
retrieves the visualization application’s output
products from Big Red and copies them to the proxy’s
local file system, making these products available to
the rest of the system.

Baker et al., VisPort

Figure 3. A VisPort service panel. VisPort emphasizes simple user
interfaces, customized for our applications researchers.

2.2 Community-Specific Visualizations

It is not surprising that many of the most meaningful
and effective visualizations result from longer-term
partnerships between applications researchers and
visualization specialists. Partnership participants
each contribute unique and critical expertise and
knowledge. As depicted in Figure 4, introductory
conversations about the science, the data, and the
questions under study are followed by an iterative
cycle of generating and sharing custom visualizations,
getting feedback, and modifying representations.
Over time, visualizations that are especially effective
for the particular application community are
identified, refined and optimized. A significant step
forward in the partnership occurs when these
visualization techniques are embedded into scripts or
tools for subsequent use by the applications
researcher.

Fig. 4. VisPort collaboration model. VisPort supports the
collaborative partnership between application researchers and
visualization specialists, and facilitates iterative development of
visualizations customized for particular application communities.

It is also not surprising that end-users find
custom-designed visualization tools easier to use than
general-purpose tools. General-purpose tools derive
their power by providing enough options to handle a
wide variety of data types, analysis tasks, and
representations. But this often results in a complex
user interface, where a great many choices must be
made and parameters set before accomplishing the
data analysis task. Custom-designed tools, on the
other hand, can provide more limited, but targeted,
functionality with much simpler user interfaces.

VisPort is structured to
emphasize community-specific and
easy-to-use visualization. Users are
registered as members of a
particular community, and entry to
the system is through a community-
specific portal. During a VisPort
session, a user has access to all the
datasets that have been registered
with VisPort for that community.

The underlying service-based
architecture is well-suited to developing a
community-specific visualization portal. The service
architecture encourages a clean separation between
service functionality and the client user application.
General-purpose back-end engines can be coupled
with very simple, tailored user interfaces.

2.2.1 Custom Visualizations and TeraGrid

Custom visualization solutions are especially
important for high-performance computing. Almost
by definition, HPC data sets are large. More
important, HPC applications are cutting-edge
computational science, perhaps generating simulation
output at physical scales we have not dealt with
before, or tackling multi-physics problems where
traditional general-purpose visualization techniques
might not apply. Additionally, HPC applications
involve new levels of data complexity, such as in data
assimilation applications involving real-time data
observations and running simulations. While
traditional visualization techniques are obviously still
quite useful for these problems, the pioneering nature
of HPC and TeraGrid computational science demands
that attention also be given to advancing new custom
approaches to data analysis and visualization.

VisPort can also play a useful role in educating
the next generations of TeraGrid users. VisPort’s
emphasis on providing simple user interfaces makes
visualization functionality accessible for new users of
computational science techniques. Making
visualization easy to use is one component of

TeraGrid 2007, Madison WI

broadening participation for the HPC and TeraGrid
communities.

2.3 Visualization Informatics

Recently, substantial effort has been directed towards
defining metadata to describe observed data and
simulation output. With XML as a supporting
technology, these efforts have led to a large number of
community-specific formalizations for describing
data. There has been far less attention given to
defining metadata related specifically to visualization,
at either the process or product level.

In VisPort, we introduce the notion of
visualization informatics – the formalization and
specialization of information related to the process
and product of visualization. VisPort relies heavily on
an underlying XML schema as a shared information
base for the various components of the system. The
VisPort schema introduces elements that (1) describe
data at levels of abstraction that go beyond file
formats, files, and runs; (2) describe the output
products of visualization algorithms; and (3) capture
the interaction history of a user with a visualization
session.

VisPort’s emphasis on visualization informatics
is similar in spirit to some aspects of the more
complete and formal visualization model reported in
[10] and [11]. This body of work offers formal models
of the visualization exploration process, to support
encapsulation, sharing, and analysis of visual
explorations. Strategies for recording and analyzing
information about data visualization sessions are also
the topic in [12], where the focus is on capturing
details about user interaction related to the
knowledge discovery process, along with user-
defined annotations of those details. Finally, VisTrails
[13] concentrates on formalizing the visualization
pipeline itself, and separating the pipeline from
instances of execution, with special emphasis on
reusing and optimizing visualization pipelines.

2.3.1 VisPort Data Description Schema

Application scientists and visualization specialists
have been aided for the last 2 decades by the existence
of standardized data file formats such as HDF and
NetCDF. However, these are file formats; higher
levels of data organization are still left up to
computational researchers, who make different
choices about storing variables and timesteps in single
or multiple files. The VisPort information schema
introduces data description techniques for describing
simulation output, independent of file format and
storage strategy (currently limited to gridded data,
but extensible to other forms). Further, the schema

accommodates output from multiple same-grid
simulation runs, treating (for example) an ensemble
study of several runs as a collection of related, same-
structure simulation outputs. In this case, run number
is simply a higher-level dimension of the data space.

As shown below, the VisPort information schema
includes tags to describe coordinates and to combine
coordinates to define grid shapes. Additional
attributes and/or sub-elements of the Coordinates tag
are available to specify more detail about a
coordinate, including its label, units of measurement,
data type, and spacing information (regular or
rectilinear) – these details are omitted here for
simplicity. The simulation variables populating the
computational grid are described by Variable tags.
Variables can be described as scalars, or as
components of a named vector field. Note that these
tags are designed to describe a data set in abstract
terms, with no reference to file format or storage
strategy.

Mapping from the abstract dataset description to
the file system is handled in the Location tag. The
Location tag includes an explicit specification of file
format, as well as a template string for file locations.
The Location element’s children supply information
about how substitutions should be made into the file
location string to generate the name of a specific file.

For example, the XML fragment below describes
simulation output from an ensemble of 36 runs, where
each run computed a scalar field QRAIN and a vector
field Wind on a 240 x 160 grid and saved these
variables to a separate file for each of 180 timesteps.

<dataset>

<coordinate name=”run” size=”36” />
<coordinate name=”time” size=”180” />
<coordinate name=”x” size=”240” />
<coordinate name=”y” size=”160” />
<shape name=”shapeOne”>
 <dimension index=”0” coordinate=”x” />
 <dimension index=”1” coordinate=”y” />
 <dimension index=”2” coordinate=”time” />
 <dimension index=”3” coordinate=”run” />
</shape>
<variable name="QRAIN" shape="shapeOne" field="scalar" />
<variable name="U" shape="shapeOne"
field="vectorComponentX" vector="Wind" />
<variable name="V" shape="shapeOne"
field="vectorComponentY" vector="Wind" />
<variable name="W" shape="shapeOne"
field="vectorComponentZ" vector="Wind" />
<location format="NetCDF"
 path="$DATA/LEAD/Ensem15/Run|0|/wrf|1|.nc">
 <patternSub index="0" coordinate="run" width="3" />
 <patternSub index="1" coordinate="time" width="3" />
</location>

Baker et al., VisPort

</dataset>

In VisPort, a data description XML file is
available for each of the data sets known to the
system. On the user interface side, the data descriptor
is used to customize the interface widgets. For
example, a region of interest selector widget can be
limited to start and end values that match the shape of
the data, and drop down menus for variable selection
can be limited to a list of scalar variables, or vector
variables, as appropriate. On the services side, the
data descriptor XML is passed as an argument to
VisPort routines for data manipulation, data analysis,
and/or visualization. A set of supporting data
ingestion classes exists to parse the data descriptor
XML, generate file paths, create the appropriate data
readers, read the data, and (if requested) map the data
to VTK data structures.

The use of a data descriptor tailored for
visualization purposes has proven useful in a number
of ways. First, as noted above, it lets us customize the
user interface elements in VisPort. Such customized
interfaces are almost always easier to use and more
resistant to user error. Further, the data description
exists separate from the data itself. This means that
user interface design and development activities can
proceed in advance of data availability, or with
languages and tools (such as Flash) that might not be
suited for reading scientific data, even in standard file
formats. Next, the data descriptor expresses an
abstract model of the data set, without regard to file
format or storage strategy. Data manipulation,
analysis, and visualization services can be built to this
abstract data model, relying on lower-level format-
specific file readers for data reading. Finally, the
abstract data model accommodates multiple runs of
the same simulation code, such as we might find in an
ensemble study. This strategy lets us treat run number
(for example) as simply another dimension. For
example, a general-purpose color-mapped slice
service could be used to produce images that show
QRAIN from the final time-step of every run in the 36-
run ensemble.

2.3.2 Visualization Products Schema

Visualization imagery is only useful if information is
available about the data set depicted, the algorithms
used to map data to visual form, and the settings of
relevant parameters. In short, understanding a
visualization product depends on knowing the
provenance of the visualization – the history of its
production and any subsequent modifications. In the
current practice of visualization production, there is
no standardized way to capture and record

provenance of our products. In current practice, we
tend to rely on clever file-naming schemes, or on the
labeling and annotation that is embedded in the visual
image, usually at the time of rendering.

VisPort takes a significant step forward by
insuring that provenance information is available for
any visualization product. The client application and
the services themselves each contribute information
that is added to the provenance record. The VisPort
client application captures parameter settings for
visualization jobs as they are launched, recording this
information according to tags defined in the VisPort
information schema. Services record information
about their output products in a Product Log, again
conforming to the VisPort information schema for
visualization products. The product schema includes
tags for Images, Movies, and Geometry. An Info tag
is also available to capture additional information.
For example, the Color-Mapped Slice service outputs
images (or movies), accompanied by an Info tag that
notes the minimum and maximum values found in
the data.

Any number of applications could be developed
for viewing VisPort visualizations. Currently, VisPort
uses the session and product log XML records and an
XSL transformation to produce an HTML Web page
viewable in any browser. The provenance
information for visualizations is included with the
visualization in the page, as shown in Figure 5.

Fig. 5. VisPort output. VisPort visualizations are shown with
information about the data, services, methods, and parameters
used in their production. Images are scaled in the browser page,
with links to the full-size version.

TeraGrid 2007, Madison WI

3 SUMMARY

The VisPort framework offers an infrastructure for
Web-based access to remote visualization
functionality, tailored for specific application
communities. Within the context of this infrastructure
development, we introduce the notion of visualization
informatics, including a schema to support a high-
level data abstraction model for gridded data,
methods for capturing the provenance of visualization
products, and techniques for capturing the interaction
history of a user during a visualization session.

In future work, we will expand the number of
services offered to support additional representations.
Further, we are considering the design of services to
automate transfer of data from one site to another.
We are also especially interested in increasing
VisPort’s reach and in working with new application
communities on the use of VisPort.

ACKNOWLEDGEMENTS

This work is supported by an award from the National
Science Foundation Division of Ocean Sciences (0341139),
and by a SciDAC grant from the U.S. Department of
Energy programs in High Energy Physics, Nuclear Physics,
and Advanced Scientific Computing Research (DE-FC02-
03ER41275). We are grateful also to our application
partners, especially Doug Swesty, Eric Myra, and Tony
Mezzacappa; Brian Jewett and Bob Wilhelmson; Andrew
Bennett and Boon Chua.

REFERENCES

[1] ParaView, www.paraview.org.
[2] VisIt, www.llnl.gov/visit/.
[3] EnSight, www.ensight.com.
[4] TeraGrid Visualization Gateway, Argonne National

Labs,
www.teragrid.org/programs/sci_gateways/projects.php
.

[5] D. Guzman, G. Johnson, and P. Shanmugam,
"VisEnable: A User Friendly and Extensible System
for Remote Visualization", TeraGrid 2006,
Indianapolis IN, June 2006.

[6] VisPort, vis.iu.edu/VisPort.
[7] ZSI: The Zolera Soap Infrastructure,

pywebsvcs.sourceforge.net/zsi.html.
[8] Twisted, twistedmatrix.com/trac/.
[9] The Visualization ToolKit, www.kitware.org.
[10] T.J. Jankun-Kelly, Oliver Kreylos, Kwan-Liu Ma,

Bernd Hamann, Kenneth I. Joy, John Shalf, and E. Wes
Bethel, "Deploying Web-based Visual Exploration
Tools on the Grid," IEEE Computer Graphics and
Applications, vol. 23(3), pp. 44-50, 2003.

[11] T. J. Jankun-Kelly, Kwan-Liu Ma, and Michael Gertz,
"A Model and Framework for Visualization
Exploration," IEEE Transactions on Visualization and
Computer Graphics, to appear, 2007.

[12] Dennis P. Groth and Benjamin W. Murphy, "Tracking
User Interactions with Visualizations," in IEEE
Symposium on Information Visualization, Austin TX,
October 2004.

[13] Louis Bavoil, Steven P. Callahan, Patricia J. Crossno,
Juliana Freire, Carlos E. Scheidegger, Claudio T. Silva,
and Huy T. Vo, "VisTrails: Enabling Interactive
Multiple-View Visualizations," in IEEE Visualization,
Minneapolis MN, October 2005.

	1 Introduction (
	2 VisPort
	2.1 Service-Oriented Architecture
	2.1.1 TeraGrid Connection

	2.2 Community-Specific Visualizations
	2.2.1 Custom Visualizations and TeraGrid

	2.3 Visualization Informatics
	2.3.1 VisPort Data Description Schema
	2.3.2 Visualization Products Schema

	3 Summary

