SANDIA REPORT

SAND2007-4526
Unlimited Release
Printed July 2007

Optimizing the ASC WAN: Evaluating
Network Performance Tools for
Comparing Transport Protocols

Christopher L. Lydick

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2007-4526
Unlimited Release
Printed July 2007

Optimizing the ASC WAN: Evaluating Network
Performance Tools for Comparing Transport
Protocols

Christopher L. Lydick
Graduate Student Intern
Advanced Networking Integration (9336)
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0806

Abstract

The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is
a high delay-bandwidth network connection between US Department of Energy Na-
tional Laboratories, is constantly being examined and evaluated for efficiency. One
of the current transport-layer protocols which is used, TCP, was developed for traffic
demands which are different from that on the ASC WAN. The Stream Control Trans-
port Protocol (SCTP), on the other hand, has shown characteristics which make it
more appealing to networks such as these. Most important, before considering a re-
placement for TCP on any network, a testing tool that performs well against certain
criteria needs to be found. In order to try to find such a tool, two popular networking
tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested.
These tools implement both TCP and SCTP and were evaluated using four metrics:
(1) How effectively can the tool reach a throughput near the bandwidth? (2) How
much of the CPU does the tool utilize during operation? (3) Is the tool freely and
widely available? And, (4) Is the tool actively developed? Following the analysis of
those tools, this paper goes further into explaining some recommendations and ideas
for future work.

Acknowledgment

Special thanks to Tan Hu, Larry Tolendino, and Jason Wertz for their help and
guidance.

Contents

1 Introduction

Background

The ASC WAN

2 Laboratory Configuration
Spirent™ Adtech AX/4000
Ubuntu 7.04 Server.

Kubuntu 7.04 Client

3 Analysis and Evaluation

Iperf 2.0.6, LKSCTP

Test Results
Throughput Grade
CPU Grade
Availability Grade

Development Grade

10
11
11
11
12
12

12

13
13
13

14

15

Overall Grade,

Netperf 2.4.3, LKSCTP

Test Results
Throughput Grade
CPU Grade
Availability Grade
Development Grade

Overall Grade

Netperf 2.4.6, STREAMS

Test Results
Throughput Grade
CPU Grade
Availability Grade
Development Grade

Overall Grade

4 Future Work

5 Conclusion

References

27

29

30

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6

Lab Setupo 13
Iperf Throughput Results, SCTP vs. TCP varying RTT 18
Iperf CPU Results, SCTP vs. TCP varying RTT 18
Netperf Throughput Results, SCTP vs. TCP varying RTT 20
Netperf CPU Results, SCTP vs. TCP varying RTT 21
Netperf Throughput Results, SCTP (STREAMS) varying RTT....... 24
Netperf CPU Results, SCTP (STREAMS) varying RTT 24

List of Tables

2.1

3.1
3.2
3.3
3.4

3.5

Client and Server Specifications 14
Grades For Given Throughput and CPU Utilizations 16
Data Collected during Iperf (LKSCTP) Test 17
Data Collected during Netperf (LKSCTP) Test.................... 23
Data Collected during Netperf STREAMS Test. 25
Grade Card 26

Chapter 1

Introduction

In an effort to find an alternative protocol(s) for use on a network, it is necessary
to evaluate various performance tools that could be used to compare the available
data communication protocols. This report compares two performance testing tools
(Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) against TCP
(Transmission Control Protocol) and SCTP (Stream Control Transmission Protocol)
by using four metrics:

How effectively can the tool reach a throughput near the bandwidth?

How much of the CPU does the tool utilize during operation?

Is the tool freely and widely available?

Is the tool actively developed? To what extent?

The process by which the network performance tools were selected for evaluation
was done based on pre-existing implementations and knowledge within the Advanced
Networking Integration Department at Sandia National Laboratories. Netperf and
Iperf were already widely used within the department. This report will expand on
that knowledge through testing within a laboratory setting.

Background
The ASC WAN

The Advanced Simulation Computing Wide Area Network (ASC WAN, formerly
known as the ASCI WAN) was developed to connect supercomputers within the US
Department of Energy National Laboratories, allowing the various labs to share re-
sources [1]. The locations which utilize this network are Sandia National Laboratories,
Albuquerque, NM (SNL); Sandia National Laboratories, Livermore, CA (SNL-CA);
Lawrence Livermore National Laboratories, Livermore, CA (LLNL); and Los Alamos
National Laboratories, Los Alamos, NM (LANL). When the ASC WAN is being used,

9

there are large flows of data which are transferred between the labs [4]. This requires
extremely large network throughput. When coupling that characteristic with the
unavoidable physical distances between the laboratories, these network connections
have a high delay-bandwidth product, leading to issues within the traditional TCP
implementation. In order to efficiently utilize the ASC WAN network with TCP, it
is necessary to use multiple simultaneous TCP connections [4]. This has led the Ad-
vanced Networking Integration Department to research other alternatives, the most
promising being Stream Control Transport Protocol (SCTP).

TCP vs. SCTP

TCP has been around for quite some time. It was developed long ago when the
Internet consisted of hundreds or thousands of hosts, not in today’s world with over
a billion hosts. The newest alternative, SCTP was submitted to the RFC database in
mid 2000 (RFC 2690, 3286), and has since been adopted by the IETF as a recognized
Internet transport layer standard.

Briefly, some of the negative issues with TCP are:

e TCP is Byte-Oriented. Because of this, message boundaries are not preserved.
This can be an issue if a piece of the data becomes lost or corrupt during
transfer because the receiver in the TCP connection will not deliver data to the
application until it receives the missing data. This causes Head-Of-The-Line
Blocking (HoL) [5].

e TCP uses a 3-way handshake to initiate data transfers. This characteristic is
prone to Blind SYN Attacks [5]. These attacks occur when a malicious user
sends multiple requests (SYN packets) for establishing a connection to a single
host. The host receiving these requests allocates resources for each request, and
after some time can be depleted of those resources and rendered useless. This
is also known as a Denial of Service (DoS) attack, because once the host is
rendered useless, it appears to be unavailable and passively denies any further
connection requests.

e In terms of the ASC WAN, multiple TCP connections need to be established
to transfer data using the parallel FTP (PFTP) utility [4]. PETP is one of the

current methods used to transfer data simultaneously through multiple TCP
connections over the ASC WAN.

While on the other hand:

e SCTP is Message-Oriented. This enables SCTP to preserve the message bound-
aries, and allows it to get around the TCP HoL blocking [5].

10

e SCTP uses a 4-way handshake. SCTP allows for data transfer after three mes-
sages have been exchanged (just like TCP), but also implements a cookie and
cookie verification before allocating resources. This insures that the connection
request is indeed valid.

e Because SCTP uses multi-homing, a single SCTP association can contain mul-
tiple streams or connections. This requires less overhead (than the multi-
connection TCP implementation described above), and provides SCTP with
redundancy [5].

Available Network Performance Tools
Iperf 2.0.6 (OpenSS7)

The Iperf network performance tool was initially developed by NLANR/DAST (Na-
tional Laboratory for Applied Network Research/Distributed Applications Support
Team) as an alternative to the already available and somewhat cumbersome through-
put performance measuring tools. Its user interface is fairly straight-forward and is
easy to use, making it fairly popular within the networking community.

The current public release of Iperf from NLANR/DAST is 2.0.3, released in May 2005.

This is also the current release available through SourceForge (http: //www.sourceforge.

This version of Iperf does not support SCTP testing.

OpenSS7 is an organization which provides GPL (GNU Public License,

hitp:/ /www.gnu.org/copyleft/gpl.html) versions of the SS7 (Signalling System #T7)
stack for various Linux and UN*X systems. SS7 is a broad range of telephony sig-
nalling protocols which provides the backbone for nearly all of the switched telephony
networks in the world. Along with their development of SS7, they have actively de-
veloped SCTP libraries and have modified preexisting network performance tools to
implement SCTP. Among the tools, they have modified Iperf to include their own
OpenSS7 SCTP libraries (for version 2.4.x Linux Kernels), as well as support for
LKSCTP (Linux-Kernel SCTP libraries).

Netperf 2.4.3

The Netperf utility, currently copyrighted by Hewlett-Packard (HP) and offered freely,
is primarily used for benchmarking network throughput and latency between hosts.
The project is currently maintained by Rick Jones, and is provided free. Under
its license, HP grants users permission to modify, copy and use the software freely.
It’s worth noting that contained within its license is a provision that in the future
Netperf may or may not be offered as a product of Hewlett-Packard. The current

11

net).

public release includes SCTP capabilities using the LKSCTP libraries. It is available
for download through Netperf’s site (http://www.netperf.org).

Netperf 2.4.6 (OpenSS7)

This version of Netperf is also copyrighted by HP, but is currently maintained by
its modifier, OpenSS7. This particular release was configured for support with the
OpenSS7 STREAMS. (See section Previous Work.)

Others

Other network performance measuring tools which include SCTP and TCP were
identified but not included within this report. Some of the other tools which were
considered were sctpperf v.0.1, and SCTP TestTool (stt) v.0.9.6. Future work may
include integrating those tools into the work presented in this paper.

Previous Work

Along with the widely available LKSCTP (Linux Kernel SCTP libraries using Sock-
ets), OpenSS7 has developed their own STREAMS from scratch. STREAMS uses
full duplex character device drivers to interface the user processes and kernel system
calls. The Sockets, however, uses a much tighter interface to implement the SCTP
protocol using traditional Linux kernel sockets.

This STREAMS has been shown to outperform SCTP Sockets using multiple distri-
butions of Linux [2]. Along with this finding, it was also shown that much of the
stigma associated with using STREAMS, such as being slow and inefficient, is not
accurate [2].

Other previous work includes work from [3]. This paper has shown that enabling
Nagle’s algorithm during SCTP stream testing can cause a sharp drop in reported
throughput as the RTT (round-trip time) value is increased. Unfortunately only the
Netperf version with STREAMS could disable the Nagle Algorithm. The LKSCTP
libraries did not allow for this feature to be tested.

Taking this information, as well as other work that has been done comparing SCTP
and TCP, this paper attempts to find the best tool for analyzing protocol perfor-
mance in the ASC WAN network. It should be understood that an optimal SCTP
performance testing tool which performs well on the ASC WAN network may not be
optimal for different environments.

12

Chapter 2

Laboratory Configuration

The test bed consisted of two hosts, a client and server, connected through a Spirent
Adtech AX /4000 Network Impairment Emulator. This emulator has the ability to
vary the RTT value between the hosts thus imitating the performance of the ASC
WAN. See Figure 2.1.

Spirent™ Adtech AX /4000

This broadband test system provides many different capabilities for network testing,
however only one feature, varying the RTT value, was used to benchmark the testing
tools within this paper. Because of the approximate 40ms RTT between various hosts
in the ASC WAN network, it’s necessary to vary the RTT values during performance
tests to see how well the testing tools will perform in this environment. This test
system provided the ability to do that.

Ubuntu 7.04 Server

Table 2.1 shows the individual specifications for this machine. This server differs from
the client only by the Ubuntu/Kubuntu Linux distributions.

Server (7.209)

-~

Client {7.207) Ly
Spirent Adtech AX/4000

Figure 2.1. Lab Setup

13

Table 2.1. Client and Server Specifications

AMD@©Opteron™2.0 Ghz
1 GB RAM
x86_64 2.6.20-15-generic Linux Kernel
Intel®PRO/1000 Network Card
TSO and CKO enabled
Jumbo-Frames enabled (9000 Byte MTU)
16MB [r/w|mem_max
4096 87380 16777216 tcp_rmem
4096 65536 16777216 tcp-wmem
TCP Reno
TCP SACK, Window Scaling, and Timestamps
2500 netdev_max_backlog

There are two interfaces which are used on this machine. One interface, referred to as
the administrative interface, is used to connect through SSH remotely. This interface
used subnet 4. The other interface, referred to as the test interface, used subnet 7.
This server will be referenced from here on as the server.

Kubuntu 7.04 Client

For the specifications, see Table 2.1. As described above, the only difference between
the client and server was the Linux distribution.

Just like the server, this client incorporates two interfaces. The administrative in-
terface on this machine used subnet 4, and used the test interface on subnet 7. This
machine will be referenced here after as the client.

14

Chapter 3

Analysis and Evaluation

The analysis and evaluation of the network test utilities (Netperf and Iperf) will be
outlined as follows. Each protocol (and version) is noted, and is given a standard
grade of A/B/C/D/F (A=Excellent ... F=Fail) when answering the previous listed
metrics for evaluation. These metrics are:

e (1) How effectively can the tool reach a throughput near the bandwidth?
e (2) How much of the CPU does the tool utilize during operation?
e (3) Is the tool freely and widely available?

e (4) Is the tool actively developed? To what extent?

These metrics are fairly important, and collectively represent the top characteristics
of a proper testing tool. The ability to reach the throughput is very critical in an
effective testing tool, as is the ability to not overuse the processor during testing.
Whether or not the tool is freely or widely available would probably be the least
important metric listed above, while active development is very critical.

For each metric, it is important to understand what the correct answers to those
questions are. The following are explanations of how the testing tools were rated:

(1): The theoretical bandwidth can be calculated manually by knowing a little infor-
mation about the network. First, the test network uses a 1-gig Ethernet/IP network.

For each data packet, the total data transferred (including headers at all layers) is
9018 bytes. That breaks down to:

8952 data payload

16 SCTP chunk header

12 SCTP common header

20 IP header

18 Ethernet header/CRC

9018 Total bytes transmitted per packet

++ 4+

15

Table 3.1. Grades For Given Throughput and CPU Uti-

lizations
Grade Throughput CPU Utilization
A > 900 Mb/sec < 19%
B 800-899 Mb /sec 20-39%
C 700-799 Mb/sec 40-59%
D 600-699 Mb/sec 60-79%
F < 599 Mb/sec > 80%

The payload of data within that packet is 8952 bytes, giving us 99.27% of the packet
for data, and 0.74% of the packet for header/footer information. Theoretically we
should get throughput readings (when completely filling the pipe) at 992.7Mb/sec.
The link-layer preamble was not considered in this calculation. See Table 3.1 for the
grade distribution:

(2): Ideally we want to be using as little CPU resources as possible. While this is not
possible, nor is it probable, Table 3.1 shows an optimistic ranking of CPU utilizations.

(3): Whether or not a tool is freely and widely available is fairly straight forward.
Considering widely available and freely available are not usually mutually exclusive,
the grade will be given on how widely and freely available the tool appears to be.
This will, of course, be subjective.

(4): The analysis of the level of development for any software project is also subjective.
Because of this, there are descriptions for the reasoning behind the grade given for
each tool in the respective sections.

Each subsection following will describe and analyze each of the testing tools using
the above criteria.

Iperf 2.0.6, LKSCTP
Test Results

Figures 3.1 and 3.2 show the throughput and CPU test results, respectively. These
results were obtained by adjusting the RTT value and issuing the following command
on the client:

$./iperf -c server -B client -z -w [0.5%window_size] -1 8952 -t 30
The window_size is the calculated window size for that specific bandwidth-delay prod-

uct. The window size specified in the command line is reported by Iperf to be doubled,
which is why the value passed is half of the actual window size. At the server level,

16

Table 3.2. Data Collected during Iperf (LKSCTP) Test

RTT SCTP TCP
Throughput | CPU Utilized || Throughput | CPU Utilized

Oms || 989 Mb/s 100 % 994 Mb/s 63 %
5 989 100 991 52
10 999 100 987 30
15 976 100 983 28
20 927 100 979 33
25 877 95 974 32
30 842 92 969 25
35 801 82 965 23
40 740 44 959 18
45 669 32 957 34
50 620 28 951 34
55 605 26 873 25
60 590 25 800 29

the following command was issued:

$./iperf -s -B server -z -w 5M

The libraries which were used on both machines were libsctpl version 1.0.6.dfsg-/
and [ibsctp-dev version 1.0.6.dfsg-4. These provided the user-space access to the

LKSCTRP libraries.

When analyzing the data using Wireshark, it was observed that the correct slow-start
for SCTP was maintained, and only single chunks with data payloads of size 8952

bytes were within the 9018 byte frames.

Throughput

B

This testing tool seemed to perform fairly well in achieving the theoretical through-
put at lower RTT values. The only problem shown was that after 15ms, performance
on achieving the accurate throughput was declining. Between Oms and 60ms, the
average throughput achieved was 816Mb /sec.

Grade

17

1000.0 -
800.0
re]
E 600.0
5
Q.
=
g’ 400.04
kS —=— TCP- Iperf 2.0.6
= —— SCTP- Iperf 2.06
200.0
OO T T T
0 20 40 60

RTT (ms)
Iperf: SCTP vs TCP Throughput varying RTT

Figure 3.1. Iperf Throughput Results, SCTP vs. TCP
varying RTT

100.0 -
T 80.0-
g
5
< 600 o
~ —m— SCTP CPU Utilization - Iperf 2.0.6
% —— TCP CPU Utilization - Iperf 2.0.6
g
N 400
5
o
G 2004
0.0 . , . : : :
0 20 40 60

RTT (ms)
Iperf: SCTPvs TCP - CPU Utilization varying RTT

Figure 3.2. Iperf CPU Results, SCTP vs. TCP varying
RTT

18

CPU Grade

D

The CPU utilization showed very poor performance. At low RTT values the CPU
was over utilized, which is not a characteristic that is attractive in a performance
testing tool. These results could be stemming from multiple areas. CKO (Checksum
Offloading) and TSO (TCP Segmentation Offloading) are implemented through TCP
which reduces the amount of work that the CPU must do during high levels of com-
munication. Developers from the Netperf project described how these features are
not currently implemented within SCTP. The average CPU Utilization was 71%.

Availability Grade

A

This tool is widely and freely available. Because of its easy-to-use interface, Iperf
is a very popular choice for network performance testing.

Development Grade

B
It’s not known whether or not NLANR/DAST is still actively developing the Iperf
tool. But because their latest release was in 2005, it may be losing ground on ac-

tive development. Aside from that, OpenSS7 has been creating their own modified
versions of Iperf.

Overall Grade

B
Iperf has a lot of room for improvement, but has shown some characteristics of an
effective network performance tool. From these tests, it probably does not fully meet

the requirements for an SCTP test tool on the ASC WAN.

19

1000.0 - - - -

800.0
5
= 600.0
5
o
<
g’ 400.0 4
= —a— TCP- Netperf 2.4.3
= —e— SCTP- Netperf 2.4.3

200.0

0.0 T T T T T T
0 20 40 60
RTT (ms)
Netperf: SCTP vs TCP Throughput varying RTT

Figure 3.3. Netperf Throughput Results, SCTP vs. TCP
varying RTT

Netperf 2.4.3, LKSCTP

Test Results

Figures 3.3 and 3.4 show the throughput and CPU tests, respectively. As with the
Iperf tests above, these results were obtained by evaluating the CPU utilization and
reported throughput as the RTT values were varied. At the server level, the following
command was issued:

$./netserver
The command issued at the client level was:
$./netperf -i 9,3 -1 95,5 -t SCTP_STREAM -1 30 -H server — -m 8952 -S 16777216 -s 16777216

This provided the client with a +/- 2.5% @ 95% confidence for the results with a
minimum of 3 tests and a maximum of 9 tests to validate the specific result. It also
assured that the message sizes plus all header information would equal the MTU size,
as well as insure that both client and server would utilize 16MB buffers. As with Iperf,
the libraries which were used on both machines were libsctp1 version 1.0.6.dfsg-4 and
libsctp-dev version 1.0.6.dfsg-4

20

= 80.0
g
5
& 600+ o
< —&— SCTP CPU Utilization - Netperf 2.4.3
% —— TCP CPU Utilization - Netperf 2.4.3
g
N 400
35 — . . ————
o
O 20.04
0.0 T T T T T T
0 20 40 60

RTT (ms)
Netperf: SCTPvs TCP - CPU Utilization varying RTT

Figure 3.4. Netperf CPU Results, SCTP vs. TCP varying
RTT

Throughput Grade

C

The throughput shown during this test was very similar to the Iperf test, but Netperf
showed a lower average throughput than the Iperf test did. Netperf performed well up
to 15 ms RTT, and then drastically dropped off from there. The average throughput
between values of 0 and 60 ms RTT was 629 Mb/s. This tool would work well with
very small RTT values, but is not efficient enough for use on the ASC WAN at this

time.

CPU Grade

D

The average CPU Utilization from 0 to 60 ms RTT was 73%. According to Ta-
ble 2, this gives this part of the tool a D grade. Much like the Iperf test, the Nagle
algorithm was not allowed to be disabled, which could have improved both throughput
and CPU performance.

21

Availability Grade

B

Netperf is widely and freely available through the Netperf website. The only rea-
son this grade was lowered was because of the potential for HP to take full control
over distribution and availability. This may cause developers to hesitate when using
or helping to develop this tool, since it is not released under the standard GPL.

Development Grade

A

Development for this tool seems to be very active. The Netperf website has a very
concise manual and also has active developers available through the Netperf mailing
list. Along with Rick Jones, the main contact for the Netperf project, other develop-
ers are available for troubleshooting. The latest release through the Netperf site was
in February of 2007, version 2.4.3.

Overall Grade

C

This version of Netperf has shown functionality for SCTP, but seems to perform
worse than Iperf. It is not recommended for use on the ASC WAN because of its
poor performance near the RTT values that are seen on the ASC WAN.

Netperf 2.4.6, STREAMS
Test Results

Figures 3.5 and 3.6 show the throughput and CPU utilization results from the SCTP
STREAMS test using the OpenSS7 Fast-STREAMS. The TCP test results are not
included because the TCP STREAMS was not working correctly. When testing the
TCP STREAMS, one or both of the test machines would freeze. Regardless, that data
was not critical to analyze and rank the functionality of SCTP STREAMS through
Netperf 2.4.6. The command issued at the client level during the test was:

$. /netperf -i 9,8 -1 95,5 -1 30 -t XTIL.SCTP_STREAM -h server — -m 8952 -X /dev/sctp_t -D -
S 16777216 -s 16777216

22

Table 3.3. Data Collected during Netperf (LKSCTP) Test

RTT SCTP TCP
Throughput | CPU Utilized || Throughput | CPU Utilized

Oms || 990 Mb/s 99 % 988 Mb/s 33 %
5 966 99 986 32
10 944 98 985 32
15 832 93 984 32
20 788 89 983 32
25 705 83 981 32
30 560 77 980 32
35 525 71 978 32
40 481 64 977 31
45 432 57 975 32
50 371 48 973 31
55 315 40 895 29
60 266 34 820 27

Nagle’s Algorithm was disabled in this test, but did not provide any ”better” re-
sults when toggling its functionality on and off. At the server level:

$. /netserver

See Table 3.4. As is shown, there is a sharp degradation in throughput performance
from 0 ms RTT to 5 ms RTT. This degradation also follows a very low CPU utiliza-
tion as the RTT increases. Upon further analysis, it seemed that the STREAMS was
not opening its congestion window correctly. By observing the data on the network
being sent from client to server, no more than 2 segments of size 8952 bytes were sent
at a time. At nearly zero RTT, this was acceptable, but once delay is introduced, the
reported throughput was very low.

Throughput Grade

F
Because of the low throughput within this test, the throughput portion of this grade
resulted in a failing grade. The average throughput reported from 0 ms to 60 ms

RTT was 89.6 Mb/sec.

23

L
800.0
5
é 600.0
g. —=— SCTP(STREAMS) - Netperf 2.4.6
S 400.0
=]
=
'_
200.0
0.0 : . -y » !
0 20 40 60
RTT (ms)

Netperf: SCTP (STREAMS) Throughput varying RTT

Figure 3.5. Netperf Throughput Results, SCTP
(STREAMS) varying RTT

100.0

80.0

60.0

—a— SCTP (STREAMS) CPU Utilization - Netperf 2.4.6

CPU Utilization (% Utilized)
5
T

20.0

0.0 T 4 = .- - » .
0 20 40 60
RTT (ms)
Netperf: SCTP (STREAMS) CPU Utilization varying RTT

Figure 3.6. Netperf CPU Results, SCTP (STREAMS)
varying RTT

24

Table 3.4. Data Collected during Netperf STREAMS Test

RTT SCTP
Throughput | CPU Utilized

Oms | 909 Mb/s 36 %
5 81 3
10 42 2
15 28 1
20 22 1
25 17 1
30 14 1
35 12 1
40 10 0
45 7 0
50 9 0
55 8 0
60 7 1

CPU Grade

undef.
Because of the issues of low throughput, there was only one data point which could
be considered for the CPU utilization. The first data point had a utilization of 36%,

which may have resulted in a B grade, but because of the lack of other data points,
this metric wasn’t able to be graded.

Availability Grade

B
The OpenSS7 STREAMS is available freely through the OpenSS7 website under the

GNU public license. The Netperf utility (as stated before) is not available through
the GNU public license, but is currently available free through HP.

Development Grade

A

Frequent updates have been released through the OpenSS7 website for some time.
The newest STREAMS, version 0.9.2.3, was released in June 2007.

25

Table 3.5. Grade Card

Iperf 2.0.6 | Netperf 2.4.3 | Netperf 2.4.6
Throughput Grade B C F
CPU Grade D D undef.
Availability Grade A B B
Development Grade B A A
‘ Overall Grade H B ‘ C ‘ F ‘

Overall Grade

F
In its current implementation, Netperf 2.4.6 with SCTP STREAMS is unable to

meet the needs of the ASC WAN as a functional network SCTP testing tool. It
showed very poor performance with throughput, and left the CPU test up in the air.

26

Chapter 4

Future Work

Based on [3], the Nagle Algorithm should improve the performance for SCTP at
higher RTT values. Future work should definitely include reproducing those results,
and seeing if they raised the grades of either of these tools.

Other work could include an analysis of the performance through the LKSCTP and
STREAMS implementation. This analysis should delve into whether or not TSO
(Transmission Sequence Offloading) or CKO (Checksum Offloading) are viable op-
tions for SCTP as they are for TCP. If so, they may lower the CPU utilizations at
the lower RTT values by routing some redundant computation to the NIC cards.

It’s also curious whether or not STREAMS has correctly implemented the slow-start
congestion control algorithm that the RFC specifies. Analysis of why the through-
put and CPU utilization show sharp degradations after small delays would provide
progress for that SCTP implementation.

Finally, it would be interesting seeing results of how the other tools such as STT
and sctpperf were to perform with the LKSCTP and STREAMS implementations of
SCTP.

27

28

Chapter 5

Conclusion

The goal of this research was to find an appropriate performance testing tool for
comparing SCTP and TCP traffic accurately. At low RTT values, Netperf 2.4.3
(LKSCTP) and Iperf 2.0.6 (LKSCTP) worked very well in effectively comparing
SCTP and TCP, but as the RT'T values increased, especially near the RTT values of
the ASC WAN, neither was sufficient.

Netperf 2.4.6 (STREAMS), on the other hand, was unable to provide any comparative
results for SCTP and TCP traffic. This version of Netperf seemed to work well at 0
ms RTT for SCTP, but did not work as well at increased RTT values. It should be
noted that this version of Netperf (2.4.6) is not as popular as the LKSCTP version
(2.4.3), purely because the future development of STREAMS is unknown and not as
widely used to date.

In terms of ranking the three test tools which were analyzed from best to worst,
they are: Iperf 2.0.6 (LKSCTP), Netperf 2.4.3 (LKSCTP), and finally Netperf 2.4.6
(STREAMS). See the table below for a review of the grades given to each test tool.

Grade Card
Iperf 2.0.6 | Netperf 2.4.3 | Netperf 2.4.6
Throughput Grade B C F
CPU Grade D D undef.
Availability Grade A B B
Development Grade B A A
‘ Overall Grade H B ‘ C ‘ F ‘

29

30

References

1]

Judy I. Beiriger, Hugh P. Bivens, Steven L. Humphreys, Wilbur R. Johnson,
and Ronald E. Rhea. Constructing the asci computational grid. In IEEE Inter-
national Symposium on High Performance Distributed Computing, Proceedings.,
pages 193-199. Sandia National Laboratories, 2000.

Brian F. G. Bidulock. Streams vs. sockets performance comparison for sctp.
OpenSS7 Corporation, June 2007.

Flavius Copaciu, Virgil Dobrota, Tudor Blaga, and Bagdan Moraru. Performance
analysis of stream transmission control protocol. In Symposium of Electronics and
Telecommunications (ETC2004). Technical University of Cluj-Napoca, 2004.

Tan C. Hu, Lawrence F. Tolendino, and Jason S. Wertz. Upgrading the snl/nm
asc wan router: Connecting the snl/nm hpc to the tri-lab community. Sandia
National Laboratories, 2007.

Randall R. Steward and Qiaobing Xie. Stream Control Transmission Protocol
(SCTP) A Reference Guide. Addison Wesley, 2002.

31

DISTRIBUTION:

1 MS
1 MS
1 MS
1 MS
1 MS
1 MS
4 MS
1 MS
1 MS
1 MS
1 MS
1 MS
1 MS
1 MS
6 MS
1 MS
1 MS
1 MS
1 MS
1 MS

0630
0662
0788
0788
0795
0801
0801
0801
0806
0806
0806
0806
0806
0806
0806
0806
0806
0806
0806
0806
0806
0806
0813
0813

A.L. Hale, 9600

T. Klitsner, 9330
P.A. Manke, 9338
V.K. Williams, 9334
P.C. Jones, 9317
R.W. Leland, 9300
D.S. Rarick, 9310
D.R. White, 9340
Len Stans, 9336
J.L. Akins, 9336
J.P. Brenkosh, 9336
J.M. Eldridge, 9336
A. Ganti, 9336
T.C. Hu, 9338

S.A. Gossage, 9336
B.R. Kellogg, 9336
C.L. Lydick, 9336
J.H. Maestas, 9336
J.H. Naegle, 9336
T.J. Pratt, 9338
L.F. Tolendino, 9334
J.S. Wertz, 9336
G.K. Rogers, 9329
R.M. Cahoon, 9311

32

MS 0823
MS 9012
MS 9012
MS 9151
MS 9158
MS 9018
MS 0899

J.D. Zepper, 9320

C.T. Deccio, 8949

R.D. Gay, 8949

C.T. Oien, 8940

H.Y. Chen, 8961

Central Technical Files, 8944
Technical Library, 4536

33

	Optimizing the ASC WAN: Evaluating Network Performance Tools for Comparing Transport Protocols

	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction

	Background
	Available Network Performance Tools
	Previous Work

	Chapter 2 Laboratory Configuration

	SpirentTMAdtech AX/4000
	Ubuntu 7.04 Server
	Kubuntu 7.04 Client

	Chapter 3 Analysis and Evaluation

	Iperf 2.0.6, LKSCTP
	Netperf 2.4.3, LKSCTP
	Netperf 2.4.6, STREAMS

	Chapter 4 Future Work

	Chapter 5 Conclusion

	References
	DISTRIBUTION

