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Abstract 
 
Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic 
short-term reduction in greenhouse gas emissions in particular from large stationary. A 
key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in 
the deep subsurface. Towards that end, we have developed a tool that can simultaneously 
invert multiple sub-surface data sets to constrain the location, geometry, and saturation of 
subsurface CO2 plumes. We have focused on a suite of unconventional geophysical 
approaches that measure changes in electrical properties (electrical resistance 
tomography, electromagnetic induction tomography) and bulk crustal deformation (til-
meters). We had also used constraints of the geology as rendered in a shared earth model 
(ShEM) and of the injection (e.g., total injected CO2). 
 
We describe a stochastic inversion method for mapping subsurface regions where CO2 
saturation is changing. The technique combines prior information with measurements of 
injected CO2 volume, reservoir deformation and electrical resistivity. Bayesian inference 
and a Metropolis simulation algorithm form the basis for this approach. The method can 
a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical 
resistivity, and injected CO2 volume measurements, b) provide quantitative measures of 
the result uncertainty, c) identify competing models when the available data are 
insufficient to definitively identify a single optimal model and d) rank the alternative 
models based on how well they fit available data. 
 
We present results from general simulations of a hypothetical case derived from a real 
site. We also apply the technique to a field in Wyoming, where measurements collected 
during CO2 injection for enhanced oil recovery serve to illustrate the method’s 
performance. The stochastic inversions provide estimates of the most probable location, 
shape, volume of the plume and most likely CO2 saturation. The results suggest that the 
method can reconstruct data with poor signal to noise ratio and use hard constraints 
available from many sites and applications. External interest in the approach and method 
is high, and already commercial and DOE entities have requested technical work using 
the newly developed methodology for CO2 monitoring. 
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Introduction/Background 
 
Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic 
short-term reduction in greenhouse gas emissions in particular from large stationary. A 
key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in 
the deep subsurface. Confidence in CO2 storage is limited by the uncertainty in our 
subsurface knowledge. Subsurface CO2 plume movement is often difficult to reconstruct 
due to uncertainties in reservoir architecture, distribution of porosity and permeability, 
and our ability to predict multi-phase fluid saturations. Similarly, the presence of 
heterogeneities and fast paths such as faults or abandoned wells that can create failure 
modes that might lead to CO2 leakage and shallow migration. Because natural reservoirs 
are complex, collection and formal integration of multiple geological, geophysical, and 
geochemical data sets and models can reduce or constrain key uncertainties and 
maximize our confidence in long-term CO2 storage. 
 
We have developed a stochastic computational tool to more realistically render CO2 
plume models using multiple geological and geophysical techniques. Importantly, the 
approach formally and quantitatively integrates available data and provides a strict 
measure of probability and uncertainty in the plume models. The method will 
characterize solution uncertainties whether they stem from unknown reservoir properties, 
measurement error, or poor sensitivity of geophysical techniques. 
 
The rendering of plume geometry and character is highly robust, and new or existing data 
can often rapidly test predictions of the stochastic tool. 
 
Base Methodology 
Our reconstruction method uses Bayesian inference, a probabilistic approach that 
combines observed data, geophysical forward models, and prior knowledge to compute 
models of the subsurface CO2 plumes. Joint reconstruction of the data results in plume 
models that are consistent with all available data. The result is a distribution of likely 
plume models. The method uses a Markov Chain Monte Carlo (MCMC) technique to 
sample the space of possible plume models, including the shape, location and CO2 
content of the plume. MCMC is a proven technique that uses a random-walk type 
procedure to sample possible outcomes given all available data. A detailed description of 
the application of the MCMC approach to plume reconstruction is found in Ramirez et al. 
[1]. Importantly, the basic approach was developed in a prior LDRD-SI proposal as 
described in Aines et al. [2] 
 
This approach is useful for a variety of subsurface problems such as geophysical 
inversion, data fusion, and reservoir fluid flow monitoring (water floods, steam injection, 
CO2 floods). A key advantage of the approach is that it explicitly treats the non-
uniqueness inherent in geophysical inversion. Alternative plume models are identified 
and then ranked based on how well they fit the data. It can incorporate disparate data 
types like structural geology maps identifying permeable layers and fracture zones, 
measurements of the injected CO2 volume, reservoir deformation data, cross-borehole 
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electrical resistivity, production data, geophysical logs, temperature measurements, tracer 
measurements, and gravity data. 
 
Figure 1 schematically illustrates the data processing approach. The box labeled “Propose 
model” generates random plume models that honor prior knowledge. In our  
implementation, the following prior data are used: a) reservoir models (i.e., plumes are 
more likely to be located within permeable regions), b) the plume consists of a region of 
changing CO2 saturation embedded within an otherwise unchanging volume, c) the 
changing region is composed of sub-regions that either overlap or are near each other, 
and, d) the CO2 saturation value is in the range 0 – 1.0. The box labeled Stage 1 in Figure 
2 indicates that the proposed plume model is used to predict reservoir deformation and 
that the predicted and observed deformation data are compared. The “MCMC Bayesian 
Comparison” box uses the Metropolis algorithm, Metropolis et al. [3], a randomized 
decision rule to accept or reject the proposed plume models according to their 
consistency with the observed data. This comparison always involves the current 
proposal and the last proposal that was deemed acceptable. If the current proposal fits the 
data better than the last accepted proposal, it is always accepted, and is passed to the box 
labeled Stage 2 where a different type of data is considered, e.g., electrical resistivity. If 
Stage 2 accepts the proposal using similar criteria as in Stage 1, the proposal has been 
determined to be consistent with all available data and becomes part of the distribution of 
accepted models. If the proposal is rejected by either Stage 1 or Stage 2, the current 
proposal is discarded, a new proposal is randomly generated and the process repeats. 
Mosegard and Tarantola [4] originally described this staged reconstruction approach. 
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Figure 1 shows a schematic diagram that outlines the MCMC stochastic inversion 
approach. 

 
Most geophysical inversions are substantially under-determined, ill-posed and non-
unique. Thus, the search for a solution that is unique and possesses a high degree of 
confidence is usually impossible. We believe that it is wise to use inversion methods that 
consider this non-uniqueness explicitly. The MCMC we describe automatically identifies 
alternative models and ranks them according to how well they fit the data thereby directly 
addressing the non-uniqueness problem. 
 
 
Research Activities 
 
The research effort fell into four general categories: 

• Preparation of the Shared Earth Model (ShEM) 
• Development of the base sampler, including the random walker 
• Development of new algorithms for use in the Stochastic Engine 
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• Execution of simulations to validate methodology and result interpretation 
The final category is discussed in the next section, Results/Technical Outcomes. The first 
three are discussed below. 
 
Construction of a Shared Earth Model (ShEM) 
 
The Shared Earth Model (ShEM) was the common geoscience data base that served to 
initialize the stochastic inversion. We began with the Teapot Dome oil-field, which was a 
readily available public-domain geologic data set. In doing so, we were able to validate 
our ability to load and manage complex geologic data sets into EarthVision and to 
transfer those representations into the stochastic engine. The base models used in the 
simulations was a highly simplified version of the representative geology from this 
ShEM. 
 
The Teapot Dome Field lies along the southeastern portion of the larger Salt Creek 
anticline in eastern Wyoming. A framework 3D geologic model was generated using data 
from a number of sources (figure 2), including RMOTC (DOE),  McCutcheon Energy 
Company, and the Web. The model was developed in UTM coordinates (NAD 27, Zone 
13), with a range of  399000-406500E 4788000-4800000 N; the depth ranges from an 
elevation of 4000 to -3500m below sea level. Stratigraphic data for 28 formations were 
made available to LLNL and 22 of these surfaces were included in the model. From 
youngest to oldest, the stratigraphy ranges from the Cretaceous Fox Hills Sandstone to 
the Precambrian basement rocks. Structural contour grids of these surfaces were 
generated not only from tags in boreholes, but also from surface exposures. There are 
1694 boreholes in this field and many of these holes provided stratigraphic information 
(figure 3). All boreholes are assumed to be vertical for this version of the model. The 
upper surface of the model is a topographic grid constructed from 30M DEM files 
downloaded from the Web. Along with the stratigraphic tops from the boreholes, several 
horizons were gridded using the excellent 3D seismic data available for the field. 
Unfortunately, all but one surface (structural top of the basement) were provided to 
LLNL in a time structure format, which is not compatible with this depth model (figure 
4). These surfaces need to be converted to depth (m) before they can be incorporated into 
the model. 
 
Numerous faults cut through the Teapot Dome Field and some of these faults are 
included in the geologic model. These data were provided to the project by the 
McCutcheon Energy Company. Seven faults are included in the current version of the 
model. Three of the faults are reverse faults, occurring in the basement, but also possibly 
propagating up into the younger formations. Four normal faults were also modeled. All of 
the faults are modeled as 2D grids that cut through the formation surfaces. There are 
many more structures that are visible in the 3D seismic data, but unfortunately these data 
are only in a time format. These data need to be converted to depth before they can be 
included in the framework model. This is an important issue, because there are numerous 
faults in the field and the complex relationships between these structures can only be 
defined by the quality seismic data. 
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Figure 2. The full static geomodel of Teapot Dome that serves as the ShEM basis. A 
geo-referenced geologic map draped over the surface. The different horizons 
represent individual geological layers in the site stratigraphy. Note the locations of 
the faults projected to the surface (red lines). 

 

 
Figure 3: Cut-away view of the same static geomodel. The position, locations, and 
depths of many boreholes can be seen (yellow). This view also cuts through the center of 
the anticline and provides a better view of the folding and faults at depth (in red) 
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Figure 4: The same view as Figure 2, except that the formations are transparent, 
allowing a view of the boreholes. 

 
Development of the base sampler 
 
The stochastic engine allows for the initial distribution of CO2 to be modified by a 
number of means. For example, it is possible to distribute CO2 using a multiphase flow 
simulator and varying the initial model geology. However, while some flow simulation 
approaches are computationally cheap (e.g., streamline simulators), most are expensive. 
They are also highly sensitive to the initial conditions of the flow model, which in many 
CO2 sequestration applications may not be well known enough to sensibly vary the base 
sampler. 
 
As such, we developed a method to vary the base representation of a CO2 plume without 
running flow simulations explicitly. This approach randomly alters the distribution of 
CO2 parameters such as location or saturation. It does so according to user input 
parameters associated with knowledge of the reservoir. In doing so, it allows CO2 to 
enter into all units and formation, however does so by applying probabilities of entry as a 
function of rock properties such as permeability (figure 5). In these cases, the CO2 retains 
the same center of mass, but otherwise varies in geometry and saturation. Any 
configuration of CO2 is possible; however, users may define aspects of the plume based 
on CO2 physics. For example, it is known that in the subsurface CO2 does not segregate 
into many separate discrete and discontinuous units, but rather remains coherent. In many 
simulation runs described below, the user constrained the number of possible separate 
“bubbles” to be no more than 10, thereby honoring the Co2 phenomenology without 
being unduly prescriptive. 
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Figure 5. Simple 2-D faulted reservoir model to illustrate random-walker. The fault is 
considered non-transmissive. Top: Simple schematic showing the base sampling 
strategy. Model lithologies are derived from the ShEM and allowed to vary between 
iterations if desired. Within each iteration, CO2 is allowed to enter lithologies by 
some probability as a function of lithology. Bottom: Examples of base sample plumes 
generated with  differing probabilities of CO2 migration by lithology (left) versus 
uniform probabilities (right). 

 
Figure 6 shows a three-dimensional example that illustrates the random walk approach. 
Here, The purple region in the 2D images represent a buffer zone with 0 probability, put 
in to insure good behavior near the edges of the domain for this run (i.e. given that the 
walker controls the center of mass, the anomaly surrounds this point in space. Near the 
edges, some pieces of the anomaly could fall outside of the domain, thereby creating 
problems. The buffer zone prevents this problem). In the 3D space, the initial CO2 
distribution is shown on the far left, and allowed to move through the volume with a 
random walk (while gravitational forces are not acting in this volume, future simulations 
ran with gravity on). After many iterations, the Co2 preferrentially collected in the 
permeable strata, yet also visited all strata as part of a probability matrix. These non-zero 
likelihood solutions are extremely important for proper sampling of probability space and 
stabilization of the stochastic inversion.  
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Figure 6: The stochastic engine’s implementation of the random-walk sampler. Note 
the high density of CO2 along the transmissive fault and preferential entry into 
permeable strata. 

 
 
Development of new input algorithms and forward models 
 
At the beginning of the LDRD project, the stochastic engine was not configured to invert 
geophysical signatures for CO2. We initially proposed to develop inversion algorithms 
using forward solvers for changes in electrical resistivity, electromagnetic induction, bulk 
crustal deformation, and microseismic acoustic emissions. After beginning the LDRD, 
we recognized that microseismic inversion was prohibitively expensive and complex and 
would require additional work beyond the scope of the initial LDRD proposal. As a 
result, this effort was removed during the renewal request. 
 
Three forward solvers were added to the stochastic engine. These were for electrical 
resistance tomography (ERT), tilt-meter data (herein referred to as tilt), and 
electromagnetic induction tomography (EMIT). All these approaches entered the engine 
and were normalized so as to share and compare data with each other, the ShEM, and the 
base sampler. In addition, two different approaches to ERT inversion were developed and 
added to the engine. The first uses only long-electrodes as the source of the data 
(LEERT). The second uses only a spaced vertical electrode array (VERA). As such, 
methodologies for four different geophysical data streams are now the core of the 
inversion capability. 
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In running the applications, the team discovered that it was possible to use additional 
parameters as either prior or new information to constrain the inversion. These include 
pH, temperature, pressure, CO2 injected volume, produced volumes, and injected brine 
volumes. The team only developed algorithms for CO2 injected volume, but have plans to 
continue developing algorithms for the additional parameters in future applications.  
 
The forward and inverse models were run on LC’s MCR platform. Ultimately, 
stabilization required less than 12 hours using a relatively small number of processors. 
For example, the Salt Creek inversion presented below required less than nine hours and 
only 56 processors to stabilize a real-world two-stage inversion of a 3D heterogeneous 
model. Based on these results, the team is confident that larger and more complicated 
inversions would stabilize as well, even with complex data sets and complex rock 
geometries. 
 
 
Results/Technical Outcome 
 
Overall, the research proved successful. The team was able to execute multi-stage 
inversions around simulated CO2 plumes and real field cases. In all cases, families of 
results were subdivided into like solutions and the likeliest plume geometries and 
saturations calculated. The calculation explicitly yielded the probability (likelihood) of 
each solution set and provided information that could be used to test between alternate 
models or recommend additional data needed to provide greater uniqueness. 
 
A key to successful use of the stochastic engine is the staging order of different data 
streams to provide the greatest information in a computationally parsimonious manner. 
This generally involves making the cheapest calculations first. Through testing the 
algorithms and comparing run times between options, the following staging order 
emerged for the current set of applications 
 

1. CO2 injection volume 
2. Tilt 
3. LEERT 
4. VERA 
5. EMIT 

 
Each of these is described in greater detail below. As new capabilities are added to the 
engine, the staging order would change to reflect the robustness of the calculations and 
their cost. Unfortunately, technical difficulties with MCR cause delays and cost run-ups 
that prevented formal testing of EMIT stages. We hope to complete this work in future 
efforts. 
 
Results using simulated data 
 
We have tested the performance of our MCMC staged approach using synthetic and 
measured field data. In this section we discuss the synthetic data results. Some of the 
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benefits of the MCMC approach are: its ability to jointly reconstruct disparate data types, 
identify competing models when the available data are insufficient to definitively identify 
a single optimal model and, d) rank the alternative models based on how well they fit 
available data. The results presented below help to illustrate these benefits. 
We have chosen geophysical techniques that are likely to be used during injection 
operations. The methods chosen are cost-effective, non-invasive (requiring no additional 
boreholes for sensor placement) and are sensitive to the presence of CO2 in the reservoir. 
Some of the techniques are sensitive to the subsurface deformations that occur when the 
reservoir pressure changes due to the injection process. These techniques include surface 
or subsurface tilt measurements, surface deformations using GPS receivers and INSAR 
(interferometric synthetic aperture radar on satellite platforms). These measurements are 
primarily sensitive to the pressure field, volume of CO2 in the reservoir, and location of 
the plume.  
 
We have also considered cross-well electrical resistivity measurements using borehole 
casings as long electrodes. Long electrodes provide a cost-efficient way of injecting 
electrical current within the reservoir to measure changes in pore fluid resistivity (Daily 
et al. [5]). The CO2 displaces native pore water thereby increasing the resistivity locally 
within the reservoir. The method requires no new wells nor does it affect 
injection/production operations. It produces data with low signal to noise ratios because 
only a small fraction of the injected current actually flows through the reservoir. This 
data is primarily sensitive to the horizontal position and shape of the plume and, to a 
lesser extent, the amount of CO2 present. 
 
Figure 7 shows details of the model constructed for this effort. We assume that CO2 is 
injected within a 27 m thick reservoir layer located 934 m below the surface. Geophysical 
measurements are made before and after the CO2 is injected. The CO2 injection pressure 
causes the reservoir layer and overburden to deform. It also causes the pore fluid 
resistivity to substantially increase. Figures 7 and 8 show the location of electrodes (used 
for the resistivity surveys) and the tilt-meter locations. Note that the tilt-meter spacing is 
much broader than the electrode spacing. The broader spacing is needed to capture all the 
relevant details of the deformation field.  
 
Geophysical inverse problems are typically non-unique and often ill-posed. Prior 
information is required to stabilize the search for models. We assume the following prior 
data: a) the CO2 saturation values are in the range 0.0 – 1.0, b) the plume only penetrates 
the permeable reservoir layer and not the surrounding impermeable layers, c) the CO2 
saturation values in local areas of the plume are similar, and d) plume consists of 
individual pieces that tend to be contiguous to at least one other piece.  
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Figure 7 shows plan and side views of the model used to generate the synthetic data. 
We assume that CO2 is injected in a 27 m thick reservoir located 934 m below the 
surface. There are boreholes with metallic casing (indicated by the black circles in 
the plan view). We assume that geophysical surveys are performed before and after 
the plume is in place. The side view shows the metallic casings as grey vertical lines 
that penetrate the reservoir layer shown in orange. The side view also shows the 
lateral position of the plume within the reservoir layer. 
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Figure 8 shows a plan view with the locations of the tilt-meter stations (shown as 
stars). The small orange square near the center is the same as the plan view shown in 
Figure 1. Note that the tilt-meter spacing is much larger than the long electrode 
spacing.  

 
After an MCMC run is finished, it is necessary to verify that the accepted models are 
trustworthy, i.e., provide a statistically valid sample of the unknown posterior distribution 
(see Ramirez et al. [1] for details). We also need to distill the relevant information from 
the models in the posterior distribution so that the likely properties of the actual plume 
model can be identified. We use a clustering technique to extract this insight. We 
compare all the 3D models in the posterior distribution against each other and 
automatically group them into clusters of similar models. We then average the models 
within each cluster. These cluster averages represent competing models that satisfy the 
available data when the data is insufficient to identify a single “optimal” model. We also 
compute the probability that a given cluster exhibits properties that are closest to the 
“true” model under study.  
 
Suppose that the only information collected was the cross-borehole resistivity data and 
that this data was inverted using our stochastic inversion approach. Figure 9 illustrates the 
results for this case. We show only a 2D top view of the 3D cluster averages, because the 
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“true” plume is horizontal and thus, most of the interesting features can be observed in 
this view. The “true” plume shape and location is indicated by the gray outline; the “true” 
injected CO2 volume is 234000 m3. Note that the top left cluster average is the “best”, 
i.e., it has 53% probability of exhibiting properties that are closest to the “true” model. 
This means that the members of this cluster are the most consistent with the available 
resistivity data. Alternative models and their probabilities (24% and 18%) are shown at 
the top-right and bottom-left of Figure 9; these models are less consistent with the 
resistivity data. The three cluster averages shown represent 95% of the models in the 
posterior distribution. Additional clusters were identified but are not shown here for the 
sake of conciseness and also because their probabilities are quite small. The bottom right 
model is the average of all models in the posterior distribution. All four images are 
reasonably close to the “true” model. We believe this mainly reflects the fact because the 
data used has minimal error compared to real field data. As we will see in the section 
“Results using field data”, the results change considerably when real field data with poor 
signal to noise is used. This is mainly due to the way electrical currents flow when a 
resistive anomaly like a CO2 plume is in its path. The current tends to go around the 
plume instead of through it, thereby degrading the sensitivity to the CO2 inside the plume. 

 
 

Figure 9 the stochastic inversion results obtained when only the resistivity data are 
used. We show only a 2D top view of the 3D reconstructed models, models because 
most of the interesting features can be observed in this view. The “true” plume shape 
and location is indicated by the gray outline; the “true” volume of CO2 is 234000 m3. 
Thee total amount of CO2 within the reconstructed plume is indicated.  
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Note that some of the recovered CO2 volumes in Figure 9 are substantially different from 
234000 m3. 
 
Let us now consider the case where the resistivity and injected volume data are jointly 
inverted. The results are shown in Figure 10. When compared to Figure 9, there are slight 
improvements when in the shape and size of the plume anomaly. As expected, the 
amount of CO2 inferred to be in the reconstructed plume models in Figure 10 is closer to 
the true CO2 volume of 234000 m3. When the resistivity data is quite noisy, we expect 
that the addition of the injected volume data will result in more significant improvements. 
This improvement will be observed when we discuss results that use real field data in a 
later section. 
 

 
Figure 10 shows the stochastic inversion results obtained when injection volume data 
and resistivity data are jointly inverted using a staged approach. The “true” plume 
shape and location is indicated by the gray outline. We also indicate the total amount 
of CO2 indicated by the plume.  
 

 
We now consider the case where deformation data (measured with tilt-meters) are 
reconstructed. Figure 11 shows the cluster average images for the case where 
deformation data is used. These reconstructions show circular anomalies located near the 
plume’s center. The amount of CO2 inferred to be in the reconstructed plume models is 
quite close to true CO2 volume of 234000 m3. This is because the deformation data is 
very sensitive to the volume of CO2 present in the reservoir. However, the shape of the 
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anomaly is not well resolved. In contrast, the resistivity measurements are better able to 
resolve the plume’s shape but do a poorer job of recovering the injected CO2 volume.  

 
 

Figure 11 shows the stochastic inversion results obtained when tilt-meter data is 
inverted. The “true” plume shape and location is indicated by the gray outline. We 
also indicate the total amount of CO2 indicated by the plume.  

 
These results suggest that the resistivity and deformation techniques may complement 
each other well and that jointly inverting these data is advantageous. This hypothesis can 
be evaluated by examining the results shown in Figure 12. The top and bottom row of 
images show top views of the cluster average images. The middle row of images shows 
side views of the cluster averages shown in the first row. We suggest that these cluster 
averages are closer to the “true” model than any of the results shown in previous figures. 
The size, location and shape of the plume compare favorably to the “truth”. Note that the 
top two clusters show recovered CO2 volumes that are within 1.8 and 0.3% of the true 
volume. In contrast, the recovered CO2 volumes are within 35 and 17 % of the true 
volume when only the resistivity data is used. This performance illustrates the value of 
jointly inverting data sets that are orthogonal, i.e., sample different physical phenomena 
associated with the presence of CO2 and have statistically independent errors. 
 
The two most probable clusters in Figure 12 are very similar in shape, location and CO2 
content. Their probabilities (27 and 25 %) are also very similar. In side view, one the 
images shows most of the mass in the bottom half of the image and the other in the top 
half. The results imply that the data used is insufficient to discriminate between these two 
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alternatives. The long electrode resistivity approach does not offer any vertical resolution 
and the tilt-meter-meter offers only coarse vertical resolution. An analyst evaluating these 
results would need to consider both alternatives as equally likely. 

 
Figure 12 shows the stochastic inversion results obtained when tilt-meter and 
resistivity data are jointly inverted. The top and bottom row of images show top 
views of the cluster average images. The middle row of images shows side views of 
the cluster averages shown in the first row. The “true” plume shape and location is 
indicated by the gray outline. We also indicate the total amount of CO2 indicated by 
the plume.  

 
Sometimes some of the data sets available provide redundant instead of orthogonal 
information. Consider the results shown in Figure 13 where CO2 injection volume and 
tilt-meter data are jointly inverted. Figure 13 can be compared with Figure 11 where only 
the tilt-meter data is used. The results in these figures are very similar thereby indicating 
that adding CO2 injection volume data has not made a significant difference to the results. 
The tilt-meter data is very sensitive to the volume of CO2 present in the reservoir and 
thus, measurements of CO2 injection volume do not add any new information to the 
inversion. In real applications, this type of comparison is invaluable because it helps 
identify the “value-added” by each measurement technique to the final result and helps 
decision-makers decide whether the costs of a survey are worth the benefit. 
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Figure 13 shows the stochastic inversion results obtained when CO2 injection volume 
and tilt-meter data are jointly inverted. The “true” plume shape and location is 
indicated by the gray outline. We also indicate the total amount of CO2 indicated by 
the plume.  

 
 
Results using real field measurements 
 
We also used real field data to test the performance of our approach so that effects of 
realistic measurement noise and modeling error can be evaluated. We have reconstructed 
data from a real CO2 plume injected within a petroleum reservoir. The reservoir lies 
within the Salt Creek field, located near the southern tip of the Powder River Basin, 
Wyoming, U.S.A. Figure 14 shows top and side views of the injection site. The block of 
interest is approximately 0.5 km by 0.5 km by 0.75 km. Seventeen abandoned steel wells 
were used as long (~710 m) electrodes to conduct cross-well electrical resistivity surveys. 
At the Salt Creek site, most of the long electrodes only reach to the top of the reservoir 
thereby reducing the sensitivity to changes within the reservoir. Measurements of injected 
CO2 volume were also available. 
 
Geophysical data was collected before and during injection so that the changes caused by 
the CO2 could be detected. We first used a well-known, well-behaved, and regularized 
deterministic inversion algorithm (Morelli and LaBrecque, [6]) to process only the 
electrical data. 
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Figure 14 shows plan and side views of the field site located within the Salt Creek 
field, Wyoming, USA. The red and white circles (left side of the figure) indicate the 
location of the injection and producing wells.  The black circles indicate the location 
of the long electrodes (metal casings within abandoned wells). The CO2 was injected 
within a 25 m thick layer located 710 m below the surface. 

 
The deterministic result is shown in Figure 15. We only show a top view of the 3D block 
because this geophysical technique provides spatially constrained solutions only in 
horizontal model planes (Daily et al., [1]). Note that most of the tomograph is green, 
indicating a resistivity ratio (post-injection divided by pre-injection) near 1.0 (i.e., no 
change). Elsewhere, small changes are scattered throughout the image. We believe this 
uninformative result is due to the poor signal to noise ratio associated with the long 
electrode data.  

 
Figure 15. The figure shows the results of a deterministic, time-lapse inversion after 
approx. 4600 m3 of CO2 had been injected). The locations of the injector/producer 
wells and of the long electrodes are shown for reference.  
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We also processed the same data electrical data using the MCMC approach. Figure 16 
shows the two most likely models found by the stochastic inversion. The model on the 
left is the most probable result, i.e., the result that is most consistent with all the available 
data. Synthetic model experiments suggest that such radially symmetric models are 
indicative of data with a very poor signal to noise ratio.  
 

 
 

Figure 16 shows the results of a time-lapse stochastic inversion using the MCMC 
approach after approx. 4600 m3 of CO2 had been injected. The left frame shows the 
“best” model, i.e., the one that is most likely because it is most consistent with the 
data; the right frame shows the second best model found. The only observations used 
in this case were the cross-well resistivity data. 

 
The model on the right of Figure 16 is the second most probable result. It shows an 
anomaly that spans the region between the injection and extraction wells and is more 
consistent with our expectations of a plume. These results suggest that the data contain a 
small amount of signal from the CO2 plume that is nearly overwhelmed by the noise. We 
decided to jointly invert injected CO2 volume and resistivity data in order to improve the 
confidence in the results. 
 
Figure 17 shows the results obtained when the cross-well resistivity and injected CO2 
volume data were jointly reconstructed. The figure shows the most likely plume 
anomalies (cluster averages) after 4600 and 6300 m3 had been injected (approximately 2 
weeks and 5 weeks after injection started). The left frames in Figures 16 and 17 show the 
effect of using the injected CO2 volume; i.e., the radially symmetric anomaly (in Fig. 16) 
changes to an elongated anomaly (in Fig. 17) that connects the injection and extraction 
wells. Adding the injected volume data as an additional constraint enhances the effect of 
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very small resistivity changes caused by the CO2 in the reservoir. Also note that the 
probabilities for the images corresponding to 4600 and 6300 m3 of CO2 are 78% and 97% 
(respectively). As expected, confidence in the results improves as the volume of injected 
CO2 increases and the measured signals become stronger.  
 
 

 
Figure 17 shows the results of two time-lapse stochastic inversions using the MCMC 
approach after approx. 4600 and 6300 m3 had been injected. The images show the 
most likely model found, approximately two and five weeks (left and right frames, 
respectively) after injection. Note that there is a clear indication of a plume extending 
from the injection well towards one of the producing wells. 

 
The improvement in rendering of the plume did not involve extensive repeat surveys. 
Rather, the addition of limited orthogonal data (in this case, injection volume) 
significantly constrained possible outcomes. Other kinds of constraints (e.g., production 
data, pressure or temperature data, first breakthrough of CO2) may also constrain solution 
space. Our experience with the MCMC approach reveals that new data orthogonal to 
initial data often improves attribute prediction. It can also help illuminate which data 
provide the highest value in terms of reducing uncertainty. 
 
Exit Plan 
 
The LDRD exit plans included an aspect of publication and presentation at meetings as 
well as explicit outreach and contracting with an external organization. We are pleased to 
report success in both venues. 
 
Regarding external publication, the results of the LDRD project were presented at two 
flagship international meetings for CO2 sequestration. The first is hosted by the DOE and 
runs for NETL as an annual meeting [7]. The poster and associated paper received 
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substantial attention there, as well as at several professional meetings including the 
annual meeting for Society of Petroleum Engineers. These in turn generated interest in 
the high-performance computing community and publication in industrial journals [8]. 
This effort culminated in the eighth annual conference on Greenhouse Gas Technology in 
Trondheim, Norway, led by the International Energy Agency, with the poster and 
associated paper appearing as a peer-reviewed publication [9].  
 
The interactions and interest from external parties has been equally strong. As stated 
explicitly in the initial proposal, we believed that companies would be sufficiently 
interested to provide data and support for both simulations and field efforts. This has 
proven to be true. At the end of FY06, LLNL entered into a CRADA with Chevron to use 
the stochastic engine in a field fluid injection application. Importantly, the choice of 
geophysical methods proved important – they were most interested in crustal deformation 
and injection volume since these data were available from their commercial efforts. The 
team is currently pursuing an additional agreement to add LEERT to the inversion suite. 
 
In addition, other industrial groups have expressed strong interest in the capability 
developed under this LDRD. BP is considering use of the stochastic inversion capability 
for CO2 injection operations in the US and abroad, and has agreed to share data to help 
initialize the project as part of a parallel WFO under consideration. The Weyburn project 
in Canada has requested a proposal to expand this technique to include seismic and 
geochemical approaches, and is considering full funding to expand the Lab’s capabilities 
further. Separately, the DOE has begun the solicitation process for large injection projects 
through their Regional Carbon Sequestration Partnerships. LLNL has received requests 
from two partnerships for joint inversion using the stochastic engine based on the current 
results, and is anticipating a third in the coming weeks. Finally, Schlumberger is 
considering the LDRD results as a basis for a CRADA to commercially develop the 
inversion suite for the purposes of CO2 management within its new Carbon Services 
Company. 
 
 
Summary 
 
In order to manage CO2 injection, advanced technologies for monitoring and verification 
will help increase fidelity, reduce uncertainty, and reduce costs. LLNL has developed a 
geophysical inversion suite which uses the stochastic engine as the central application to 
invert field CO2 plume measurements for plume geometry and saturation. Having tested 
this application on synthetic and real data sets, we are confident that this approach can be 
deployed readily in the field with the current capabilities. The team anticipates expanding 
this capability further through industrial contracts and DOE-sponsored field tests. 
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