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Author’s Note 
 
The Combined Judgmental and Random sampling methodology discussed herein is a work in 
progress.  This report describes the progress that was completed as of August, 2007.  Additional 
refinements and investigations of the model that are currently underway will be made available 
in subsequent reports and/or journal articles. 
 
Landon Sego 
July 13, 2009
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Summary 
 
In the event of the release of a lethal agent (i.e. Bacillus anthracis) inside a building, law 
enforcement and public health responders take samples to identify and characterize the 
contamination.  Sample locations may be rapidly chosen based on available incident details and 
professional judgment.   To achieve greater confidence of whether or not the decision area was 
contaminated, or to certify that detectable contamination is not present after decontamination, we 
developed a Bayesian model for combining the information gained from both judgmental and 
randomly placed samples.  The approach permits investigators to determine the sample size 
required to achieve a defined level of statistical confidence that a decision area is free of 
detectable contamination, when none of the samples indicate the presence of contamination.  We 
present herein the model, an example of how it may be used, a discussion of its sensitivity to 
parameter inputs, and recommendations for its practical use.  
 
Key words:  environmental sampling; judgment sampling; acceptance sampling; Bayesian 
modeling; anthrax; bioterrorism. 

 

1 Introduction 
 
In the event of the release of a lethal biological or chemical agent inside a building, emergency 
responders take samples to identify and characterize the contamination.  The information 
obtained from sampling is used to assess the risk to public health, formulate and validate 
remediation plans, and eventually, to certify the safety of the building for reoccupancy. During 
the initial response to the release, sample locations are rapidly chosen based on professional 
judgment.  For example, investigators at the National Institute of Occupational Safety and Health 
(NIOSH) successfully used professional judgment approaches to quickly identify the presence of 
Bacillus anthracis contamination during the 2001 anthrax incidents.  Judgment samples are 
usually taken from areas where detectable contamination is deemed most likely to exist.  
However, decisions that are based solely upon the results of judgment samples rely heavily on 
the accuracy of the "judgment."   To achieve greater confidence of whether a room or zone was 
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contaminated, or to certify the cleanliness of a room after decontamination, it is desirable to 
augment judgment samples with samples that are taken from randomly selected locations.   
 
Sometimes judgment samples are referred to as "targeted" samples.  We use the two terms 
interchangeably.  We define a judgment (or targeted) sample to be any sample whose location is 
determined by prior belief or knowledge and not in a random fashion.  Random samples are 
sometimes called "probabilistic" samples.  This terminology implies the commonly held belief 
that probabilistic statements can only be made based upon the results of randomly placed 
samples.  However, in this paper we present a Bayesian model that gives rise to a formal 
probabilistic statement regarding the cleanliness of the sampling area based upon the information 
obtained from both judgment and random samples. We presume that judgment samples are taken 
in areas that are more likely to be contaminated than areas available for random sampling.  
Consequently, if none of the judgment samples reveal detectable contamination, we can leverage 
that information to reduce the number of random samples required to achieve the desired level of 
confidence that the room is clean.   

 
The methodology presented herein is especially suited for use in an area of the building where 
contamination is deemed unlikely.  This may be because the area is removed from the source of 
contamination or because the area has been decontaminated.  In either case, the objective is to 
demonstrate, with high probability, that a high percentage of the room does not contain 
detectable contamination, given that none of the samples reveal contamination.  If at any time 
during the sampling process, one of the samples indicates the presence of contamination, the 
room is declared to be dirty and no further samples for this particular design will be taken.  It 
may be desirable to then implement a different type of sampling plan to characterize the spread 
and location of the contamination.  However, this is a separate problem and is not discussed here.  
 
This paper is arranged as follows.  In Section 2, we present the Bayesian model and methodology 
for combining judgment and randomly placed samples.  In Section 3, we present an example of 
how the methodology could be used inside a small office.  In Section 4, we examine the impact 
of model assumptions and compare the model to existing approaches.  In Section 5, we provide 
recommendations for application of the methodology and give our conclusions. 

 

2 Methodology 
 
To implement the sampling design, a grid of square cells will be superimposed on the surfaces of 
the room.  Each square cell in the grid corresponds to a possible sample point, and the size of the 
cells depends on the collection method.  For example, the National Institute of Occupational 
Safety and Health (NIOSH 2002) describes three different types of surface sampling:  1) sterile 
swab sampling, which uses about 100 cm2 per sample, 2) sterile surface wipes, which uses about 
1 ft2  (929 cm2) per sample,  and 3) vacuum sampling, which may involve considerably larger 
surface areas. The measured outcome will be presence or absence of contamination, as 
determined by the limit of detection.  At the present time we do not account for classification 
errors (false positives or false negatives) in this methodology.  Judgment samples are considered 
more likely to contain contamination than random samples.  Therefore, the locations of the 
judgment samples describes a rough, dichotomous dispersion model, where the cells chosen for 



PNNL-16636  - 4 - 

 

 

judgment samples are modeled as “higher risk” and the remaining squares available for random 
sampling are “lower risk.”  The high-risk cells do not necessarily have to be contiguous.  We 
assume that the judgment samples form a complete census of the high-risk cells.   
 
The proposed method uses a Bayesian approach to determine the posterior predictive distribution 
of the number of unsampled grid cells that are contaminated, given that all judgment and random 
samples do not indicate contamination.  A summary of the notation used to describe the model is 
presented in Table 1.  
 

Table 1:  Summary of model notation 

Symbol Description Range 
θ probability that a judgment sample is contaminated 10 << θ  

α shape parameter of the Beta distribution > 0 

β another shape parameter of the Beta distribution > 0 

( )p θ  Beta density function with shape parameters α and β ≥ 0 

r a judgment sample is r times more likely to be contaminated 
than a random sample ≥ 1 

PJ    
the a priori marginal probability that all judgment samples 
will come back negative:  P(X = 0) 

10 ≤≤ JP  

n1 number of judgment samples positive integer 

n2 number of random samples positive integer 

N total number of grid cells in the room positive integer 

X number of judgment samples that indicate contamination 0, 1, …,  n1 

Y number of random samples that indicate contamination 0, 1, …,  n2 

Z number of unsampled, lower risk grid cells that are 
contaminated 0, 1, …,  N-n1-n2 

γ desired proportion of room that does not contain detectable 
contamination 

10 ≤< γ  

C 
desired probability (confidence) that %100 γ× of the room 
does not contain detectable contamination 

10 ≤< C  

 
 
The outcome of each sample is modeled as a Bernoulli random variable, where the probability 
that contamination is detected in a judgment sample is θ, and the probability that contamination 
is detected in a random sample is θ/r (for r ≥ 1).  Because we assume the Bernoulli outcomes are 
independent, the number of judgment cells that indicate contamination follows a binomial 
distribution:  ( )θθ ,~ 1nBinX .  The distribution of the number of random samples that indicate 

contamination is also binomial: ( )2~ ,Y Bin n r
θθ .  Likewise, the distribution of the number of 
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unsampled, low-risk grid cells that are contaminated is binomial:  ( )1 2~ ,Z Bin N n n r
θθ − − .  

The beta distribution with shape parameters α and β is used to model the prior distribution of θ.  
In the present model, r is fixed.  However, the methodology could be extended to include a prior 
distribution for r.   
 
The prior distribution for θ is specified by the shape parameters α and β of the Beta distribution.  
During clearance sampling we typically assume the sampling area has a low likelihood of being 
contaminated.  Consequently, we desire to put more prior weight on values of θ that are close to 
0 and less weight on values of θ that are close to 1.  Fixing α = 1 and choosing a suitable β > 1 
results in a family of decreasing, convex Beta densities that puts more weight toward 0.  (Note α 
= 1 and β = 1 results in a uniform distribution).   Letting α < 1 and β > 1 also produces 
decreasing, convex Beta densities, but this can result in so much weight being placed very close 
to 0 that it becomes difficult to numerically integrate the marginal and posterior predictive 
densities.   We recommend letting α = 1 and β ≥ 1 because 1) this parameter space gives rise to 
marginal and posterior predictive densities that can be integrated numerically, and 2) it is more 
conservative than letting α < 1.  
 
There are a number of ways that prior knowledge about the sampling area could be used to elicit 
the value of β.  We recommend estimating the a priori probability that all judgment samples will 
not indicate contamination, ( ) JPXP ≡= 0 , and then solve for the value of β that satisfies the 
equation. Another approach would be to estimate the probability the entire room does not contain 
detectable contamination, ( )0, 0, 0P X Y Z= = =  and solve for the corresponding value of β.  

The second option is less desirable because it can easily lead to priors that dominate the observed 
data by producing Beta densities that are nearly degenerate at zero.  Using the first option will 
make it less likely to overstate the a priori confidence in the cleanliness of the sampling area.   
Having thus specified PJ, the value of β is given by the solution to the following equation: 

 

 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
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When α = 1, equation (2.1) is readily solved algebraically: 
  

 1

1
J

J

n P
P

β =
−

. (2.2) 
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Using Bayes’ theorem, we can derive the posterior predictive distribution of Z, the number of 
unsampled, lower risk grid cells that are contaminated, given that none of the judgment or 
random samples reveal contamination.  This distribution can then be used to determine the 
number of random samples required to achieve a high probability, C, that at least a large fraction, 
γ, of the sampling area does not contain detectable contamination.  In particular, we want to find 
the smallest number of random samples, n2, that satisfies the following: 
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 (2.3) 

 
where ( )⎣ ⎦Nγ−1  denotes the floor of ( )Nγ−1 , i.e. the largest integer that is less than or equal to 
( )Nγ−1 .    The derivation of equation (2.3) is given in the Appendix.  
 

3 Example 
 
Suppose an 888 ×× ft room we wish to sample has been divided into 3568 square cells of size 
100 cm2.  Assuming none of the samples indicate contamination, we wish to determine the 
number of random samples required to obtain a 95% probability that 99% of the room is clean.  
Suppose we identify n1 = 25 high-risk grid cells from which we will take judgment samples.  We 
will assume judgment cells are r = 3 times more likely to be contaminated than the remaining 
cells that will be used for random sampling.  Since we have a fairly high level of a priori 
confidence that the room is clean, we will also suppose there is a 70% chance the judgment 
samples will contain no detectable contamination, i.e. PJ = 0.70.  Using equation (2.2), we find 
that β = 58⅓.   The resulting prior density with α = 1 and β = 58⅓ is shown in Figure 1.  

 
Note that the prior puts most of the probability close to 0, which is consistent with our original 
assumption that the room has a low risk of being contaminated.  Now that the prior has been 
chosen, using equation (2.3), we can identify the number of random samples, n2, that satisfies 
 

( )( ) ( )( )
( ) .99.00,0|35

0,0|356899.010,0|1
≥==≤=

==⋅−≤===−≤
YXZP

YXZPYXNZP γ
 

 
Figure 2 demonstrates the relationship between n2 and ( )0,0|35 ==≤ YXZP .   
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Figure 1:  Prior density for θ when α = 1 and β =58⅓. 
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Figure 2:   Relationship between n2 and ( )0,0|35 ==≤ YXZP  when n1 = 25, α = 1, β 
= 58⅓ , r = 3, and N = 3568.  The plot demonstrates n2 = 50 is the smallest number of 
random samples that satisfies ( )35 | 0, 0 0.950P Z X Y≤ = = ≥ . 
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To summarize this example, if we make the a priori assumption that 1)  the probability that all 
25 judgment samples will be negative is 0.70 and 2)  judgment samples are 3 times more likely 
to be contaminated than random samples, and, if, after sampling, none of the 25 judgment 
samples nor the 50 random samples indicate contamination, then we conclude there is a 95% 
probability that at least 99% of the room does not contain detectable contamination.  

 

4 Discussion 

4.1 Regarding the fraction of the sampling area that is clean 
 
Certainly it is most desirable to be able to state with high probability that a sampling area has no 
detectable contamination.  Yet, achieving a high probability that no grid cells in the room have 
detectable contamination typically requires that almost the entire room be sampled---unless there 
is very strong prior evidence that the room is clean.  Table 2 shows the number of random 
samples required for various levels of r, C, and γ.  Note that larger samples sizes are required to 
achieve higher confidence (i.e. higher C and/or higher γ) and that larger values of r result in 
fewer random samples.  Most striking are the massive amounts of random samples required in 
order to achieve high probability that none of the grid cells (γ = 1) contain detectable 
contamination.   
 

Table 2:  Values of n2 required to achieve various levels of 
confidence for N = 3568, n1 = 25, and PJ = 0.70. 

  γ = 0.99 γ = 1.00 
r C = 0.95 C = 0.99 C = 0.95 C = 0.99 
1 205 351 3362 3507 
3 50 202 3354 3506 
5 0 51 3346 3504 
10 0 0 3325 3500 

 
 
Figure 3 shows the number of random samples required to achieve 95% probability that %100γ  
of the room does not contain detectable contamination.  The plotted circles at n2 = 0 for each of 
the three curves shows the level of γ already achieved when the n1 = 25 judgment samples do not 
indicate contamination.  The figure clearly shows that for γ > 0.99, each additional random 
sample only “buys” a very small amount of additional confidence that a larger percentage of the 
room does not contain detectable contamination.  Admittedly, stating that there is a high 
probability that a high fraction of the sampling area (say, 99%) is clean is weaker than stating 
that there is a high probability that the entire sampling area is clean.  However, in many 
instances, the large number of random samples required when γ  = 1 is neither feasible nor 
justifiable.  
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Figure 3:  Plot of γ versus n2 for various levels of r, when N = 3568, n1 = 25, PJ = 0.70 
and C = 0.95. 

In order to present the confidence statement from an optimistic point of view, we have used the 
parameter γ to represent the fraction of the room that we wish to demonstrate is free of 
contamination.  However, a close look at equation (2.3) reveals that the model requires that the 
percentage of the sampling area that is clean be expressed as the largest number of contaminated 
cells that will be tolerated.  For example, in a room with 3568 cells, achieving a high probability 
that at least 99% of room is clean requires that no more than 35 cells contain contamination.  As 
Figure 3 demonstrates, the lower the number of tolerable "dirty" cells, the higher the number 
samples required to achieve the desired confidence.  Consequently, tolerating one or two 
additional contaminated cells can appreciably reduce the required number of random samples. 
Figure 4 demonstrates that the number of random samples can be reduced from 40 to 18 if we are 
willing to tolerate 11 contaminated cells (γ = 0.989) instead of 10 contaminated cells (γ = 0.990) 
in a relatively small room (or a room with large grid cells) that has only N = 1000 cells. 
Understanding the relationship between γ and the number of random samples can permit the 
investigator to evaluate the trade-offs between desired confidence and the total number of 
samples required to achieve that level of confidence.   
 
Typically, the value of N is considered fixed, and is determined by the characteristics of the 
sampling area.   However, it is informative to investigate how the number of random samples 
(n2) changes as the total number of cells (N) increases.  This relationship is shown in Figure 5. 
The apparently rapid oscillation in n2 occurs because as N increases, the number of tolerable 

contaminated grid cells, ( )1 Nγ⎢ ⎥−⎢ ⎥⎣ ⎦
, increases by one when N reaches a number divisible by 

100, as indicated by the gray vertical lines in Figure 5.  To illustrate the phenomena, suppose we 
desire that at least 99% of a room with N = 1000 cells be free from contamination with 95% 
probability.  Specifically, we are willing to tolerate as many as 10 contaminated cells.   
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Figure 4:  The effect of slightly decreasing γ on the number of random samples, n2.  For 
this figure, N = 1000, n1 = 25, PJ = 0.70, and r = 3. 
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Figure 5:  The number of random samples required (n2) versus the total number of grid 
cells (N) required to achieve C = 0.95 and γ = 0.99 when n1 = 25, PJ = 0.70, and r = 3. 
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Suppose we take n1 = 25 judgment samples, they are taken from cells that are r = 3 more likely 
contain contamination than the remainder of the room, and we believe there is a 70% chance that 
none of the 25 judgment samples will indicate contamination.  Under these assumptions, n2 = 40 
random samples are required to achieve the desired level of confidence. Suppose instead that the 
room had 99 more grid cells, i.e. N = 1099.  Note that in order for the room to be at least 99% 
clean, the number of contaminated cells we are willing to tolerate is still 10 or less.  Yet, due to 
the additional 99 cells, 64 random samples are now required.  However, if we add one more cell 
such that N = 1100, only 40 random samples are required because 99% of the room being clean 
now means we are willing to tolerate as many as 11 contaminated cells.  
 
This is not to suggest that the value of N should be considered variable when creating a sampling 
design--it should be determined simply by the number of cells that exist within the sampling 
area.  However, it is important to understand that reducing the target value of γ by a small 
amount so as to tolerate one additional contaminated sample can reduce the sample size 
appreciably, a trade-off which may be necessary to create a feasible sampling design. 
 

4.2 Sensitivity to model inputs and assumptions 
 
The inputs and assumptions required to use the model are 1) the correct identification of the 
location and number of high-risk cells from which judgment samples will be taken, 2) the a 
priori probability, PJ, that all of the judgment samples will not indicate contamination, and 3) the 
specification of the factor r, such that a high-risk cell is r times more likely to be contaminated 
than a low-risk cell. We will examine the second and third inputs first, and then address the 
problem of correctly identifying the location and number of high-risk cells. 
 
When using Bayesian methods, one must choose the prior distribution(s) with care.  Otherwise, 
poorly chosen prior parameters can lead to misleading conclusions.  In the Bayesian model we 
consider, the probability PJ and the factor r are selected before collecting data.  If the true value 
of r is lower than the a priori estimate of r, then too few samples will be taken and the 
confidence level will decrease.  Likewise, if the true value of PJ is lower than the a priori 
estimate, too few samples will be taken and the achieved confidence level will decrease.   
 
Figure 6 shows how the probability (C) that 99% of the sampling area does not contain 
detectable contamination is affected by misspecification of r and PJ.  In Figure 6, the value of n2 
= 50 was chosen to achieve 95% probability that 99% of the room contains no detectable 
contamination when N = 3568, n1 = 25, r = 3, and PJ = 0.70.  These “target” parameter values are 
represented by the solid circle.  To investigate the impact of misspecifying r and PJ, values of C 
were calculated for various combinations of r and PJ, using N = 3568, n1 = 25, and n2 = 50.  
Figure 6 demonstrates that overestimating r and/or PJ  reduces the achieved value of C.  The 
inverse is also true: underestimating the values of r and PJ results in higher values of C.  Also 
note that the value of C can be preserved by overestimating the value of r and underestimating 
the value of PJ, and vice versa. 
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Figure 6:   Examining the sensitivity of C for misspecifications of r and PJ.  The target values of 
r = 3, PJ = 0.70, and C = 0.95 are shown by the solid circle in the center of the plot.  The 
remaining parameters, N = 3568, n1 = 25, n2 = 50, and γ = 0.99, were held fixed. 
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Figure 7:  Examining the sensitivity of the number of random samples (n2) required to achieve a 
95% probability that 99% of the sampling area does not contain detectable contamination, for 
N=3568 and n1=25. 
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The sensitivity of the number of random samples (n2) to the values of r and PJ is shown in Figure 
7.  The contours show the number of random samples required to achieve 95% probability that 
99% of the sampling area does not contain contamination when N = 3568 and n1 = 25.  The 
figure demonstrates that lower values of r and PJ require a larger number of random samples to 
achieve the same level of confidence.  The blank space in the upper right corner of the figure 
depicts a region where no random samples are required.  Thus, when r and/or PJ are sufficiently 
large, the outcome that none of the 25 judgment samples indicate contamination provides 
sufficient evidence to achieve the desired level of confidence. 
 

1. Too many judgment samples taken 2. Too few judgment samples taken

3. All judgment samples in wrong location 4. Some judgment samples in wrong location

 
Figure 8:  Four scenarios depicting possible ways in which the number and location of high-risk 
cells could be misidentified.  The high-risk cells are indicated with solid gray.  The judgment 
samples are indicated by solid black circles. 
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In addition to the choice of r and PJ, the model also relies on the assumption that the number and 
location of high-risk cells from which the judgment samples are taken have been correctly 
identified.  Figure 8 depicts four possible ways in which the number and location of the high-risk 
cells could be misidentified.   Note that the regions of high-risk cells do not necessarily need to 
be contiguous, as they are depicted (for convenience) in Figure 8.  The consequences of each of 
these four scenarios could be studied analytically or with simulation.  We are currently 
investigating the consequences of mispecifying judgmental samples and those results will be 
made available in a separate document.   
 

4.3 Other acceptance sampling approaches 
 

We briefly consider two other models that have been proposed for acceptance sampling:  
1) a Bayesian approach proposed by Wright (1992) and improved by Grieve (1994) and 
2) frequentist acceptance sampling, as discussed by Bowen (1988).  Both approaches use 
the hypergeometric distribution to model the observed number of contaminated cells 
within the room.  In this application, however, we used the binomial distribution because 
the hypergeometric model was not well suited for linking the information obtained from 
both the judgment and random samples.  The binomial model permits us to assign 
different probabilities of contamination for judgment and random samples (θ and θ/r).  
Furthermore, the hypergeometric model converges to the binomial model as the total 
number of grid cells in the sampling area gets large, which is often the case even with 
relatively small rooms, as demonstrated in Section 3. 

 

The approach proposed by Wright and Grieve (WG) is conceptually very similar to the 
combined judgment and random sampling methodology (CJR) presented here.  In the 
WG model, a beta-binomial distribution is used as the prior for the number of 
contaminated cells within the room, the number of observed contaminated cells is 
modeled by the hypergeometric distribution, and the sample size is determined using the 
posterior predictive distribution of the number of contaminated cells that were not 
sampled.  Using this framework, Grieve gave a concise approximation to the number of 
samples required to achieve the desired probability that 100% of the room is clean given 
that none of the samples indicate contamination.  The fundamental difference between 
the WG methodology and the CJR approach is that we use the binomial distribution to 
model the number of contaminated cells and some samples (the judgment samples) are 
assumed to be more likely to be contaminated than the remaining (random) samples.   

 

Table 3 shows the total number of samples required to achieve a 95% probability that 
100% of the room is clean for the CJR and WG designs.  For the CJR design, the prior 
distribution for θ was beta with shape parameters α = 1 and β as designated in Table 3.  
For the WG design, the prior distribution was the beta-binomial with shape parameters α 
= 1 and β and N as designated in Table 3.  (Note that by using r = 1, the distinction 
between the judgment and random samples is removed).  For the cases out of N and β 
considered here, Table 3 demonstrates the virtual equivalence between the CJR design 
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and the WG design.  As part of future research, it would be interesting to compare these 
two methodologies for values of γ < 1.  We suspect that they would be very similar for 

100N ≥ .   

 

Table 3:  Comparison of the total number of samples required to achieve C = 0.95 and γ = 1.00 
for the combined judgment and random sampling design (CJR) and the Wright/Grieve Bayesian 
design (WG) for acceptance sampling.  For the CJR method, r = 1. 

  N=100 N=500 N=10000 
β CJR WG CJR WG CJR WG 
1 95 95 475 475 9500 9500 
9 95 95 475 475 9500 9500 
99 91 91 471 471 9495 9496 
999 46 46 426 426 9450 9451 

 

The frequentist acceptance sampling (FAS) approach makes no prior assumption 
regarding the number of contaminated cells in the room, nor does it distinguish between 
judgment and random samples.  Using the hypergeometric distribution to model the 
number of contaminated cells in the room, the FAS design identifies the smallest sample 
size such that the probability that no contaminated cells are observed in the samples given 

that the true number of contaminated cells is ( )1 Nγ⎢ ⎥−⎢ ⎥⎣ ⎦
 or less is at least as large as a 

given confidence threshold, say, 95%.   Although not equivalent, this confidence 
threshold is the conceptual analog of the Bayesian probability C.   Table 4 compares the 
CJR and FAS methods by showing the number of samples required to achieve a 95% 
probability (for the CJR method) or 95% confidence (for the FAS method) that a high 
percentage of the sampling area does not contain detectable contamination.  For the CJR 
model, a uniform prior distribution was used and the likelihood contribution of the 
judgment and random samples was made equivalent by setting r = 1.  Conceptually, the 
uniform prior suggests little prior knowledge about the parameter values.   Table 4 shows 
that the number of samples required by the two methodologies is quite similar, although 
fewer samples were required for the CJR model in each of the cases that were considered. 

 

Table 4:  Comparison of the total number of samples required for the combined judgment and 
random sampling design (CJR) and a frequentist acceptance sampling design (FAS).  For the 
CJR design, α = β = 1 (corresponding to the uniform prior), r = 1, and C = 0.95.  For the FAS 
design, 95% confidence threshold was used. 

  γ = 0.95 γ = 0.99 
N CJR FAS CJR FAS 

500 53 56 195 225 
2000 57 58 264 277 
10000 58 59 290 294 
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4.4 Extensions 
 
The combined judgment and random sampling model presented herein could be readily extended 
to account for the uncertainty in the choice of r and the choice of PJ, or even the parameters α 
and β.  Likely choices for the prior distribution of r and PJ  would be the gamma and beta 
distributions, respectively.  One way in which the hyperparameters for these distributions could 
be chosen would be to estimate the values of the first and second central moments.  For example, 
investigators could indicate their belief that the mean value of r was 2 with a standard deviation 
of 1.5.  Then the theoretical mean and variance of the gamma distribution would be equated to 2 
and 2.25, respectively.  Solving these two equations would give rise to the shape and scale 
parameters for the gamma distribution of r.  A similar approach could be used to find the two 
shape parameters of the beta distribution of PJ. 
 
The model could also be extended or modified to account for different sampling methodologies.  
Within any given room, there are a number of different types of surfaces which may require 
sampling.  Different surface types necessitate different sampling methodologies which in turn 
may require different surface area sizes for the collection of a single sample. Recall from Section 
2 that sterile swabs, sterile surface wipes, and vacuum sampling use different sized surface areas 
for a sample. The model could also be expanded to account for false negatives (not detecting 
contamination that is present and detectable) and for false positives (detecting contamination that 
is not present).  We would expect that the various sampling methodologies have different false 
negative and false positive rates. 
 
 

5 Conclusion 
 
In this report we present a Bayesian acceptance sampling model which combines the information 
obtained from both judgment and randomly placed samples.  The locations of the judgment 
samples divide the sampling areas into two regions of risk:  high and low.  The high-risk regions 
are identified by the location of the judgment samples while the remaining low risk cells are 
available for random sampling.  While this simple dichotomous model is admittedly a rough 
approximation of reality, it provides a convenient framework for combining the information 
obtained from both judgment and random samples into a single sampling design.  After making 
specific assumptions, the model indicates the number of random samples required to achieve a 
desired probability that a large fraction of the sampling area does not contain detectable 
contamination, given that none of the samples indicate the presence of contamination.  The 
methodology is intended to be used primarily for clearance sampling after decontamination, or to 
demonstrate the cleanliness of an area that is presumed unlikely to be contaminated. 
 
The inputs and assumptions required to use the model are 1) the correct identification of the 
location and number of high-risk cells from which judgment samples will be taken, 2) the a 
priori probability, PJ, that all of the judgment samples will not indicate contamination, and 3) the 
specification of the factor r, such that a high-risk cell is r times more likely to be contaminated 
than a low-risk cell.  With regard to the first assumption, it appears that the model still performs 
well even if the number of high-risk cells is overestimated.  However, in terms of both sample 



PNNL-16636  - 17 - 

 

 

size and confidence, the model does appear to be more sensitive to the choices of r and PJ.   For 
this reason we recommend that values have PJ and r be chosen conservatively, that is, that 
investigators err on the side of underestimating these two quantities.  Unless there were evidence 
to the contrary, we would not recommend using values of PJ larger than 0.90 or values of r larger 
than 5.  However, overly conservative estimates result in a larger number of random samples 
required to obtain the desired confidence.  While trying to construct a feasible sampling plan, 
investigators should examine the impact of slightly reducing the percentage of the sampling area 
that does not contain detectable contamination.  If multiple sampling methodologies are required, 
we suggest the conservative approach of letting the square grid cells of the entire sampling area 
be equal to the surface area of the sampling methodology with the smallest surface area.  Then, 
sampling methodologies that cover larger surface areas would be counted only as a single 
sample. 
 
This model, like any other, relies on assumptions which at best are still approximations of reality.  
However, it constitutes a viable attempt to combine the outcomes in judgment and random 
sampling into a single design and quantify the level of confidence that the sampling area is 
largely free of detectable contamination. 
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Appendix 
 
A review of the Bayesian approach shown below is given by Gelman, et al. (2004).  The prior 

distribution for θ is ( ),Beta α β , that is, ( ) ( )
( ) ( ) ( ) 11 1 −− −

ΓΓ
+Γ

= βα θθ
βα
βαθp .  Since ( )θθ ,~ 1nBinX  

and ( )2~ ,Y Bin n r
θθ , we have by Bayes’ rule and the independence of X and Y: 

 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
21 11| 0, 0 0 0 1 1 1

nn
p X Y P X P Y p r

βαθθ θ θ θ θ θ θ
−−= = ∝ = = ∝ − − − ,  

 
 

 
and normalizing  gives 
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The number of contaminated cells in the unsampled area is denoted by |Z θ  which is distributed 

as ( )1 2 ,Bin N n n r
θ− − .  The conditional posterior predictive distribution for Z is  
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To find the number of random samples required to achieve the desired level of confidence, C, we 
search for the smallest integer value of n2 that satisfies the following:  
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where ( )⎣ ⎦Nγ−1  denotes the floor of ( )Nγ−1 , i.e. the largest integer that is less than or equal to 
( )Nγ−1 .   
 
Because the integrands in the numerator and denominator of in the previous equation have most 
of their mass near zero,  numerical integration routines applied to the entire unit interval can 
produce incorrect results.  We avoided this problem by taking the sum of the integrals evaluated 
separately over the four subdomains [0, 10-5), [10-5,10-4), [10-4, 10-3),  and [10-3, 1].  We verified 
the accuracy of the results by demonstrating agreement for thousands of cases among three 
different integration routines: 1) QUADPACK routines 'dqags' and 'dqagi', (Piessens 1983) 
implemented in the statistical language R (R Development Core Team 2007), 2) the QDAGS 
function from the IMSL Fortran Numerical Library version 5.0 (Visual Numerics 2007), and 3) 
Simpson’s method (Ellis 1991). 
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