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ABSTRACT

This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in
Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes
∼130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters.
We split the clusters into bins of richness and luminosity and stack the surface density contrast to
produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo
(25 kpc/h) well into the surrounding large scale structure (30 Mpc/h), with a significance of 15 to 20
in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass
cross-correlation function. We pay careful attention to sources of systematic error, correcting for them
where possible and bounding them where not. We find that the profiles scale strongly with richness
and luminosity. We find the signal within a given richness bin depends upon luminosity, suggesting
that luminosity is more closely correlated with mass than galaxy counts. We split the samples by
redshift but detect no significant evolution. The profiles are not well described by power laws. In
a subsequent series of papers we invert the profiles to three-dimensional mass profiles, show that
they are well fit by a halo model description, measure mass-to-light ratios and provide a cosmological
interpretation.
Subject headings: dark matter — galaxies: clusters: general — gravitational lensing — large-scale

structure of the universe

1. INTRODUCTION

The cold dark matter model (CDM) of structure for-
mation makes a number of predictions about galaxy clus-
ters which are testable observationally. For example; the
dark matter in clusters should be more evenly distributed
than the observed stars, which are predominantly con-
centrated in exponential disks and spheroids. The radial
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distribution of the mass in clusters should, in the mean,
follow a predicted universal profile which is a running
power law (e.g. Navarro, Frenk, & White 1997). The
number of sub-halos (the centers of which may corre-
spond to galaxies), and the scatter in that number, are
predictable as a function of halo mass (Kravtsov et al.
2004). One analytic description of these sub-halo dis-
tributions is known as the halo occupation distribution
(HOD). The fraction of a cluster’s virial mass contained
in sub-halos is 10-30% depending on how it is counted
(Mao et al. 2004; Gao et al. 2004). The number den-
sity of halos as a function of mass has a well-defined
form (Press & Schechter 1974; Sheth & Tormen 1999;
Jenkins et al. 2001). The cluster two-point correlation
and the cluster-mass cross-correlation function are also
predictable in the CDM framework (Mo & White 1996;
Seljak & Warren 2004); on large scales, they are propor-
tional to the auto-correlation function of the mass, which
is given by linear perturbation theory. Each of these pre-
dictions depends more or less on the underlying cosmo-
logical model.

In the real world it is difficult to observationally se-
lect clusters based upon their mass. Instead we select
clusters based upon some observable and try to relate
that observable to mass. For example, a HOD-type de-
scription, which uses sub-halos as the basic constituent,
can be tested by counting the number (and the disper-
sion in the number) of constituent galaxies as a function
of cluster mass. The key difficulties are estimating ac-
curate cluster masses and relating sub-halos to galaxies.
One traditional measure of mass treats the galaxies as
tracers of the gravitational potential. For example, in a
galaxy redshift survey, one can measure cluster velocity
dispersions and, with additional assumptions about the
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velocity distribution of the galaxies relative to the dark
matter, infer cluster virial masses (e.g. Carlberg et al.
1996). One can attempt to relate sub-halos to galaxies
by matching the observed abundance of galaxies or clus-
ters to the predicted abundance of halos or sub-halos.

With X-ray data, we can use the density and tem-
perature structure of the baryonic gas, with physical
assumptions about the state of the system, to infer
cluster masses (Henry et al. 1992; Ebeling et al. 1998;
Böhringer et al. 2001). In this case, one could in
principle bypass the galaxies entirely and use X-ray
data alone to infer, for example, the mass function
(Reiprich & Böhringer 2002) or the large-scale cluster-
ing (Collins et al. 2000) of X–ray emitters as a function
of their mean mass.

While useful, dynamical techniques such as galaxy
velocity dispersions and X-ray gas measurements pro-
vide limited information on cluster mass profiles, es-
pecially on large scales. Galaxy velocity measure-
ments provide only sparse sampling of the cluster po-
tential, although stacking velocity measurements from
multiple clusters can yield more precise statistical mass
profiles (Mahdavi & Geller 2004; Katgert et al. 2004;
Becker et al. 2007). Moreover, both velocity and X-ray
inferences of cluster masses assume that clusters are dy-
namically simple systems; this assumption may not be
justified in general at the requisite level of precision, and
there are certainly well-known exceptions to it, such as
Coma (Neumann et al. 2003). On scales close to and cer-
tainly beyond the virial radius, one expects the assump-
tion of dynamical equilibrium to break down, requiring
alternative techniques to estimate the associated mass.

Weak gravitational lensing is, in principle, well-
suited for studying mass profiles. The first weak
lensing detection was in a cluster (Tyson et al. 1990),
and the field blossomed rapidly (Fahlman et al.
1994; Tyson & Fischer 1995; Luppino & Kaiser
1997; Fischer & Tyson 1997; Hoekstra et al. 1998;
Joffre et al. 2000; Clowe et al. 2000; Dahle et al. 2002;
Wittman et al. 2003; Umetsu et al. 2005; Clowe et al.
2006). The lensing effect is sensitive to all mass associ-
ated with the cluster, and the interpretation of the shear
in terms of mass is independent of the dynamical state
of that mass. If the data permit, mass measurements
may be extended to very large scales, well beyond the
virial radius. However, except in the rare cases where
the lensing is very strong, the shape of an individual
galaxy gives a very imprecise measurement of the shear,
due to the large variety of intrinsic source galaxy shapes.
Instead, the shapes of many sources are averaged to
increase the sensitivity.

For weak lensing measurements, there are additional
sources of error that are not predictable or measurable
on a cluster-by-cluster basis. Lensing due to structures
along the line of sight to the source galaxies, such as
voids or distant clusters, can swamp the statistical mea-
surement error (White et al. 2002; Hoekstra 2003). Sec-
ondly, clusters are spatially correlated with other clus-
ters, groups, and galaxies. These associated structures
boost the measured lensing signal (e.g. Metzler et al.
2001; White et al. 2002). This increased signal can be
significant at almost any point in an individual cluster,
and is generally dominant for the average cluster at scales
larger than a few virial radii. It is difficult, in general, to

identify and model these effects for an individual cluster,
which makes recovery of the bound mass uncertain.

The approach we use in this work is a compromise: we
average, or “stack”, the lensing signal from an ensemble
of clusters. In doing so we cannot recover detailed in-
formation about each cluster. This is not a significant
sacrifice because the information for individual clusters
is not recoverable with high precision due to the sources
of error mentioned above. The gains from this technique,
however, are significant. The noise due to distant struc-
tures along the line of sight, uncorrelated with the lensing
cluster, is negligible in the mean under the assumption
that the universe is homogeneous and isotropic. The sta-
tistical signal from correlated nearby structures, on the
other hand, can be modeled using CDM; it dominates on
large scales but is typically small within the virial radius.

Another advantage of stacking is that the average clus-
ter mass profile, in the absence of significant selection
effects, must be smooth and spherically symmetric if the
universe is homogeneous and isotropic. In this case the
lensing measurement, which is related to density in a
non-local way, can be inverted directly to the average
three-dimensional mass profile modulo the mean density
of the universe (Johnston et al. 2007a).

The mean cluster mass profile is best interpreted as
the cross-correlation function between clusters and mass.
On small scales this is most sensitive to the mean den-
sity profile of the cluster dark matter halos, while on
large scales it essentially measures how clusters are cor-
related with the large scale structure. For a large enough
dynamic range in scale these measurements directly con-
nect the well understood linear growth of perturbations
on large scales to the non-linear collapse of dark matter
halos on smaller scales. These ideas have been discussed
and verified in simulations in Johnston et al. (2007a),
and used to reconstruct the galaxy-mass correlation func-
tion in Sheldon et al. (2004).

There is a small literature on ensemble group and
cluster lensing. These studies have focused mainly on
mass-to-light ratios and cosmology (Hoekstra et al. 2001;
Parker et al. 2005). In the Sheldon et al. (2001) pilot
study, we studied 42 SDSS clusters matched to X–ray
sources in the Rosat All Sky Survey, and demonstrated
the feasibility of ensemble cluster lensing in the Sloan
Digital Sky Survey (SDSS).

This work is the first in a series of papers on statis-
tical cluster lensing in SDSS. The clusters used in this
study are drawn from a superset of the recently released
MaxBCG catalog of Koester et al. (2007a,b), extending
that catalog to lower richness objects. We present lens-
ing measurements in bins of cluster richness and clus-
ter i-band luminosity, detailed descriptions of our meth-
ods, and tests and corrections for systematics. We also
present some basic statistics about these profiles, such
as tests for redshift dependent signals and comparisons
with power law models (which are not a good descrip-
tion). The idea is to present basic and stable results that
will not depend on models of the moment or assump-
tions about the selection function. This paper is accom-
panied by Johnston et al. (2007b) in which we present
detailed analysis and modeling of the profiles, such as
non-parametric inversions of the lensing profiles to three
dimensional density and aperture mass. In that paper we
also model these profiles to extract cluster virial masses
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and concentrations, large scale cluster-mass cross correla-
tions and bias, and the mass-observable relations such as
M−L and M−Ngals. This paper is also accompanied by
Sheldon et al. (2007), which focuses on cluster mass-to-
light ratios. A papers on the mass function (Rozo et al.
2007) is forthcoming.

We assume the universe is described by a Friedman-
Robertson-Walker cosmology with ΩM = 0.27, ΩΛ =
0.73, and H0 = 100 h km/s/Mpc. All distances are mea-
sured in physical, or proper, coordinates, not comoving.
The basic measures of richness and luminosity we will re-
fer to as N200 and L200. These are the counts and i-band
luminosity for galaxies with Li > 0.4L∗, colors consistent
with the cluster ridge-line, and projected separation less

than rgals
200 . See §3.5 for more details.

2. LENSING FORMALISM AND INVERSIONS

This section includes a brief description of the lensing
formalism used in this paper. More details can be found
in Sheldon et al. (2004).

Gravitational lensing is the apparent bending of light
as it passes massive objects. The actual path of light is
not generally observable, but the distortions produced in
the images of sources are. Any distortion produces cor-
relations in the shapes and orientations of background
sources, and these correlations are measurable. Note, if
some fraction of the sources are in fact not in the back-
ground but associated with the lens and if there are “in-
trinsic alignments” between galaxies in or near the lens-
ing cluster, then the lensing signal will be contaminated.
We address this issue in more detail in §6.

For statistical weak lensing measurements, the basic
observable is the tangential shear γT which, for small
shears, is simply proportional to the change in shape of
the galaxy

e+ = 2γTR + eint
+ , (1)

where e+ is the measured ellipticity of the galaxy, in the
tangential frame of reference, and eint

+ is the intrinsic
shape of the galaxy; the quantity R is the “responsiv-
ity”or “shear polarizability” of the galaxy. It encodes
how strongly the image responds to an applied shear,
and is measurable in the mean from the ensemble of
galaxy shapes (Bernstein & Jarvis 2002). The intrinsic
shape eint

+ is the primary source of noise, and its prop-
erly weighted RMS value is known as the “shape noise”,
σ2

SN = 〈(eint
+ )2〉. In the absence of intrinsic alignments,

eint
+ has zero mean.
The azimuthally averaged tangential shear is related

to the geometry of the lens-source-observer system and
the projected mass density of the lens:

γT (R) × Σcrit = Σ̄(< R) − Σ̄(R) ≡ ∆Σ , (2)

where Σ̄(< R) is the mean projected mass density within
the disk of transverse radius R, and Σ̄(R) is the mean
within the annulus used to measure the shear. The pro-
portionality, Σcrit, encodes the geometry of the lens-
source-observer system:

Σ−1
crit =

4πGDLSDL

c2DS

, (3)

where the Dj are the angular diameter distances to lens,
source, and between lens and source. Note, the shear
measured at 45 degrees relative to the tangential, γ×,

should be zero if the signal is due to lensing. As will be
discussed in later sections, we have excellent photometric
redshifts for each of the cluster lenses, as well as photo-
metric redshifts for each source galaxy; together these
provide an estimate of Σcrit and allow us to convert the
tangential shear to a measurement of ∆Σ.

The signal to noise ratio in ∆Σ for a typical lens in
the SDSS is much less than unity due to the low redshift
of the lenses and sources and the relatively low number
density of the source catalog. To increase the sensitiv-
ity, we average the ∆Σ measurements from an ensem-
ble of lenses of similar optical properties. This mean
signal, measured as a function of projected separation,
R, is related to the cross-correlation between the lenses
and the density field. Under the assumption of statis-
tical isotropy (after stacking, the lenses look spherically
symmetric), the mean ∆Σ profile can be inverted to the
three-dimensional excess density profile:

− dΣ

dR
=

d∆Σ

dR
+ 2

∆Σ

R

∆ρ(r)≡ρ(r) − ρ̄ =
1

π

∫
∞

r

dR
−dΣ/dR√
R2 − r2

(4)

where ∆ρ is the mean excess density, relative to the mean
density of the universe ρ̄. The mean density of the uni-
verse will not contribute to the shear in equation 2, and
thus does not contribute to ∆Σ or ∆ρ. This inversion
technique was used in Sheldon et al. (2004), and the de-
tails are presented in full in Johnston et al. (2007a). The
integral in equation 4 cannot be taken to infinity; in prac-
tice this limits the useful range of radii to about 2/3 of
the largest radius where measurements are available. As
shown in Johnston et al. (2007a), the total mass within
radius r can also be recovered from ∆ρ and ∆Σ.

The assumption introduced in equations 4 is that the
correlation function is statistically isotropic. This follows
from the isotropy of the universe as long as the cluster
finder does not introduce a preferred direction. For ex-
ample, if the MaxBCG cluster finder, described in §3.5,
preferentially chose structures oriented along the line of
sight this would violate the assumption that the correla-
tion function is isotropic. Tests and predictions of this
effect will be presented in Johnston et al. (2007b).

3. DATA

The galaxies used for cluster selection and shear mea-
surement were drawn from the Sloan Digital Sky Sur-
vey (SDSS; York et al. 2000). The area used for this
study is somewhat smaller than the SDSS data release 4
(Stoughton et al. 2002; Adelman-McCarthy et al. 2006,
hereafter DR4). The coverage area is shown in Figure 1.

The SDSS observing mode is time-delay-and-integrate,
with the camera reading out at the scan rate, resulting
in an effective exposure time of 54 seconds. The camera
layout, described in Gunn et al. (1998, 2006), comprises
6 columns of 5 CCDs. Each CCD in a column is covered
with one of the 5 SDSS filters (Fukugita et al. 1996) and
objects pass through each different filter in turn, result-
ing in nearly simultaneous imaging. The gaps between
columns are about a CCD width, and the resulting gaps
in the imaging data is scanned on an alternate night.

These data are reduced to object lists through a se-
ries of calibration (Hogg et al. 2001; Smith et al. 2002;
Tucker et al. 2006), astrometric (Pier et al. 2003), and
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Fig. 1.— Hammer-Aitoff projection of the sky, with the area used for this analysis shaded in black. This is a subset of the SDSS DR4.

photometric (Lupton et al. 2001, PHOTO) pipelines. The
version of PHOTO used for these data is v5 4. Among the
parameters for each object are the position (RA,DEC),
various fluxes, and moments of the light distribution used
for shear estimation. These same properties for the PSF,
measured from bright stars, are interpolated across the
image and used for shape corrections (§4). Only data
that pass a series of automated quality assurance tests
are included in the final catalog (Ivezić et al. 2004).

3.1. Masks

The area used for this study (see Figure 1) was char-
acterized using the SDSSPix pixelization scheme 16 to
define a window, or mask of the available area. This
same scheme has been used for other clustering anal-
yses (Scranton et al. 2003, 2005) and lensing analyses
(Sheldon et al. 2004). This mask includes survey bound-
aries and holes in the survey area. We also exclude re-
gions with inferred extinction greater than 0.2 mag in r
(according to the Schlegel et al. (1998) dust maps) from
the analysis. Only objects that pass this mask were
included in the sample; this includes both the lensing
source galaxies and the clusters. This is the area shown
in Figure 1. This mask was also used for the edge cuts
described in §3.5.

3.2. Source Galaxy Selection

Candidate source galaxies were drawn from the avail-
able area described in §3.1. Stars were separated
from galaxies using the Bayesian method described in
Scranton et al. (2002) and Sheldon et al. (2004). In ad-
dition, only galaxies whose size was measured to be much
larger than the PSF were used. The cut used is the same
as that used in Mandelbaum et al. (2006b): the reso-
lution parameter R, which is roughly unity minus the
square of the ratio of object PSF size to object size, must
be greater than 1/3. The combination of these two cuts
is quite conservative: tests based on comparisons with

16 http://lahmu.phyast.pitt.edu/∼scranton/SDSSPix/

the deeper co-added southern stripe indicate the stellar
contamination is less than 1%.

We discarded objects for which the shape measurement
did not converge, large measurement errors σe > 0.4 and
the very tail of the ellipticity distribution e > 4 (the el-
lipticity can exceed unity after the dilution correction).
Only objects with detections in all five SDSS bandpasses
were used, since the accuracy of photometric redshifts
is significantly reduced otherwise. Finally, only objects
brighter than r = 22 were included. The final catalog
contains 27,912,891 galaxies. The distribution of r mag-
nitudes is shown in Figure 2. The gray curve shows the
weighted, “effective” number, where the weight is the in-
verse shear variance, 1/(σ2

e +σ2
SN ). Note there are a fair

fraction of galaxies fainter than 21.5, but these get little
weight in the final analysis.

3.3. Shape Measurement and Correction

The details of the shape measurement were given
in Sheldon et al. (2004), and are an implementation of
the techniques presented in Bernstein & Jarvis (2002).
With this method, the moments of an elliptical Gaus-
sian weight function are matched to those of the object
in question through an iterative algorithm. We measured
second and fourth order moments for all objects in the
survey using this method; these parameters are in the
SDSS database.

The second order moments Qm,n for each object are
combined into the shape parameters,

Qm,n =
∑
m,n

Im,nWm,nxmxn

e1 =
Q1,1 − Q2,2

Q1,1 + Q2,2
, e2 =

2Q1,2

Q1,1 + Q2,2
, (5)

where Im,n is the intensity at pixels m, n, Wm,n is the
radial weight function, and xm are the pixel coordi-
nates relative to the centroid of the galaxy light. These
shape parameters are used directly in the shear estima-
tion, as shown in equation 1. The fourth order moment
accounts for the non-gaussianity of the object and is
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Fig. 2.— Distribution of source galaxy magnitudes after apply-
ing the cuts described in §3.2. The black line is the normalized
histogram and the gray line is the effective number, normalized to
the bright end, after including the weight. The relative weight,
shown in arbitrary units as the dashed curve, is an inverse shear
variance weight.

part of the resolution parameter, or smear polarizabil-
ity (Fischer et al. 2000; Bernstein & Jarvis 2002).

The point spread function (PSF) smears and changes
the shape of galaxies, which can be mistaken for the ef-
fects of lensing. In order to correct for these effects,
the PSF was modeled from bright stars and interpo-
lated to the position of each galaxy using a KL de-
composition. This algorithm was described in detail by
Lupton et al. (2001) and Sheldon et al. (2004). The ef-
fect of the PSF was then corrected for using the tech-
niques of Bernstein & Jarvis (2002) combined with the
“re-Gaussianization” method of Hirata & Seljak (2003).
This method treats the PSF as a Gaussian plus a small
non-Gaussian component, which is generally a good rep-
resentation of the SDSS PSF. A convolution kernel is
used to transform the image, removing the effect of the
non-Gaussian component. The remaining Gaussian PSF
component can be corrected for exactly using the formu-
las in Bernstein & Jarvis (2002).

These corrections for PSF convolution can be thought
of as two separate corrections: the first corrects for the
smearing by the finite PSF which makes the object look
more round and affects the shear calibration. This is of-
ten referred to as PSF dilution. The second alters the
shape of the galaxies due to the anisotropy of the PSF.
These are often referred to as “multiplicative” and “ad-
ditive” biases, respectively. In practice these two biases
are coupled.

3.4. Photometric Redshifts

The photometric redshifts (photo-z) were calculated
using a Neural Network based on the training set method
of Collister & Lahav (2004). The spectroscopic train-
ing set was collated from the SDSS spectroscopic sur-
vey and various surveys with coverage overlapping the
SDSS. From a total of ∼60,000 galaxies with measured
redshifts, ∼45,000 were from the SDSS main galaxy sam-
ple (roughly r < 17.6, see Strauss et al. 2002), ∼14,000
were from the SDSS luminous red galaxy (LRG) sample
(Eisenstein et al. 2001), ∼1,500 were from the CNOC2
survey (Yee et al. 2001), and ∼300 were from the CFRS
survey (Lilly et al. 1995). The training set covers a red-
shift range between 0 and 1. Of the ∼60,000 objects,
30,000 were used to train an artificial neural network

Fig. 3.— Weighted distribution of spectroscopic redshifts in a
few bins of photometric redshifts. We chose weights such that the
weighted distributions of each of the five SDSS bandpasses match
that of the photometric sample in the given bin. The error bars
come from bootstrap re-sampling the spectroscopic validation set.

while the remaining objects (the validation set) were used
to check the results of the trained network. The result-
ing RMS scatter in photo-z’s for the validation set was
∼ 0.04. The details of these methods can be found in
Cunha et al. (2007).

The resulting photometric redshift sample has remain-
ing errors, and these errors are a function of redshift.
We used the validation set to constrain the true red-
shift distribution in a given bin of photoz. In order
to properly sample the true distribution of the photo-
metric sample, the spectroscopic sample was weighted
such that the probability distributions of each of the five
SDSS bandpasses matched that of the photometric sam-
ple. We then used these weights to produce a weighted
histogram of spectroscopic redshifts for the given photoz
bin. More details about this weighting scheme can be
found in Lima et al. (2007). We found that this method
reproduced the underlying distributions with a high level
of accuracy in simulations where the only variables for
selection were magnitude. In the real data, other factors
are important such as surface brightness and angular size.
These factors have not yet been addressed and may lead
to additional errors.

Example distributions for a few photoz bins are shown
in figure 3. The peak of the distributions is relatively
unbiased, indicating the neural network tends to find
the maximum likelihood. However, the distributions are
broad and even skewed in some cases.

The lensing ∆Σ depends on the distances to lens and
source through the inverse critical density. For each lens-
source pair, we integrated over the above distributions in
redshift to get the expected inverse critical density. The
formalism we used was the same as Sheldon et al. (2004)
except here we integrated over the full distribution deter-
mined as outlined above, whereas in that work we used
the error estimates that came out of a chi-squared anal-
ysis over galaxy templates. In this work we applied no
additional prior to the distribution. In the end the re-
sults using these distributions differed from calculations
treating the photozs as perfect by only a percent.

3.5. Cluster Selection
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The MaxBCG algorithm (Koester et al. 2007a,b) is
used to identify clusters in SDSS imaging data using
three observational properties of rich galaxy clusters.
These properties are 1) spatial clustering, 2) clustering
in color-space (the red sequence), and 3) the presence
of a brightest cluster galaxy (BCG) spatially coincident
with the approximate center of the cluster. These model
components are folded into a redshift-dependent likeli-
hood function, which has built-in predictions for the col-
ors of the red-sequence, the color-magnitude properties
of the BCG, and the spatial distribution of cluster mem-
bers (NFW, Navarro, Frenk, & White 1997). Every ob-
ject in the input galaxy catalog is then evaluated for its
likelihood of being a BCG in an over-density of bright
(>0.4L∗ in i-band) red galaxies (within ±2σ of the red
sequence) at a grid of redshifts. A maximum likelihood
redshift is determined for each object, and these poten-
tial BCGs are ranked by decreasing maximum likelihood.
In a manner analogous to the spherical over-density algo-
rithm employed in N-body simulations, the highest like-
lihood potential BCG in the survey is deemed a BCG
at the center of a cluster. Any lower likelihood objects

in the ranked list within a projected rgals
200 (see below)

and ±0.02 in redshift of this first BCG are eliminated as
possible cluster centers. The process is repeated for the
next object in the ranked list, given that it is not in the
exclusion region of the first object. This prescription is
iteratively applied to the entire list, thereby generating
the final cluster catalog.

The initial parameters in the cluster catalog include
a maximum likelihood redshift (between 0.05 and 0.3)
and an initial richness estimate, Ngal (the number of red
sequence galaxies within 1 Mpc). The sample is well un-
derstood in terms of completeness, purity, and photo-z
accuracy within the redshift range [0.1, 0.3]; at lower red-
shifts the photo-z is less reliable so these objects are dis-
carded. Over the redshift interval [0.1, 0.3], the photo-z
’s have a small bias ∼ 0.004 which we correct and scatter
that is . 0.01. The sample appears to have a number
density that is roughly independent of redshift, although
the presence of a supercluster at redshift 0.08, the so-
called “Sloan Great Wall”, dominates the statistics at
low redshift (Gott et al. 2005).

After these initial parameters are determined for each
cluster candidate, measurements of cluster richness and

redshift are refined. A scaled radius rgals
200 is deter-

mined from the Ngal – rgals
200 relationship measured by

Hansen et al. (2005); it is the radius at which the mean
luminosity density reaches 200 times the mean value pre-
dicted by the luminosity function. The number of galax-
ies N200 and the i-band luminosity L200 are then re-

counted within rgals
200 with the same selection criteria as

above.
Some statistics for the final cluster sample are shown

in Figure 4. The N200 function is shown in the left panel.
We have extended this sample to N200=3, substantially
lower than the sample from Koester et al. (2007a). These
objects have substantially more noise in their photo-z
and richness measures, but as we will see in the following
sections they have a well-measured lensing signal. The
added noise does, however, complicate the interpretation
of the lensing results.

The right hand panel of Figure 4 contains the cluster

abundance as a function of redshift. The overall sample is
close to volume limited, but the distributions in individ-
ual N200 bins have significant features in redshift. This is
due to some combination of the redshift-dependent model
for 0.4L*, the definition of the red-sequence, and true
evolution in the number of galaxies at fixed mass and
redshift. It is difficult to disentangle these contributions.

Geometrical edge cuts were applied before using the
clusters for lensing, in addition to the basic mask cut
applied in §3.1. As will be explained in §4, we require
the searchable area surrounding each lens center to be
either a full disk or a half disk on the sky. This is to
guarantee there are pairs of sources at 90 degree sepa-
ration with respect to the lens center to cancel residual
PSF systematics. We checked each lens against the mask
to guarantee this. The maximum search radius is a func-
tion of redshift, so lenses at low redshift are more likely to
hit an edge. We discarded 21% of the available clusters
leaving 132,473.

4. CORRECTIONS TO THE LENSING PROFILES

Two corrections were made after the basic lensing mea-
surement was complete. The first corrects for the so-
called “additive” bias outlined in section §3.3, and the
second corrects for the clustering of source galaxies with
the lenses.

4.1. Correction for Additive Bias

The additive bias is due the residual PSF induced el-
lipticity, left over from imperfect PSF interpolation. For
the most part, this is a random effect across the survey,
but because it is correlated over the scales we are inter-
ested in it does not average to zero exactly. Residuals
that are constant across the shear measurement area for
a given lens will cancel as long as there are pairs at 90 de-
gree separation, which prompted the edge cuts outlined
in §3.5. Components that are not effectively constant,
however, may be present.

This effect was checked using random points gener-
ated over the same area as the lenses and sampling the
same systematics. We used the mask generated for this
data (see §3.1), including the edge cuts applied in §3.5.
Random points were assigned redshifts such that the red-
shift histograms of clusters and randoms are proportional
when binned at ∆z = 0.01. This histogram matching
was performed separately for all binnings of the clus-
ters shown below; different samples may have different
redshift distributions. This is important because sys-
tematics depend mainly on angular scale, which affects
different physical scales as a function of redshift.

The results for two sets of random points are shown
in Figure 5. The top panel is for N200= 3, the lowest
richness bin, which has the weakest signal. The bottom
panel is for a moderately high richness bin, 12 ≤N200≤
17. On very large scales, the signal for the top panel is
strongly affected by this additive systematic, while the
signal in the bottom panel is less affected due to the
higher signal. This residual additive bias is subtracted
from the lensing signal for all samples presented below
17.

17 Note that this technique of correcting for residual PSF
anisotropy using random points only works for lens-shear cross-
correlations, not for shear-shear (so-called cosmic shear) correla-
tions.
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Fig. 4.— Top panel: Histogram of N200, the number of red galaxies brighter than 0.4L∗ within rgals
200

, for the cluster sample. Bottom
panel: Number density as a function of redshift for differential bins of N200.
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Fig. 5.— Lensing measurement ∆Σ around random points as
compared to clusters. The top panel compares randoms to clusters
for the N200=3 bin; the bottom panel shows the 12 ≤L200≤ 17
bin. The non-zero detection at large scales is indicative of residual
additive systematics in the PSF correction. The random signal
dominates on large scales for the relatively low signal bin shown
in the top panel. The contamination is less important but still
significant for the intermediate bin shown in the bottom panel.
The random signal is subtracted from the cluster signal for all
samples presented in this work.

4.2. Correction for Source-Lens Correlations

The second error we correct for is the clustering of
source galaxies with the lensing clusters. Although pho-
tometric redshifts help to remove cluster members from
the source sample, there is still a significant contamina-
tion, especially for the richer clusters. These contribute
zero to the shear, diluting the inferred profile. Because
the fraction of cluster members polluting the source sam-
ple is a function of radius, this contamination alters the
shape of the profile. This contamination was estimated
by computing the correlation function between clusters
and sources (Fischer et al. 2000; Sheldon et al. 2004).
The sources are weighted exactly as in the lensing mea-
surement. The result is shown in Figure 6 for 12 bins of
the N200 measure. In some bins the correction factor is
quite large at small scales, but is well-understood.

5. RESULTS

The lensing ∆Σ profiles in 12 bins of N200, are shown
in Figure 7. There is a significant detection for each of
the bins, with signal-to-noise ratio ∼ 15− 20 for all bins.
The corrections described in §4 have been applied to each
of these profiles.

The errors are the diagonal elements of the covariance
matrix derived from jackknife re-sampling. We use rela-
tively small jackknife regions for this analysis, about the
width of an SDSS stripe. This choice is made based on in-
dications that variations in the systematics are the dom-
inant source of spatial variation in the signal: the PSF

also varies with roughly this scale, and of course the scans
are this size. This is further supported by the fact that
for much larger jackknife regions the errors are consis-
tent with the standard Gaussian error propagation. For
this jackknife scale errors are consistent with simple er-
ror propagation for R < 1h−1 Mpc, but are substantially
larger on R > 5h−1 Mpc scales. The covariance matrix
becomes non-diagonal for R > 5h−1 Mpc, where the first
off-diagonal terms are about 30%. Note, at the median
cluster redshift 0.25, the width of a stripe is roughly 25
h−1 Mpc.

The amplitude of the lensing profile is a strong function
of N200, as expected if the number of galaxies correlates
with the mass of the cluster. However, the interpretation
of these profiles in terms of halo masses is complicated,
as with any cluster mass measurement, by the contribu-
tions from the neighboring large scale structure. In fact,
for most of the profiles, the signal at separations larger
than two megaparsecs is entirely dominated by associ-
ated large scale structure; this feature allows us to mea-
sure halo bias in addition to halo mass. The interpreta-
tion of these profiles in terms of halo mass and correlated
mass (i.e. the halo model) is presented in detail in the
companion paper Johnston et al. (2007b).

A number of the profiles in Figure 7 show deviations
from a power law. Power law fits for each bin are shown
in Table 1. The fits were performed using the full covari-
ance matrix. All but the 2nd and 5th bins have χ2 per
degree of freedom greater than 1.3 (d.o.f. = 19), indicat-
ing a poor fit. This is demonstrated visually in Figure
8, where in each case the profile has been divided by the
best-fitting power law. The curves systematically have a
shallower logarithmic slope at small radius and a steeper
slope at large radius. The shape on scales . 100h−1

kpc may be affected by systematics, as outlined in §6.1.
The fits are dominated by larger scales, however, and
removing these points does not improve the fit signif-
icantly. There is also evidence of an upturn again at
the largest radii which may be interpreted as the “two-
halo term”, the transition to correlations with neighbor-
ing large scale structure. These features move to larger

Fig. 6.— Correction factor for the clustering of source galaxies
with the clusters in bins of N200. The multiplicative factor C(R)
is calculated and applied for all profiles shown herein.
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Fig. 7.— ∆Σ from 25 to 30h−1 Mpc in 12 bins of N200, the number of galaxies (> 0.4L∗) within rgals
200

. The signal measured around
random points is subtracted from these profiles (see Figure 5). The correction for clustering of sources with the lenses is also applied (see
Figure 6). The errors are from jackknife re-sampling.
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TABLE 1
Power law fits for N200 Bins

Bin A α χ2/ν

N200 = 3 3.2 ± 0.2 1.06 ± 0.04 51.9/19 = 2.73
N200 = 4 4.5 ± 0.3 1.05 ± 0.04 18.1/19 = 0.951
N200 = 5 6.4 ± 0.4 0.95 ± 0.04 41.5/19 = 2.18
N200 = 6 7.4 ± 0.5 0.94 ± 0.04 53.4/19 = 2.81
N200 = 7 8.1 ± 0.7 1.02 ± 0.05 19.0/19 = 1.00
N200 = 8 10.3 ± 0.8 0.86 ± 0.05 26.7/19 = 1.41

9 ≤ N200 ≤ 11 12.5 ± 0.6 0.93 ± 0.03 26.0/19 = 1.37
12 ≤ N200 ≤ 17 16.9 ± 0.8 0.99 ± 0.02 25.1/19 = 1.32
18 ≤ N200 ≤ 25 23 ± 1 0.99 ± 0.03 38.9/19 = 2.05
26 ≤ N200 ≤ 40 34 ± 2 0.95 ± 0.02 49.3/19 = 2.59
41 ≤ N200 ≤ 70 47 ± 2 0.89 ± 0.03 48.9/19 = 2.57
71 ≤ N200 ≤ 220 77 ± 7 0.91 ± 0.04 28.1/19 = 1.48

Note. — Power law fits for each bin in N200: ∆Σ =
AR−α with R in units of h−1Mpc and A in units of
hM⊙pc−2. The reduced χ2 is relatively high in most bins,
indicating a power law is not a good fit. There is a strong
correlation between the power-law amplitude A and rich-
ness N200, while the best fit α is relatively stable.

radius for higher N200. The shape of these curves is in
qualitative agreement with a model where the inner halo
is NFW-like with a transition to linear correlations on
large scales. In Johnston et al. (2007b) we demonstrate
quantitatively that such a model is in fact a good fit to
this data.

We split the N200 sample further by L200 within each
bin as shown in Figure 9. In each of the N200 bins we
split at the 2/3 quantile in luminosity, such that the 2/3
lowest objects are in one bin and the top 1/3 are in the
other. This quantile was chosen because any scaling with
luminosity combined with the steep luminosity function
would predict equal S/N only for an uneven split. In the
figure, the best-fitting power law has been divided out. In
each case the upper L200 quantile has a stronger signal
than the lower. Although N200 is correlated with the
lensing signal, there is additional information contained
in L200.

We explored the luminosity dependence further by
splitting the clusters into 16 bins by L200, without re-
gard to the galaxy counts. The results of this binning
are shown in Figure 10. We were able to split the sample
into many more bins without losing significant precision.
This is primarily due to splitting the lower N200 bins into
one or more L200 bins. Generally the features are similar
to the N200 splits but with more dynamic range in signal
amplitude. We also split each L200 bin into quantiles of
N200, but saw no significant trend.

Finally, we split the L200 samples into bins of cluster
redshift in order to quantify any redshift evolution in the
signal. We split each bin at the median redshift of 0.25.
The difference relative to the errors (combined quadrat-
ically) is shown in Figure 11. No evolution is evident.
The distribution of χ2 between the 16 L200 bins is con-
sistent with that expected from random deviations for
18 degrees of freedom. Furthermore, although not pre-
sented here for the sake of brevity, we also have a null
detection of redshift evolution in bins of N200.

6. FURTHER SYSTEMATIC EFFECTS

We have corrected the lensing measurements for ad-
ditive errors and the clustering of sources with lenses
(see §4 ). In this section we shall discuss other possible

Fig. 8.— Power law fits in each N200 bin. For each bin, the best
fitting power law (see Table 1) has been divided out and the signal
scaled arbitrarily to separate the profiles visually. For clarity, the
error bars for points with S/N < 1 have been suppressed for the top
two bins. Each curve is labeled by its richness range and reduced
χ2 for the power law fit. The profiles are not generally good fits to
a power law and demonstrate systematic deviations as a function
of scale.

sources of systematic error. Many of these issues have
been addressed in detail in Mandelbaum et al. (2005).
We will briefly comment here on a few of the more im-
portant issues, in particular the photometric redshifts for
which our analysis differs from that study, and intrinsic
alignments in clusters.

6.1. Lensing Measurement Errors

There are two basic types of errors on lensing measure-
ments: multiplicative (calibration) errors and additive
errors. We described the corrections applied for additive
errors in §4.

Calibration errors in ∆Σ come in two types. Recall the
definition of ∆Σ:

∆Σ(R) = γT (R) × Σcrit (6)

Errors may occur in converting the measured galaxy
shapes to shear γT , or in measuring the critical density
Σcrit, which depends on the angular diameter distances
to lens and source.

Errors in the shear calibrations may be due to resid-
uals in the PSF dilution correction or incorrect shape
to shear transformations. The shape to shear transfor-
mation is measured directly from the data (see §2). It
is determined much better than our signal, so it should
be a minimal effect. The dilution corrections discussed
in §3.3, however, can only be determined in a model-
dependent way. Thus it is difficult to empirically deter-
mine the accuracy of the correction. As a further test,
we split the source sample into bins of size and saw no
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Fig. 9.— The same 12 N200 bins from figure 7 with each bin split into two by L200. The L200 split is at the 2/3 quantile. The upper
quantile is represented by the diamond symbols, the lower by the filled circles. The best fitting power-law for each N200 bin before splitting
is divided out. The mean ratio of the splits is shown in the legend. There is a further correlation with luminosity within each N200 bin.
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Fig. 10.— Same as Figure 7 but in 16 bins of L200, the total i-band luminosity of (> 0.4L∗) galaxies within rgals
200

.

Fig. 11.— Bins of luminosity as in Figure 10 with each L200 bin split at the median redshift of 0.25. The data points are the difference
between high redshift and low redshift splits divided by the error (added quadratically). The distribution of χ2 between the 16 bins is
consistent with that expected from random scatter with 21 degrees of freedom.
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variation of the recovered the signal within the errors.
This however, does not demonstrate there is no overall
calibration error.

The calibrations were tested using simulations in the
second Shear Testing Programme, also known as STEP2
(Massey et al. 2006). For the PSFs tested therein, the
calibration was recovered to a few percent accuracy, but
there is an inherent uncertainty when any such scheme
is applied to real data. In particular, the PSF in the
STEP2 images are different from the typical SDSS PSF.
There is work in progress to test SDSS calibrations more
directly (Mandelbaum et al. 2007).

The PSF is not constant, but varies in time and po-
sition in the focal plane. This variation is mapped by
the measurement of a finite number of stars per field.
The algorithm used by the SDSS to model the PSF
(Lupton et al. 2001; Sheldon et al. 2004), while quite
powerful, is inevitably limited in the spatial frequency
with which it can map changes in the PSF. The density
of the stars used is about one per 6.7 square arcminutes,
or a spacing of 2.6 arcminutes. Any PSF variations on
scales smaller than this are simply not accounted for.

A recent study by Jarvis & Jain (2004) has shown that
this limitation can be overcome if the PSF patterns are
recurring and depend on only a few major variables, such
as position in the focal plane and focus. We will explore
this method in future work.

The errors in estimating Σcrit come from errors in
the estimating the photometric redshifts. We estimated
these error distributions for our sample and include them
in our calculations (see §3.4). The essential assumption
in determining these biases is that the five band magni-
tudes of the SDSS is sufficient information to determine
the redshift distribution of a given set of objects. If this
is not true, for example if surface brightness or size mat-
ter and the training set differs from the photometric set
in this regard, the photozs may be biased. This was
tested in Mandelbaum et al. (2005) by using a sample of
luminous red galaxies for which a well matched training
sample can be used, and consistency was found at the
10% level. We have not repeated that experiment for
this data, but expect the same level of consistency.

On small scales the sources may be mis-measured due
to the presence of the brightest cluster galaxy, on which
we center our lensing measurements. In two SDSS stud-
ies (Masjedi et al. 2006; Mandelbaum et al. 2006a) it was
shown that on . 20′′ scales the presence of bright lumi-
nous red galaxies (LRGs) will bias the photometry and
size measurement of neighboring galaxies significantly.
This is essentially a calibration error because it may
cause errors in the photometric redshifts and dilution
correction. Because the BCGs are similar to LRGs both
in intrinsic properties and redshift distribution, similar
effects are expected to impact this study. We have not,
however, repeated these tests for the current sample. For
this reason we do not correct for such effects, but rather
caution the reader that, for scales . 50h−1 kpc, the pro-
files presented in this work may be biased. For mass
studies at the virial radius this is an insignificant volume
and can be safely ignored, but caution should be used
for studies of the inner profile.

6.2. Intrinsic Alignments

Fig. 12.— Estimate of intrinsic tangential alignments for the
spectroscopic cluster sample of (Berlind et al. 2006). The shear
tracer population was drawn from the SDSS main spectroscopic
sample and chosen to have velocity within ±2000 km/s of the clus-
ter. Thus any signal is not due to lensing, but rather intrinsic
correlations between galaxy shapes and the tangential direction
relative to the lens center. Such an effect would bias the lensing
profiles. No net effect was detected.

We assume that the measured correlations between the
shapes of the source galaxies are due to gravitational
lensing. In practice the shapes of galaxies themselves
may be correlated. In general this mostly washes out in
a measurement such as ours as long as the sources are
far behind the lens. This is because we correlate with
the tangential frame around lenses and the sources are
at a large range of distances. In practice, however, it
is difficult to identify a sample of sources which are all
truly separate from the lenses, so if intrinsic alignments
exist the signal may indeed be contaminated. Limits
from data (see Hirata et al. 2004, and references therein)
indicate that this is a small (< 15%) contaminant to
the tangential shear for galaxy-galaxy lensing surveys.
The contamination may be higher for clusters because a
larger number of source galaxies are actually physically
associated with the lens.

In order to test the effects of alignments, we used clus-
ters determined from SDSS spectroscopy as presented in
(Berlind et al. 2006). We used the volume-limited sam-
ple with absolute magnitude in the r-band less than -20.
There are 4119 clusters in this sample. For tracers of the
intrinsic alignment we use all galaxies from the SDSS
“main” spectroscopic galaxy sample over the same re-
gions; there is no need for a volume-limited sample of
shape tracers. See Strauss et al. (2002) for a descrip-
tion of the target selection algorithm. The use of only
spectroscopic redshifts for clusters and tracers greatly re-
duces the fraction of physically unassociated pairs. We
chose all galaxies within our search aperture and with
velocities within ±2000 km/s. No attempt was made to
match the luminosity distribution of the tracers to those
of our actual source galaxies. Shapes were corrected for
PSF effects using the same techniques described in §4.

Figure 12 shows the mean tangential intrinsic shear
measured for these clusters. There is no detected signal;
we place only limits on the effect. For example, the in-
trinsic shear within 100 h−1 kpc is −0.0058 < 〈γT 〉 <
0.0025 at 95% confidence.

In order to estimate the limit of contamination in our
data we took the limits of this shear and scaled them
to ∆Σ for each of our lens samples given their mean
redshift. We also multiplied by the fraction of source
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Fig. 13.— Mean estimated contamination of ∆Σ from intrinsic alignments in each of the N200 bins, estimated as described in the text.
These are cumulative curves so adjacent bins are correlated. In each panel, the intrinsic shear is the red curve and the cluster measurement
is the black curve. Note the vertical scale varies between plots.

TABLE 2
Intrinsic Alignment Limits for N200 Bins

Bin ∆Σint Limits (95%) 〈∆Σ〉

N200 = 3 [ -15.0, 4.03] 39.6 ± 4.05
N200 = 4 [ -20.1, 5.93] 46.5 ± 6.09
N200 = 5 [ -24.3, 6.12] 56.8 ± 8.30
N200 = 6 [ -27.9, 6.78] 48.1 ± 10.9
N200 = 7 [ -30.8, 8.26] 73.0 ± 13.6
N200 = 8 [ -34.3, 9.28] 61.0 ± 16.9

9 ≤ N200 ≤ 11 [ -39.8, 11.3] 91.4 ± 13.6
12 ≤ N200 ≤ 17 [ -49.4, 14.2] 137. ± 16.4
18 ≤ N200 ≤ 25 [ -65.5, 17.8] 157. ± 27.4
26 ≤ N200 ≤ 40 [ -73.5, 23.0] 207. ± 41.9
41 ≤ N200 ≤ 70 [ -91.7, 26.9] 257. ± 68.8
71 ≤ N200 ≤ 220 [ -120, 53.9] 232 ± 184

Note. — Limits on the contamination of ∆Σ
from intrinsic alignments for each N200 bin within
a radius of 100 h−1 kpc. The limits are shown as
95% confidence intervals. For comparison, the mean
∆Σ for clusters within the same radius is listed in
the last column.

galaxies that were actually in the clusters, and the boost
factor for clustering of sources with the lenses. This last
factor is exactly that shown in Figure 6. The mean es-
timated contamination is shown in Figure 13 for each of
the N200 bins. This plot is cumulative so adjacent points
are correlated. Table 2 shows limits on ∆Σ in each of
the N200 bins within 100 h−1 kpc. These limits are not
very stringent but are all less than the mean signal in
absolute value.

The Berlind et al. (2006) clusters are not selected in
the same fashion as the MaxBCG sample, so there is ad-
ditional uncertainty in applying these limits. Any sample
selected to have spectroscopy will be selected differently,
and will be relatively few in number; this is a limit of
the current observations. Also, the effect may depend on
richness, a possibility we are unable to address due to
the relatively small sample of Berlind et al. (2006).

As a further test of the effect of intrinsic alignments, we
required the source photoz in the MaxBCG shear mea-
surements to be at least z(cluster) + 0.2, but saw no
change in the shear signal. This could also mean that the
redshifts are dominated by random noise at the level of
0.2, but the mean error at these magnitudes is expected
to be . 0.05 (see §3.4)

7. COMPLICATIONS FOR INTERPRETATION

There are two effects that may complicate the inter-
pretation of these results. Firstly, the shear in the in-
ner portions of the largest galaxy clusters is not weak
so interpretation of shear in terms of ∆Σ is incorrect.
This is important for the largest clusters on . 100h−1

kpc scales. This may be accounted for in a straightfor-
ward way when modeling the signal (Mandelbaum et al.
2006a; Johnston et al. 2007b). Secondly, the cluster cen-
ter, chosen as the location of the BCG, may not corre-
spond to the center of mass. This acts like a convolution
of the profile with the distribution of BCG offsets. Again,
this is only important on relatively small scales. We will
leave these issues for the follow-up paper Johnston et al.
(2007b).

8. SUMMARY

We have measured ensemble lensing due to clusters of
galaxies over scales 20 h−1 kpc to 30 h−1 Mpc. We split
the sample into 12 independent bins of richness N200 and
16 bins of i-band luminosity L200, with strong detections
(S/N ∼15-20) in each bin. The profiles were corrected
for systematic effects, including additive shear errors and
clustering of sources with the lens clusters. We placed
limits on the amount of contamination in our signal due
to intrinsic alignments and concluded that on 100 kpc
scales and greater the effect is not dominant; the lim-
its on smaller scales are weak. Calibration errors are
less well known. These calibration errors are most likely
dominated by uncertainties in determining the redshift
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distribution of the sources; the shear calibration errors
are expected to be a few percent. The shape of these
profiles, and relative scaling, are insensitive to calibra-
tion uncertainties.

Interpretation of these profiles on small scales requires
some caution. For the most massive clusters, the lens-
ing effect on . 100h−1 kpc scales is most likely non-
linear and this must be accounted for in models. Fur-
thermore, on . 50h−1 kpc (the first two bins) there
may be significant systematic effects in the photometry
and size measurements of source galaxies due to the ex-
tended light profile of the brightest cluster galaxy. This
effect has been seen around bright galaxies in the SDSS
in other studies (Masjedi et al. 2006; Mandelbaum et al.
2006a). Because the relative volume interior to these
radii is small, virial mass estimates should be robust, but
a study of the inner profiles will require further charac-
terization of these effects. Neither of these issues should
be important for scales & 100h−1 kpc.

The signal is dependent on richness and luminosity
on all scales. We fit power law models and found the
amplitude is a strong function of N200, while the power
law index is relatively insensitive to richness. However,
the signal is a poor fit to a power law in most richness
bins and the deviations from a power law are systematic.
The logarithmic slope generally runs from shallower to
steeper with increasing radius. We will interpret these
curves in terms of a more appropriate model with a uni-
versal halo profile and linear correlations on large scales
in Johnston et al. (2007b).

Because the number of galaxies N200 is not directly
related to mass or luminosity, one may expect a broad
spread in luminosity and mass for a given N200 bin. We
explored this by splitting each N200 bin into quantiles
of luminosity L200. We found a scaling of the signal
with L200 within each N200 bin, indicating that there
is significant mass scatter in N200 bins, and that mass
may scale more strongly with L200 than N200.

Finally, we explored the dependence of the signal on
redshift by splitting each of the luminosity bins at the
mean redshift 0.25. We detect no evolution within our
uncertainties for the current sample, though the redshift
range 0.1 < z < 0.3 is relatively small.

The precision of these measurements is sufficient to
perform non-parametric inversions to the mean three-
dimensional mass density. In the companion paper
Johnston et al. (2007b), we present these inversions in
each bin of richness and luminosity. We then infer
the model-independent virial mass and large scale bias.
We also interpret these profiles in terms of a univer-
sal halo profile on small scales and linear bias on large
scales. In Sheldon et al. (2007), we combine the non-
parametric mass profiles from Johnston et al. (2007b)
with non-parametric light profiles to measure the mean
mass-to-light ratios around the MaxBCG clusters. In the
forthcoming paper Rozo et al. (2007), we use the mass-
observable relation from Johnston et al. (2007b) to con-
strain the mass function of halos and cosmological pa-
rameters.
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