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1. ABSTRACT 
 
The objective of this project was to improve understanding and modeling of flashback, a significant issue in 

low emissions combustors containing high levels of hydrogen.  Experimental studies were performed over a range of 

fuel compositions, flow velocities, reactant temperatures, and combustor pressures to study the factors leading to 

flashback.  In addition, high speed imaging of the flashback phenomenon was obtained.   One of the key conclusions 

of this study was that there existed multiple mechanisms which lead to flashback, each with different underlying 

parametric dependencies.  Specifically, two mechanisms of “flashback” were noted: rapid flashback into the 

premixer, presumably through the boundary layer, and movement of the static flame position upstream along the 

centerbody.  The former and latter mechanisms were observed at high and low hydrogen concentrations.  In the 

latter mechanism, flame temperature ratio, not flame speed, appeared to be the key parameter describing flashback 

tendencies.  We suggested that this was due to an alteration of the vortex breakdown location by the adverse 

pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1].  As 

such, a key conclusion here was that classical flashback scalings derived from, e.g., Bunsen flames, were not 

relevant for some parameter regimes found in swirling flames.  In addition, it was found that in certain situations, 

pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition.  This result 

could have significant implications on the development of future high hydrogen turbine systems. 
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4. EXECUTIVE SUMMARY 
 
Currently, flashback is a major issue in low emissions combustors when utilizing fuels with high H2 levels 

– all current DLN installations restrict the levels of hydrogen in the fuel to values that are at least one order of 

magnitude lower than values contemplated for future systems. The objective of this project is to improve the state of 

the art in understanding and modeling of flashback.    The information gained from this project will lend a better 

insight into preventing flashback occurrences when using alternative fuels in gas turbine systems.  

Extensive efforts were made toward the understanding of flashback of syngas fuels.  First, we designed and 

developed an experimental facility to characterize the flashback. Then, experimental studies were performed over a 

range of fuel compositions at fixed approach or burned flow velocity, reactant temperature, and combustor pressure 

at several conditions up to 7.1 atm and 500 K inlet reactants temperature.  In certain selected cases, visualizations of 

syngas flashback were performed using an optically accessible premixer.  This allowed for flame visualization and 

propagation measurement.   

One of the key conclusions of this study was that there existed multiple mechanisms which lead to 

flashback, each with different underlying parametric dependencies.  Counter-intuitively, the percentage of hydrogen 

had far less effect on flashback characteristics, at least for fuels with hydrogen mole fractions less than 60% and for 

lower combustor pressures.  This was due to the fact that two mechanisms of “flashback” were noted: rapid 

flashback into the premixer, presumably through the boundary layer, and movement of the static flame position 

upstream along the centerbody.  The former and latter mechanisms were observed at high hydrogen and/or higher 

combustor pressures, and low hydrogen concentrations, respectively.  In the latter mechanism, flame temperature, 

not flame speed, appeared to be the key parameter describing flashback tendencies.  We suggested that this was due 

to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to 

the mechanism proposed by Sattelmayer and co-workers [1].  As such, a key conclusion was that classical flashback 

scalings derived from, e.g., Bunsen flames, may not be relevant for some parameter regimes found in swirling 

flames.  Moreover, with higher pressure tests, it was found that rapid flashback became dominant regardless of the 

H2 levels in the fuel.  Finally, it was found that in cases of higher pressure/temperature, pure H2 flames could not be 

stabilized, i.e., the flame would either flashback or blowout at ignition.  This result could have significant 

implications on the development of future high hydrogen turbine systems. 
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5. PROJECT DESCRIPTION 
 

This program investigated flashback of high hydrogen syngas fuels.  The information gained improved the 

understanding and modeling of flashback, which is known to be a significant issue in low emissions combustors 

containing high levels of hydrogen.  Current DLN systems restrict the allowable levels of H2 in the fuel to values 

that are at least an order of magnitude lower than that being considered for future systems.  In cases where the fuel is 

H2 rich, it must be burned in diffusion flame combustors which produce high levels of NOx.   

The project consisted of multiple thrusts.  First, a systematic design of experiments that formed the test 

matrix for the experiments performed under this project.  Because of the significant number of independent 

parameters that needed to be examined (e.g., fuel composition, pressure, pre-mixer design), a systematic effort was 

needed so that the resulting parametric studies were of sufficient breadth and detail, yet still realistic in scope.  Then, 

an extensive series of tests were performed which characterized the dependence of flashback characteristics upon 

fuel composition, pressure, inlet temperature, and premixer configuration.  Particular emphasis was given on 

elucidating the two flashback mechanisms deduced from these studies, and the parametric sensitivities of these two 

mechanisms to flow conditions. 

6.  BACKGROUND 
 

Flame stabilization involves competition between the rates of the chemical reactions and the rates of 

turbulent diffusion of species and energy.  While a significant amount of fundamental understanding of flame 

propagation and stability characteristics of lean, premixed systems had been gained in conventionally fueled, natural 

gas-air systems [2], little was known about these issues for alternate gaseous fuels, such as syngas or low BTU fuel 

mixtures.  Furthermore, the majority of the fundamental investigations of the combustion characteristics of these 

synthetic gases were for non-premixed flame configurations [3 ,4 ,5 ,6 ,7 ].  Limited studies had been initiated 

relatively recent to investigate the characteristics of premixed, hydrogen-enriched methane fuels [ 8 , 9 , 10 ].  

Additional studies were needed to broaden the scope of fuels of interest.   

Flashback was used here to describe situations where the flame physically propagated upstream of the 

region where it was supposed to anchor and into premixing passages that were not designed for high temperatures.  

Flashback was an issue because of the widely varying flame speeds of candidate fuels.  While this was a classical 

topic that had been extensively investigated [11,12,13], the complexity of the topic increased substantially in 

swirling flows.  In particular, several potential modes of flashback occurred in swirling flows, as discussed in a 

series of papers by Sattelmayer and co-workers [14,15,16].  They identified three mechanisms for flashback: 

flashback in the boundary layer, turbulent flame propagation in the core flow, and flashback due to combustion 

instabilities [ 17 ].  The first two mechanisms were captured partially by the laminar and/or turbulent flame 
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propagation speed.  A thorough investigation of boundary layer flashback in syngas fueled Bunsen flames had been 

detailed by Davu et al. [18].  When the local turbulent flame speed exceeded the local flow velocity, the flame could 

propagate upstream into the premixing section.  This issue was complicated by the radial variation in flow velocity, 

quenching losses, and turbulent flame speed.  In the experiments reported here for higher H2 cases and all higher 

pressure cases, we got this “rapid” flashback.  For other cases, the second mechanism that occurred was a 

phenomenon Sattelmayer and co-workers referred to as “combustion induced vortex breakdown”.  The basic idea 

was that the flame contributed to vortex breakdown, and therefore a low or negative flow region ahead of it.  The 

flame advanced forward, causing the vortex breakdown region location to advance farther upstream.  This process 

continued as the flame proceeded farther and farther upstream.  In this scenario, flashback occurred even if ST was 

everywhere less than the flow velocity.  As will be discussed below, we believed that a similar phenomenon was 

occurring in many cases in the tests reported here.  However, rather than the flame continuously propagating 

upstream, we found that the static flame anchoring position monotonically moved upstream, in lower pressure cases, 

as the mixture fuel/air ratio increased, apparently due to a change in the location of vortex breakdown.  

As a result of this work, we propose that this “slow flashback” mechanism occurred due to the fact that the 

fuel nozzle in many combustors operates in a bi-stable regime of swirling flows.  This was illustrated by the figures 

below, which plotted the qualitative stability diagram for a swirling flow, following Rusak [19].  The left graph 

plotted a qualitative vortex breakdown stability map, as a function of swirl number and vortex core size.  As shown, 

at low swirl numbers, no vortex breakdown occurred.  At very high swirl numbers, vortex breakdown occurred.  

However, at intermediate values which were typical of those used in practical systems (e.g., ~0.6-1.2) the system 

had two possible states – no vortex breakdown or vortex breakdown.  This was illustrated more abstractly in the 

right figure which plotted a functional proportional to the energy in the flow.  The graph labeled ω<ωo corresponded 

to the no vortex breakdown state.  The graph possessed a single minimum, which corresponded to the steady state 

flow solution, axial flow.  The graph labeled ωo corresponded to sitting on the line of the bi-stable region and the 

next graphs ωo+ε moved into the bi-stable region.  Note that two minima were present, which corresponded to two 

possible flow solutions.  The graph labeled ω1 corresponded to sitting on the line of the vortex breakdown region – 

at this swirl level the initial minima, corresponded to the no vortex breakdown solution that was no longer present.  

Further increases in swirl lead to only one possible solution state, vortex breakdown.    
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Figure 1:  Ratio of Vortex Core Size to Nozzle Radius versus Swirl Number map showing vortex 
breakdown regions [19, 20]. 

 

As noted above, at swirl levels typical of those used in practical systems (e.g., ~0.6-1.2) the swirling flow 

possesses two possible dynamic states – no vortex breakdown or vortex breakdown.  Basically, we believed that this 

new flashback mechanism occurs in this bi-stable region and therefore, the regime where practical designs operate.  

The flow was nominally axial, but could also, if appropriately perturbed, jump over the barrier and find the other 

energy functional minima corresponding to vortex breakdown. 

What then can cause this perturbation to make the flow jump from the purely axial to the breakdown state.  

It is known that the presence of adverse pressure gradients is destabilizing and can provide this effect.  This is 

apparently the reason why the vortex breakdown location “locks” into the zone just downstream of the rapid 

expansion in practical combustion systems.  This strong adverse pressure gradient provides the impetus for pushing 

the flow from the axial to the breakdown state at a fixed location.  In contrast, it should be noted that the vortex 

breakdown location is somewhat random and subject to movement and fluctuation in a straight pipel 

A key proposal we put forward from this work is that the flame can also provide this perturbation.  

Specifically, the adverse pressure gradient in front of the flame provides this perturbation to the flow.  Moreover, 

the amplitude of the perturbation provided by the flame iss proportional to two quantities – the relative angle of the 

flame and flow and the temperature ratio across the flame.  The paragraphs below provides a full analysis 

demonstrating these two points.   

In general a theoretical analysis of flame flow coupling is analytically intractable, due to the fact that it is 

essentially a nonlinear, free boundary problem, that couples the two nonlinear flow solutions (described by the 

Navier-Stokes equations) to the nonlinear flame front tracking equation (described by the G equation).  As such, we 
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performed a perturbation analysis which is motivated from the Darrieus-Landau flame stability analysis1 [21].  This 

analysis is performed for a flame with small sinusoidal wrinkles of spatial wavenumber k and amplitude D (see 

Figure 2), with flame temperature ratio ℜ = Tb/Tu.  The pressure upstream of the flame equaled its nominal value, 

plus a small perturbation due to the wrinkle, 'P(x) P P (x)= + .  The acceleration of the gases through the flame causes 

the nominal burned gas pressure to drop, as given by the following expression:  

    

( ) 2

b uP P 1 U= − ℜ− ρu u       (1) 

 

The alteration of the upstream pressure field by the flame wrinkled along the indicated line in the figure 

below is given by: 

 

( ) ( )( )
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2

u u

P x 1 e
1 1( U )(kD) 2 1 12
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  (2) 
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⎥
⎦

⎤
⎢
⎣

⎡
−

ℜ
+ℜ+

ℜ+
ℜ−

= 111
1

σ      (3) 

 

The spatial dependence of the pressure through the flame along the dashed line in Figure 2 was plotted in 

Figure 15. 

                                                 
1 Note that this stability theory shows that such a perturbation is unstable.  However, the corresponding pressure 

profiles are correct for the flame front whose instantaneous perturbation amplitude is D. 
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Figure 2:  Schematic of flame front with small perturbation (Dashed line: x axis, Dot-dashed line: y 

axis). 

 

The magnitude of the pressure rise upstream of the flame, indicated in Figure 15, was given by the expression:  
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   (4)  

 

The dependence of this pressure rise upon the temperature ratio across the flame was plotted in Figure 3: 

 

 

Figure 3:  Dependence of pressure rise upstream of the flame upon flame temperature ratio. 
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This result shows that the adverse pressure gradient ahead of the flame grew monotonically with temperature ratio 

across the flame, as well as the relative inclination angle of the flame with respect to the flow, related to kD.  As 

such, this provides a possible explanation for our experimental observation that the temperature ratio across the 

flame, and not the flame speed, was the key parameter controlling the regions where the “slow flashback” 

mechanism occurred.   

The next sections describe the facility and measurements which presented more detailed presentations of 

the results of the program.  

 

7. INSTRUMENTATION AND FACILITY 
 

Flashback measurements were obtained in a 7.6 cm (3”) diameter quartz tube combustor housed in a 

pressure vessel, see Figure 4.  The premixer was modified with additional instrumentation as needed for the 

flashback measurements.  This premixer was fully modular as the centerbody and swirler could be easily removed 

and replaced; tests reported here were performed with a single 12 vane, 35o swirler.  More details about the facility 

were in Ref. [22].  Although referred to here as a “premixer”, we actually mixed the fuel and air far upstream to 

ensure a homogeneous mixture. 

Fuels of arbitrary composition were generated with a blending facility that consisted of six mass flow 

controllers, plumbed to bottles of H2, CO, CH4, CO2, N2, and/or any other arbitrary fuel. 
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Figure 4:  Photograph of high pressure combustor facility. 

 

To detect flashback, a total of fifteen measurement points were arranged on the outer wall of the premixer, 

as shown below, five in a row at successive axial locations, with three locations at successive 120o azimuthal 

positions at each axial location.  Also, a thermocouple was mounted on the surface of the centerbody, approximately 

1.9 cm from the tip (see Figure 5).  An additional thermocouple was located upstream of the premixer (see Figure 4).   

Figure 5 showed the premixer with the three rows of five thermocouples.  The first three thermocouples, 

along with the centerbody thermocouple, were used in determining flashback.  The two end thermocouples were 

only used in some cases to determine the distance of flashback into the premixer.  Once the flame moved upstream, 

it was sensed by a thermocouple, triggering a flashback alarm.  The mixture was quickly leaned out, and the 

flashback procedure was repeated.  Note that target temperatures were chosen based upon prior tests and visual 

observations of the flame shape and behavior.  In other words, in cases where the “slow flashback” mechanism was 
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observed, defining the point of flashback was somewhat arbitrary as it was really a continuous process, as opposed 

to a discrete one.  However, for the rapid flashback cases, such as observed with high hydrogen fuels or at higher 

pressure, the centerbody thermocouple was used to detect flashback by exhibiting a large jump in temperature 

(+1500F or more). 

 

 

Figure 5:  Premixer with swirler, centerbody, radial thermocouples, and centerbody thermocouple. 

  

 For tests where imaging of the dynamic flashback process was examined, an optically accessible premixer 

was used that had a 3 inch long quartz tube upstream of the nozzle dump plane.  Figure 6 and Figure 7 illustrated the 

nozzle used in these tests.  Essentially, this was a similar setup to the first nozzle used, except there was not a 

converging section with a centerbody, which equated to a constant cross-sectional area nozzle.  Instead in this case, 

the cross-sectional area was constant until the flame would propagate upstream to the centerbody, at this point, the 

area was decreased due to the presence of the centerbody.  Flashback images were captured for these tests using a 

Phantom intensified high speed, black and white camera.   

 

 

Direction

Flow 
Combustion 

Zone

Imaging Region 

Figure 6:  New Nozzle for Flashback Imaging. 
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FLAME 

LOCATION 
Reactants 

Figure 7:  Schematic of Optically Accessible Premixer (not to scale, different centerbody lengths were used). 

 

Furthermore, in order to facilitate presentation of results, we represented the mixture composition of 

H2/CO/CH4 by an assigned color.  Primary colors at the three vertices were used to represent each fuel constituent, 

where red, yellow, and blue denoted H2, CO, and CH4, respectively.  This was illustrated in the figure below.  

Unfortunately, Figure 8 will be difficult to interpret if reproduced in grayscale. 

 

Figure 8:  Primary color mixing scheme used to denote fuel blend composition. 

 

The basic test sequence was to operate at various fuel compositions in H2/CO/CH4 space, such as depicted 

in the figure above.  At each fuel composition, the mixture equivalence ratio was adjusted at a constant unburned 
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velocity until the mixture flashed back.  Obtaining this data was complicated by the need to keep the approach flow 

velocity, combustor pressure, and mixture temperature constant across the range of fuel compositions.  As such, 

fixing the relative fuel compositions required simultaneously adjusting the air and three fuel flow rates in order to 

keep a constant approach flow velocity.  In addition, due to variations in mixture burned gas temperature, 

maintaining a constant combustor pressure required simultaneous adjustment of the back pressure valve.  Finally, 

variations in molar volume of the fuel necessitated adjusting the air temperature in order to maintain a constant 

reactant temperature.  For the data shown in the Results section, the approach flow velocity, pressure, and 

temperature remained constant to within 2%, 5%, and 20 K of their quoted values. 

Combustor unburned flow velocities which were quoted here equaled the mass flow rate divided by the 

unburned gas density and combustor area – this was the combustor velocity if there were no flame.  It should be 

emphasized that this was purely a reference velocity, as the actual flow velocities may have been different.  The 

burned gas velocity simply equaled this velocity multiplied by the theoretical temperature ratio across the flame.  

The velocity at the premixer exit, relevant for the flashback data, equaled the unburned flow velocity multiplied by 

an area factor of 18.  

It has been emphasized that applying a consistently uniform definition of flashback was complicated by the 

fact that the manner in which the flame flashed back varied with composition.  Different flashback mechanisms 

were found for different fuel compositions.  For low H2 mixtures and lower combustor pressure, the flame anchoring 

location moved gradually upstream (along the centerbody) with increased equivalence ratio, see Figure 9.  In other 

words, flashback was not a discontinuous phenomenon, where the flame actually propagated upstream into the 

premixer in a rapid manner.  For these cases, flashback was defined here as the point where the thermocouple closest 

to the exit plane of the premixer reached 450K and 505K for the 300K and 460K reactant preheat cases, 

respectively.   

 

Figure 9:  Flame front and postulated recirculation zone locations for normal flame (left) and with 
flame propagated upstream [”slow” flashback] (right). 

 

However, for high H2 mixtures and cases where the combustor pressure was 7.1 atm, flashback occurred 

very abruptly – triggered by only a slight change in mixture stoichiometry (~0.05 or less).  The flame very rapidly 

propagated upstream, sometimes all the way through the swirler where it triggered the thermocouple upstream of the 

 19

 



     

premixer.  Additionally, for the optically accessible premixer, the flame flashback occurred rapidly as well and the 

flame was viewed propagating completely to the downstream side of the swirler.  From these sequences of images, 

the flame propagation speed was calculated as well. 

8. RESULTS AND DISCUSSION 
 

 Figure 10 and Figure 11 illustrate typical lower pressure results showing the dependence of the flashback 

boundaries upon the mole fraction of H2 in the fuel.  The circled points indicate points where flashback occurred 

very rapidly.  For the remainder of the points, “flashback” corresponded to the upstream movement of the flame 

stabilization point, illustrated in Figure 9.  Note that the rapid upstream propagation mechanism occurred at only the 

highest hydrogen concentration in the low preheat case, and when the percentage of H2 was greater than 60% in the 

preheated case.   

 

Flashback

Figure 10:  Dependence of flashback (U0=4  m/s or equivalently, premixer velocity=72 m/s) equivalence ratio 
upon H2 mole fraction at reactants temperature 300 K and combustor pressure 1.7 atm.  Circled point 

indicates occurance of rapid upstream propagation flashback mechanism. 
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Figure 11:  Dependence of flashback (U0=2 m/s or equivalently, premixer velocity=36 m/s) equivalence ratio 
upon H2 mole fraction at reactants temperaure 460 K and combustor pressure 4.4 atm.  Circled points 

indicate occurance of rapid upstream propagation flashback mechanism. 

 Although these data were obtained at somewhat different premixer velocities (however, the flashback limits 

did not change significantly with velocity), they were plotted together to illustrate the different sensitivities of these 

two phenomenon to hydrogen concentration.  The flashback result was almost independent of percentage of H2, 

whereas the blowoff equivalence ratio was a very strong function of hydrogen levels, which changed by a factor of 

almost three in the first figure.  

 The range of stable operation (i.e., the equivalence ratio range between flashback and blowoff) exhibited a 

non-monotonic dependence upon %H2.  For low levels of H2 addition, this stability range was enhanced, especially 

for the lower reactant temperature case.  However, it was actually decreased at the highest hydrogen levels, due to 

the propensity of high H2 mixtures to flashback, see Figure 12 . 

0  20 40 60 80 100
0  

0.2

0.4

0.6

0.8

% H2

R
an

ge
 o

f φ
 fo

r s
ta

bl
e 

fla
m

e

 

Figure 12:  Dependence of range of equivalence ratios for which a stable flame can be achieved upon H2 
percentage.  Circle: inlet temperature 300 K, pressure 1.7 atm; Square: inlet temperature 460 K, pressure 

4.4atm. 
 

  A major effort has been the consideration of how to correlate the flashback data.  Figure 13 plots the 

dependence of the adiabatic flame temperature upon H2 concentration at two unburned flow velocities.  Notice how 

this flame temperature correlation collapsed much of the variability present in the corresponding flashback 

equivalence ratio, see Figure 10 and Figure 11, at a fixed H2 level and varying CO/CH4 ratio.  Furthermore, notice 

that for all the “slow flashback” cases, flashback occurred at nearly a constant value of flame temperature.  As 

expected, the flame flashed back at lower equivalence ratios at the lower unburned flow speeds; however, this 

variation was not very significant and, furthermore does not correspond to a similar ratio of flame speeds.   
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Figure 13:  Dependence of φ at flashback upon percentage of H2.  Star: U0= 2 m/s (premixer velocity = 36 m/s), 
inlet temperature 300 K, pressure 1.7 atm; Square: U0=4 m/s (premixer velocity = 72 m/s), inlet temperature 

300 K, pressure 1.7 atm; Circled points indicate occurance of rapid upstream propagation flashback 
mechanism. 

 

 Furthermore, correlations of these results with laminar flame speed, see Figure 14, increased the spread of 

the data, indicating that laminar flame speed was not an important parameter describing flashback limits. 

 
Figure 14:  Dependence of SL,0/U0 at flashback upon percentage of H2.  Star: U0= 2 m/s (premixer velocity = 36 

m/s), inlet temperature 300 K, pressure 1.7 atm; Square: U0=4 m/s (premixer velocity = 72 m/s), inlet 
temperature 300 K, pressure 1.7 atm; Circled points indicate occurance of rapid upstream propagation 

flashback mechanism. 

 

 We believe that these results supported the assertions of Sattelmayer and co-workers regarding the impact 

of combustion on the vortex breakdown bubble.  It was known that the vortex breakdown location favored regions 

of adverse pressure gradients, such as rapid flow expansions or equivalently, flow divergence [23].  In the same 
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way, inclined flame fronts caused divergence of the upstream flow – as such, the flow upstream of the flame was 

actually decelerating and there was an adverse pressure gradient – even though the flow subsequently accelerated 

through the flame itself and the pressure drops.  Unfortunately, this pressure rise upstream of the flame was very 

difficult to calculate.  We used basic scaling analysis and reference to scaling laws from weakly perturbed flames to 

show that it scaled with the temperature ratio across the flame, f(Tb/Tu-1).  For example, see the analysis in the first 

section of this report.  A result from this analysis showed the spatial variation of the pressure through the flame is 

plotted in Figure 15.  The key point to note from this figure is that convex flame orientation to the flow caused the 

pressure to actually rise upstream of the flame, followed by the pressure drop across the flame.  Note that if the 

flame were perfectly normal to the flow, there is no pressure rise upstream of the flame.  

 
Figure 15:  Total pressure (mean plus fluctuation) across the flame front. 

 

 Our argument regarding this slow flashback mechanism is better understood with reference to Figure 16, 

which showed the hypothesized streamlines in the vicinity of the flame and recirculation bubble in more detail. 

 

 

Figure 16: Hypothesized flow streamlines in the vicinity of the flame and recirculation bubble. 
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 The conditions under which the recirculation bubble began to move backward into the premixer, so that 

there was actually reversed flow in the premixer, is understood by reference to the pressure drop in the premixer, PA-

PB, where the locations “A” and “B” were illustrated in the figure above.   
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where CD and (AA/AB) denoted the contribution to the pressure drop due to viscous losses and the cross-sectional 

area change, respectively.  As indicated, CD was a function of Reynolds, Re, and swirl number, S.  The burned and 

unburned gas properties were represented by u and b.  Presumably, flow instability and vortex breakdown 

tendencies were enhanced as PA-PB decreased, which became more likely as Tb/Tu increased. 

 The results in Figure 13 are consistent with this picture.  These results were obtained with a fixed upstream 

flow velocity and temperature, and a nearly constant Reynolds number – the only variable that changed was the gas 

composition.  Recall that the one high H2 point corresponds to a different flashback mechanism.  The nearly 

constant value of Tb at which flashback occurred suggests that the vortex bubble moved into the premixer when PA-

PB became small enough or negative.   

 In the same way, there is relatively little change in the flame temperature at flashback with H2 

concentration at a higher pressure and reactant temperature case, as shown in Figure 17 .  Note that the range of 

hydrogen levels over which the fast flashback mechanism occurred expanded here.   
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Figure 17:  Dependence of adiabatic flame temperature at flashback upon percentage of H2.  U0=2  m/s 

(premixer velocity = 36 m/s), inlet temperature 460 K, pressure 4.4 atm.  Circled points indicate occurance of 
rapid upstream propagation flashback mechanism. 
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 This argument also explains the measured pressure dependence of flashback limits.  According to Eq.(5), 

the relative pressure change was independent of pressure – note that this was what we also observed in tests at two 

different preheat temperatures, see Figure 18.  However, as shown in results at 7.1 atm, Tad no longer stayed 

constant as manifested from these lower pressure results. 

 These data presented here also indicates that the flashback temperature decreases with increased unburned 

gas temperature – i.e., Tb/Tu decreased from 7.6 at Tu=300 K to 4.3 at Tb=460 K.  Thus, the temperature ratio stayed 

nearly constant with variations in pressure, flow velocity, and fuel composition, but not with unburned gas 

temperature.   
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Figure 18:  Dependence of adiabatic flame temperature of CH4 at flashback upon combustion pressure at the 
same flow rate.  Circle: inlet temperature 300 K (premixer velocity range is 36 to 52 m/s); Square: inlet 

temperature 460 K (premixer velocity range is 58 to 94 m/s). 

 

To further establish whether the key parameter determining the slow flashback proclivity of the flame was 

dominated by the temperature ratio across the flame, as opposed to the flame speed, we performed a careful test with 

a high CO mixture, where the equivalence ratio at which the flame temperature peaked, φ=1.05, was well separated 

from where the flame speed peaked, φ=1.24.  The flame position was monitored visually, as well as the centerbody 

flashback thermocouple.  These tests showed that as the fuel-air ratio was swept from lean to rich, the flame moved 

farther into the premixer and occupied the farthest upstream point at the fuel/air ratio corresponding to maximum 

flame temperature.  Further increases in fuel/air ratio corresponded to conditions where the flame speed was still 

increasing but the flame temperature was decreasing, resulted in the flame moving back out of the premixer.  This 

result seemed to clearly show that upstream propagation of the flame closely correlated with the mixture’s flame 

temperature, not its flame speed. 

Further results of flashback studies on CO/H2/CH4 mixtures with preheated reactants and raised combustor 

 25

 



     

pressure were examined at 7.1 atm and 500K, as well as, a set where several fuel combinations were examined at a 

variety of combustor pressures with constant unburned flow velocity and preheat temperature.  Thus, the conditions 

chosen for the latter data set were preheated temperatures of 480K and nozzle velocity of 17.3 m/s with combustor 

pressures of 2, 3, and 4 atm.  The fuel mixtures used were pure CO, pure CH4, 95%/5% H2/CH4, 50/50 CH4/CO, 

50/50 CH4/H2, and 50/50 H2/CO.   

For all the flashback data sets at preheated reactant temperatures and higher combustion pressures, Figure 

19-Figure 23 plots these results in terms of equivalence ratio, Tad, and SL at which flashback occurred.  This included 

the higher pressure data set discussed in the prior paragraph.  With all data compiled together, all prior discussed 

trends are compared in the below section.  Note that for some cases, SL data is not shown because Chemkin would 

not converge on many all the cases because the equivalence ratio was quite low.  Figure 23 uses an estimate of SL for 

the 7.1atm/500K case using SL
2 ∝ α/τchem, where the chemical time and thermal diffusivity are scaled using residence 

times at blowoff using AURORA.   

 

 

Figure 19:  φ at Flashback versus %H2 and % CH4: U0=1.2m/s, T0=500K, and P=7.1 atm. 
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Figure 20:  φ at Flashback versus %H2 and % CH4:  (a) T0=300K and P=1.7 atm  [Circle: Uo=2m/s & Square: 
Uo=4m/s], (b) U0= 5.4 m/s, T0=458K and P=4.4 atm and φ at Flashback versus %H2, and (c) U0=4 m/s, 

T0=458K and P=4.4 atm. 
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Figure 21:  Dependence of Adiabatic Flame Temperature on %H2:  (a) U0= 1.2 m/s, T0=500K and P=7.1 atm,  
(b) T0=300K and P=1.7 atm  [Circle: Uo=2m/s & Square: Uo=4m/s], (c) U0= 5.4 m/s, T0=458K and P=1.7 atm, 

and (d) U0= 4 m/s, T0=458K and P=4.4 atm. 

 

From the previous three figure sets (Figure 19-Figure 21), the dependence on equivalence ratio and Tad 

diminishes as the pressure and temperature increased.  It is not as prevalent with the 4.4 atm/458 K case, but with 

the new 7.1 atm/500 K set, it was very clear during testing that the mode of flashback changed to favoring the rapid 

mode and the determination of the flashback point changed from a Tad dependence.  Note that the rapid flashback is 

very clear in the 7.1 atm/500 K data.  The centerbody thermocouple was utilized for determining the exact point of 

flashback.  A temperature change of 150 to +6000F was noted for all cases for an equivalence ratio change of 0.05 or 

less.  The nozzle velocity for the highest pressure case is lower than the lower pressure cases; however, this lower 

velocity will be shown later in the results to not be the factor that changed the mode of flashback, it was the pressure 

increase. 

Moreover, the 7.1 atm/500 K did not include pure H2 because a stable flame was not found.  No matter the 

flow speed or equivalence ratio, the flame would flashback or blow off as soon as pressure was increased from 

ignition (~2 atm) to 7.1 atm.  The occurrence was even worse (from a flashback standpoint) if ignition was 
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attempted at 7.1 atm.  This was a significant observation that could have important ramifications in the design of 

future high hydrogen combustion systems.  Attention to high H2 must be given not only during operation, but during 

the ignition process as well. 

For the laminar flame speed correlation of the data (Figure 22 and Figure 23), all data showed that SL was 

not the proper way of correlating flame flashback over the range of fuel compositions.  Moreover, in the latter 

figure, the flame speed was estimated and not the actual numbers from Chemkin.  Clearly the better parameter for 

correlating these data should be using the turbulent flame speed, ST, but very little of these data exist for syngas 

mixtures.   
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Figure 22: Dependence of Laminar Flame Speed on %H2:  (a) U0= 2m/s, T0=300K and P=1.7 atm,  (b) 
Uo=4m/s, T0=300K and P=1.7 atm, (c) U0= 5.4 m/s, T0=458K and P=1.7 atm, and (d) U0= 4 m/s, T0=458K and 

P=4.4 atm. 
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Figure 23:  Dependence of Estimated Laminar Flame Speed on %H2: U0=1.2m/s, T0=500K, and P=7.1 atm. 

   

  To better understand pressure/Reynolds number effects (note that the Reynolds number scales with the 

pressure if the flow velocity and temperature were kept constant), pressure sweep data were obtained at constant 

velocity and preheat temperature.  Figure 24 plots the adiabatic flame temperature and equivalence ratio for this 

case.  Note that we were not able to stabilize pure H2 flames to examine flashback, corresponding to the same 

problem that was previously described where the flame would flashback or blow off but never became stable.  Also, 

the very high CO cases were not clearly defined as flashback as per our temperature requirements; however, the 

flame visually was inside the nozzle (see Figure 25).  As before, these cases at lower pressures, even with much 

lower velocities, flashed back with a slower mode.  This shows that pressure did affect the flashback occurrence in 

the previously described data at 7.1 atm and not just the fact that it was at lower flow velocities.  As the pressure 

went up to 4 atm, the flashback mode transitioned to the more rapid flashback.  Figure 26 shows that as the pressure 

was increased, the flashback flame temperature did not change greatly, excluding the CO points; however, again we 

did notice visually that the mode of flashback changed.   This was counter to the 7.1 atm data that showed Tad 

dependency decreased as pressure increased.  This suggests that the dependency change occurred at combustor 

pressures between 4 and 7.1 atm. 
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Figure 24:  Pressure Sweep Data at Uo=0.96 m/s (Nozzle U=17.3 m/s) and Tin=480K:  (a) Tad [K] versus %H2 
and (b) φ  versus %H2 [Square=2 atm, Diamond=3 atm, and Triangle=4 atm] {Circled points indicate that 

flashback was not well defined}. 
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Figure 25:  CO Flame Anchored in nozzle. 
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Figure 26:  Pressure sweep data: Tad vs. combustor pressure, same conditions as Figure 24. 

 
 Furthermore, high speed images of CO/H2/CH4 mixtures with the optically accessible premixer under 

pressurized conditions were examined.  This was performed in the same test rig as all the other flashback tests; 

however, with the optically accessible nozzle design.  With this setup, the centerbody was very small/short (only ~1 

inch long compared to ~3.5 inches for the first nozzle configuration), as well as, the nozzle no longer had a 

converging section due to minimizing image distortion.  Figure 27 is a picture of the premixer as it was located in 

the test rig with a window removed.  Note that a small H2 torch was used for ignition and the orange colored tube 

was a recycled tube from previous flashback testing since flame visualization was not important in the primary 

combustion zone. 
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Figure 27:  Optically accessible premixer for syngas testing.  The blue line represents reactants entering the 
premixer and the red line represents the direction and location of the combustor.  Flashback is noted when 

the flame propagates in the small quartz tube circled in yellow.  [See Figure 6 and Figure 7 for more details in 
INSTRUMENTATION AND FACILITY section]. 

 

  Before discussion of the experimental results from the optically accessible premixer, it is important to have 

knowledge about the flow field of the optical premixer.  Importantly, the current portion of the results overviews the 

investigation of the velocity distribution inside and outside of the optically accessible premixer nozzle.  The goal of 

these analyses was to characterize the recirculation zones near the tip of the small quartz tube.  The first part of the 

examination began with using a traverse with a hotwire probe attached to take a precise radial sweep of the 

flashback tube, Figure 28.  A few important things to note were that the general profile was the same despite 

changes in flow velocity (inlet pressure) and the hotwire dies not indicate a negative flow velocity due to absolute 

measurements.  If there was, in fact, a reversal of axial velocity, two sharp dips to zero velocity would have been 

expected somewhere on the graph.  It is possible that the traversing of 2mm increments was too coarse to show this 

phenomenon.  In addition, the suction point may not have been completely at the exit, but rather slightly inside the 

exit. 
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Figure 28: Velocity vs. Radial position using Hotwire Anemometer.  Hotwire probe was at the tube exit. 
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A radial sweep was also completed at 1/8” and 1/4” depths into the small quartz tube (Figure 29).  Neither 

graph showed two drops to zero as would be expected for reversed flow.  Either the grid was too coarse or the 

hotwire was picking up too much non-axial flow.   
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Figure 29:  Velocity vs. Radial position using Hotwire Manometer.  Data was taken at 1/8 inch and 

1/4 inch depths into the small quarts tube. 

 

Additional testing was performed in order to characterize the flow inside the tube along the centerline.  If 

there was a position where recirculation occurred, then a minimum value in the axial velocity would occur 

somewhere along the sweep.  According to Figure 30, suction may had begun near 0.9” into the small quartz tube 

for this setup.  Due to the uncertainty of the hotwire measurements and complicated flow structure inside the tube, 

Laser Doppler Velocimetry was used to verify the apparent suction that was believed to occur at the tube exit 

(Figure 31).  The LDV measurements shown in Figure 32 verified a portion of the exit flow contained recirculating 

flow.   
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Figure 30:  Velocity vs. axial position using hotwire manometer.  Axial position here is in inches. 
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Figure 31:  LDV setup using aluminum oxide particles and a 1” centerbody with a 35 degree swirler 

and three inch quartz tube. 
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Figure 32:  Axial Velocity vs. Normalized Radial Position.  Nozzle velocity is 26 m/s corresponding to the 

150psi Hotwire cases above.  LDV position was at tube exit. 

 

Since the flow field was known, the experimental data from the optically accessible premixer could be 

examined for additional information and knowledge about the flashback phenomenon that had been observed in the 

first premixer configuration using thermocouples to sense flashback.  For the optically accessible premixer data, a 

standard configuration was used for the imaging process (see Figure 33).  For the data below, a high speed 

intensified camera was used in a rolling memory mode, which was triggered by a flashback event, so that the prior 4 

seconds of images were saved.  These images were taken at 2000fps.  During processing, the image was trimmed so 
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that essentially the cross-section of quartz tube was the only visible area.  Figure 34 and Figure 35 showed two 

colorized flashback occurrences which were captured by the high speed camera for CH4.  The propagation for these 

cases was clearly in the core region.   

 
Figure 33: Sample CH4 flashback image showing the location of the swirler, centerbody, and 

combustor adapter. 

 

 
Figure 34: CH4 Flashback Propagation (Test 1) at 337 K, 1 atm, and nozzle velocity of 39.8 m/s.  Shows the 

flame propagation sequence zoomed in on the quartz tube [Images are 0.5 ms apart]. 

 

 
Figure 35: CH4 Flashback Propagation (Test 2) at 337 K, 1 atm, and nozzle velocity of 39.8 m/s.  Shows the 

flame propagation sequence zoomed in on the quartz tube [Images are 0.5 ms apart]. 
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Moreover, from these images the position of the flame tip was determined as a function of time.  This 

allows for an assessment of the speed of propagation of the leading edge of the flame.  Figure 36 plots this flame 

position vs. time for the two test cases illustrated above.  A best fit line through these data shows that the flame was 

propagating upstream at a speed of 6 and 6.3 m/s, respectively, for these two cases.  A third test was also performed 

at this same condition to check for repeatability, which also had essentially the same flashback velocity.  For both 

cases, the average flow velocity in the nozzle was 40 m/s and air temperature/pressure were 337K and 1 atm, 

respectively. 

 

 
Figure 36:  Flame tip position versus time [position in inches, time in ms, and position = 0in was at the inlet to 

the propagation tube].  Note flame propagation of 6 and 6.3 m/s, respectively between tests 1 and 2. 

 

Figure 37 and Figure 38 show an image set for a 20/80 H2/CH4 mixture.  As with the previous images, it is 

important to notice that the flame propagated back in the core region with high velocity flow between the flame and 

quartz wall.  Given the high mean axial velocity of the flow, about 50 m/s in this case, these data all seem to indicate 

flashback through the combustion induced vortex breakdown (CIVB) mechanism discussed in earlier sections of this 

report (reactant temperature was 360 K).  Figure 39 plotted the flame position versus time for this case, which yields 

a flame propagation of 10 m/s for the case just described. 

 

Figure 37: Sample 80% CH4, 20% H2 flashback image showing the location of the combustor 
adaptor, quartz tube, and swirler. 
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Figure 38: 80% CH4, 20% H2 flashback at 359 K, 1 atm, and nozzle velocity of 48.83 m/s.  Shows the flame 

propagation sequence zoomed in on the quartz tube.  Images are 0.5 ms apart. 
 

 
Figure 39:  Flame tip position versus time [position in inches, time in ms, and position = 0in was at the inlet to 

the propagation tube].  Note flame propagation of 10 m/s. 

 

A more careful examination of the movies and flame position results revealed not only the propagation of 

the flame upstream, but also more complex dynamics.  In particular, the flame propagation occurred in a steady 

fashion for segments of the total flashback occurrence, then “hesitated” slightly, then continued again flashing back 

through the nozzle.  Although not obvious from the frame by frame images shown above, this “hesitation” was very 

obvious in the movies.  It was also very obvious in the flame position vs time graphs; e.g., in the magenta data in 

Figure 36, this “hesitation” was evident in the flame position staying roughly constant from 2-3 and 7-8 ms.  One 

such event, from 4-5 ms was evident in the blue data as well. 
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Additional syngas data was taken at 290K and 1 atm using the optically accessible premixer.  The focus 

was on the effect of H2 on the propagation of the flame.  Various amounts of H2 were added to CH4 mixtures from 

0% to 96%.  Figure 40 plots the propagation speed versus amount of H2 in the fuel mixture.  Note that as the H2 

increases, so does the propagation rate for both the lower and higher Uo.  For the Uo = 2 m/s case, the flame does not 

stabilize above 80% H2, the flame would either blowout or flashback into the premixer.  It is noteworthy to point out 

that in Figure 41, the Tad and φ are essentially the same for each case, independent of mean nozzle velocity.  This 

gave rise to showing CIVB was the mode of flashback since it has been shown to be driven by temperature and not 

flame speed.  Note though, for the low nozzle velocity case, this trend starts to change with the highest H2 fuel, this 

may be showing a change in propagation mechanism.  Figure 42 shows the laminar flame speed for these cases.  

Note that as the amount of H2 increases, the SL decreases, giving rise to a potentially non-constant increase of ST 

with increased H2, i.e., showed the great affect of H2 on fuel properties.   

 
Figure 40:  Propagation velocity vs. %H2 in the fuel for 290K and 1 atm [Note: where squares 

Unozzle=18.8m/s or Uo=2m/s and diamonds Unozzle=58.7m/s or Uo=6.5m/s]. 
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Figure 41:  Adiabatic Flame Temperature (K) and equivalence ratio versus percent H2 for same conditions as 

tested in the optically accessible nozzle [Note: where squares Unozzle=18.8m/s or Uo=2m/s and diamonds 
Unozzle=58.7m/s or Uo=6.5m/s]. 
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Figure 42:  Laminar flame speed versus percent H2 for same conditions as tested in the optically accessible 

nozzle [Note: where squares Unozzle=18.8m/s or Uo=2m/s and diamonds Unozzle=58.7m/s or Uo=6.5m/s]. 
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9. CONCLUSIONS 
 

One of the key conclusions of this study is that there exists multiple mechanisms which lead to flashback, 

each with different underlying parametric dependencies.  Counter-intuitively, the percentage of hydrogen had far 

less effect on flashback characteristics, at least for fuels with hydrogen mole fractions less than 60% and for lower 

combustor pressures.  This was due to the fact that two mechanisms of “flashback” were noted: rapid flashback into 

the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the 

centerbody.  The former and latter mechanisms were observed at high hydrogen and/or higher combustor pressures, 

and low hydrogen concentrations, respectively.  In the latter mechanism, flame temperature, not flame speed, 

appeared to be the key parameter describing flashback tendencies.  We suggested that this was due to an alteration 

of the vortex breakdown location by the adverse pressure gradient upstream of the flame.  As such, a key conclusion 

was that classical flashback scalings derived from, e.g., Bunsen flames, may not be relevant for some parameter 

regimes found in swirling flames.  Moreover, with higher pressure tests, it was found that rapid flashback became 

dominant regardless of the H2 levels in the fuel.  Finally, it was found that in cases of higher pressure/temperature, 

pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition.  This result 

could have significant implications on the development of future high hydrogen turbine systems. 
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