
UCRL-TR-236965

Extension of 4-8 Texture Hierarchies to
Large Video Processing and Visualization

J. G. Senecal, A. E. Wegner

December 4, 2007



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Extension of 4-8 Texture Hierarchies to Large Video Processing 
and Visualization

Joshua Senecal and Aaron Wegner

November 30, 2007

The purpose of this Techbase was to reduce to practice the tiled 4-8 texture hierarchy for 
the display of video imagery (i.e. sequences of frames). The immediate intent was to 
demonstrate its use in the analysis and display of sensor imagery. As sensors are 
increasing in resolution the physical amount of imagery that needs to be displayed can 
quickly overwhelm most display systems. For example, a sensor with a horizontal 
resolution of over 8000 pixels would generate an image over 10 feet wide on a standard 
72 DPI display. Breaking an image into tiles, and then decomposing each tile into a 
multiresolution hierarchy, allows a user (or software) to efficiently select and display 
only those parts of the image that are of interest to the user. 

The originator of the idea of 4-8 Texture Hierarchies was Dr. Mark Duchaineau, and we 
consulted with him in much of our work. We also consulted with Dan Knight, from 
SequoiaTek Corp., who is a contractor responsible for implementing the viewers for our 
applications.

Most of the code for actual 4-8 Texture Hierarchy generation already existed; a large 
focus of the Techbase was to determine how to best use what was available for video 
imagery. The majority of progress was made in specifying and implementing the 
software framework, which turned out to be rather involved. This framework is to 
support the creation, storage, and display of images, both tiled and untiled. A first albeit 
incomplete version was successfully tested in the field in August 2007. The framework 
structures the process of collecting and processing images conceptually as a pipeline, 
where work is passed along and a different operation is performed at each stage.

In practice, the pipeline is implemented by a group of processes (not threads), or 
“workers”, each responsible for a specific type of operation. Associated with these 
workers is a pool of memory (cache). As each process finishes its work, it places the 
results into the cache and sends a message to the process responsible for the next 
operation, including in the message an identifier allowing the recipient to locate the data 
to be worked on. Conceptually this is akin to transferring mail from person to person by 
placing it into and removing it from a group of mail slots, rather than handing it to the 
next person directly.

So for example, to capture, tile, and store imagery to disk, one worker would be 
responsible for obtaining an image from an electro-optical sensor. Another would be 
responsible for breaking the image into tiles, and another for performing a decorrelating 
transform for entropy reduction and multiresolution representation. Still another would be 
responsible for compression, and another for storage.



To maximize robustness in an experimental environment, we created a manager that 
could monitor, kill, restart, and configure the entire processing pipeline, including the 
shared cache and worker processes. In the event of hardware or software failure, 
individual elements of the pipeline were restored automatically and with minimum data 
loss.

Working with Mark Duchaineau we attempted to determine a set of ideal coefficients for 
the wavelet used to create the multiresolution hierarchy. While a workable set exists, it 
produces undesirable artifacts at high levels of loss, so more work needs to be done to 
identify a more ideal set.

The tiler and data structures for tiling and display have been added to the code base we 
developed. As currently implemented it takes approximately one second to tile and build 
a multiresolution hierarchy for an 11-megapixel image on a 3.8 GHz Pentium 4. This is 
too slow for some uses, so some work will probably need to be done to optimize the 
code. We may be able to leverage commodity graphics processors to gain extra speed. 
With the advent of quad-core CPUs it may also be possible to get required throughput by 
tiling the image and then having several processes run in parallel to build the 
multiresolution hierarchies for the resulting tiles.

Additionally, more work needs to be done to define a data format for storing image tiles 
on disk, as well as retrieving and displaying them. As this functionality is desirable (and 
required, if we are to make large data easily viewable) we will be spending a lot of time 
developing this.

As a final note, it was recently brought to our attention that Oracle provides an extension 
to its database technology that provides most, if not all, of the functionality that we are 
working on as part of this project. We will be investigating this further; if a suitable 
solution already exists it may be more valuable time-wise to integrate it into projects that 
require storing and displaying large images.


