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Abstract 

 
Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in 
sensor technology is severely limited by the energy density of available power sources.  The 
catalytic nanodiode (pioneered at Berkeley by Somorjai, 2005) is an alternative revolutionary 
source of micropower (see http://pubs.acs.org/cen/news/83/i15/8315notw1.html). A sizable 
fraction of the chemical energy is harvested via hot electrons (or ballistic electrons) that are 
created by the catalytic chemical reaction. The reported efficiency of the chemical to electrical 
conversion can be remarkably high, with 3 electrons collected for every 4 CO2 molecules 
produced.  This project is a feasibility study to verify the reported high energy conversion 
efficiency. If verified, we hope to follow this research with a new project that would: 1) 
Investigate the underlying physics and chemistry of these devices, and 2) Explore alternative 
chemical reactions and catalysts that could serve as more convenient sources of chemical energy.  
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NOMENCLATURE 
 
ALD atomic-layer deposition 
DOE Department of Energy 
MESA Microsystems and Engineering Sciences Applications    
MOCVD metal organic chemical vapor deposition 
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1.  Introduction 
 

The development of micropower sources will enable remote microsensors and actuators 

that are necessary for the development of microsystems that have the ability to sense their 

surroundings and communicate the gathered data.  Microsensor systems are of interest for a 

variety of applications such as remote sensing of chemicals, radioactivity, or biological agents to 

address issues related to the detection, location, and composition of weapons of mass destruction 

and to assist in various nonproliferation efforts of DOE.  Our ability to field useful, nano-enabled 

microsystems that capitalize on recent advances in sensor technology is severely limited by 

available power sources. Many such applications require power system volumes on the order of 

½ cm3 to 1 mm3 in various form factors.  Power density levels on the order of 1-10 

microwatts/mm2 are of greatest interest.   Batteries and fuel cells are two conventional methods 

of providing micropower, each with its own set of advantages and disadvantages.   

In 2005-2006 a revolutionary type of micropower source was announced by Gabor 

Somorai’s research group (Berkeley); see http://pubs.acs.org/cen/news/83/i15/8315notw1.html, 

and refs. 1-4.  They coined the term “catalytic nanodiode”,  and the device is simply a Schottky 

diode where the metal contact is made of an ultrathin (1-10 nm) catalytic metal, such as platinum 

or palladium.  Two wide bandgap n-type semiconductors were investigated; TiO2, and GaN.   

The source of energy is a catalytic reaction, in this case the CO oxidation reaction, CO + 1/2 O2 

→ CO2, which liberates about 2.9 eV of energy.  A sizeable fraction of this chemical energy is 

dissipated by creation of hot (or ballistic electrons) in the catalytic metal.  If the metal is thin 

enough, many of these ballistic electrons will live long enough to migrate to the semiconductor 

side of the Schottky diode.  This mechanism is shown schematically in Fig. 1.  Before the recent 

breakthrough there had been reports of small levels of transient ballistic electron generation by 

surface chemical reactions, but Somorjai’s group are the first to successfully demonstrate a 

steady-state device. 
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Figure 1.  Energy level diagram of the catalytic nanodiode, in this example 
with the CO oxidation reaction providing the energy source (lightning bolt) 

 
 In an ambient of CO and O2, the best device (5 nm Pt/TiO2) produced a short-circuit 

current (Isc) of 40 microamps (area ~ 1mm2) at 80°C, and operated for 30 min with no sign of 

failure.  The complete I-V characteristics of this particular device (while operating) were not 

reported, but given the open-circuit voltage (Voc) of ~1 volt, power levels in the 10 

microwatts/mm2 range are expected.  By simultaneously measuring the CO2 production rate 

Somorjai found that up to 3 electrons were created and harvested per 4 CO2 produced, which 

corresponds to rather remarkable quantum efficiency of ~ 75%.  After accounting for some 

chemical energy losses, the overall efficiency of the best device is approximately 25%.   

  To summarize, this new device converts chemical energy to electrical energy by 

oxidizing a fuel, similar to a fuel cell.   But it is quite different from a fuel cell in design and 

operation.  Unlike a fuel cell, there is not a second electrode, and the transport of other charged 

species (e.g H+) across an aqueous or solid media is not required. The fuel and oxidizer may be 

in the gaseous or liquid state. In this respect the catalytic nanodiode is a simple, compact, and 

possibly robust technology. It is also potentially disruptive in that it could replace microbatteries 

and microfuel cells in many micropower applications. This technology maps extremely well onto 

Sandia’s expertise in semiconductor device fabrication (MESA), micropower applications, solid-

state physics, and surface chemistry and catalysis.  The ability to use a vapor based fuel source 

opens up many new environments from which we may harvest energy.  
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  The goal of the Late Start LDRD is to: (1) Use MESA facilities to fabricate prototype 

Pt/GaN and/or Pt/TiO2 nanodiodes, and (2) Test nanodiodes for micropower generation and 

verify the claims of high chemical to electrical energy conversion efficiency.   

 

 2.  Nanodiode fabrication 
 

Given the compressed timeframe for the Late Start LDRD we decided to first focus on 

the Pt/GaN device, since we have more experience with this material combination.  For 

simplicity, we also chose to fabricate the diodes using a shadow mask technique.   A planar 

diode structure was designed (see Fig. 2) using GaN on sapphire as the substrate.  The GaN films 

(run #DNZ01330) were grown by MOCVD on c-plane sapphire wafers to a thickness of 3.6 

microns.  The films were moderately doped with silicon (using silane) to yield n-type carrier 

concentrations of 2 X 1017 cm-3.  The GaN/sapphire wafers were diced into rectangles of ~ 6 X 

12 mm dimensions. 

n-type GaN

load

ultra-thin Pt Schottky contact
ohmic
contact

e-

 
Figure 2.  Schematic of a catalytic nanodiode (Schottky diode) device 
structure. 

 
Before the metal evaporation steps, the samples were briefly cleaned for 3 minutes in 

dilute HCl and rinsed in DI water.  Samples were then loaded onto the shadow mask jig and the 

ohmic contact was deposited.  For these contacts we used a rather standard Ti/Al/Ni/Au 

structure.  The shadow mask jig was removed from the evaporator and the samples repositioned 

for the Schottky contact.  The jig was reloaded and 8 nm of Pt was deposited on the opposing 
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side of each sample.  The jig was removed and an additional mask was placed over most of the 

sample(s), exposing only a ~ 1mm strip of the Schottky contact.  The jig was reloaded and a final 

20 nm Pt/200 nm Au film was deposited.  This thicker metal strip at the edge of the diode 

structure facilitates making electrical contact to the very thin (8 nm) Pt layer.   One complete 

device (1st generation) mounted on a heat stage is shown in Figure 3. 
 

8 nm Pt

heater

Ohmic contact

 

Figure 3.  First generation Pt/GaN nanodiode mounted on heat stage. 
 
The best catalytic nanodiode performance from the Berkeley group [1-4] came from the 

Pt/TiO2 material combination.  However, deposition of well-characterized semiconducting TiO2 

is not a standard MESA process (as compared to GaN deposition).  In late FY07 we identified 

three possible sources of TiO2 thin films.  One method is a low temperature CVD variation 

known as atomic layer deposition (ALD).  A second method uses a variation of titanium 

sputtering in a low background of O2 gas. A final method uses a sol-gel technique.  Sandia 

personnel grew TiO2 films on sapphire using all three approaches, but we were not able to 

characterize the electrical properties before the end of FY07.  It is likely that annealing in 

vacuum or reducing atmospheres will be necessary to convert some of this material into useful 
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semiconducting TiO2 thin films.  This is a complex issue because recrystallization and phase-

transformation are likely to occur during annealing. 
 

3.  Electrical testing 

Before proceeding with plans for chemical-to-electrical conversion testing, we first 

measured the baseline I-V characteristics of the Pt/GaN nanodiodes.  Two representative 

examples from the first set of samples are shown in Fig. 4.  Unfortunately, the rectifying 

characteristics of the 1st generation Schottky nanodiodes were far from ideal.  The diodes did not 

exhibit a well-defined turn-on voltage under forward bias, and exhibited considerable leakage 

under reverse bias.  Two possible sources of the poor behavior are; 1) a GaN surface conduction 

layer between the ohmic and Schottky contact, and 2) a poor Pt/GaN interface due to impurities 

or incomplete removal of native oxide (e.g. GaOxNy).  We grew several more test structures, but 

were not able to make any significant progress on this issue during the remainder of FY07.  

Improving the I-V characteristics of the Pt/GaN nanodiodes will be the first topic of the new 

FY08 LDRD. 
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Figure 4.  I-V measurements from two 1st generation Pt/GaN nanodiodes. 
 
  



12 

For the chemical-to-electrical tests the goal was to build a small vacuum system with a 

gas-handling system capable of handling CO and O2.  Unfortunately we were not able to 

complete the construction of this new apparatus in FY07, in part because of the ES&H issues of 

handling carbon monoxide.  We did finish one critical component, the heat state (see Fig. 3), 

which is necessary to heat the diode to drive the CO oxidation reaction (50-300°C).  The stage 

also has the necessary contacts for chemical-to-electrical conversion measurements and two 

thermocouple junctions for temperature measurements.  

 
4.  Summary 

As an FY07 late-start LDRD we made considerable progress on this new research topic.  

Hardware and procedures were developed for fabrication and testing of Pt/GaN nanodiodes.  The 

first generation Pt/GaN nanodiodes were rectifying, but exhibited non- ideal behavior.  Some 

probable cause(s) of the poor behavior were identified, but we were not able to solve this 

problem in the short time available.  Possible sources of semiconducting TiO2 thin films were 

identified and will be pursued in FY08.  Some critical components of the chemical-to-electrical 

experimental apparatus were built, but the gas-handling system was not finished by years end.   

Although progress on the late-start LDRD fell short of our best-case scenario, it nonetheless 

provided a valuable jumpstart for our FY08 Project. 
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