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I develop a formulation for Hamiltonian dynamics in an accelerator with magnets whose edges
follow a spiral. I demonstrate using this Hamiltonian that a spiral FFAG can be made perfectly
“scaling.” I describe how one computes the RF phase during a rapid acceleration cycle to keep
the beam at the appropriate RF phase. I examine the effect of tilting an RF cavity with respect a
radial line from the center of the machine, potentially with a different angle than the spiral of the
magnets. I discuss partially the effects of the finite energy jumps on the dynamics. This is a status
report of work that is still incomplete.

I. INTRODUCTION

A synchrotron is generally designed so that the closed
orbit, independent of energy, passes through the center
of the cavity, parallel to the cavity axis and therefore the
accelerating fields. In an FFAG, particularly a scaling
FFAG, it is generally not possible to achieve this. First of
all, the closed orbit positions generally depend on energy.
Secondly, the closed orbits are not circular, and therefore
generally make an angle with respect to radial lines from
the center of the machine. In a radial-sector FFAG, one
can construct a triplet lattice, for example, which has
a symmetry point where a cavity can be placed so that

FIG. 1: A diagram of a spiral FFAG accelerator. Black re-
gions are magnets.
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the electric fields lines are almost exactly in the same
direction as the closed orbits.

One may construct a spiral-sector FFAG to attempt
to make a more compact lattice than one could with a
radial-sector FFAG. Such lattices generally have only a
single magnet per cell, and make use of a spiral magnet
edge to achieve additional vertical focusing. An example
is shown in Fig. 1.

Ideally one would like to minimize the length of the
drifts, and one way of doing this would be to tilt the
cavity roughly parallel to the spiral. The fundamental
concern with doing this is that now the electric field in
the cavity is transverse to the energy-dependent closed
orbits, and will thus affect the transverse motion of the
beam. One would like to understand the magnitude of
these effects.

In the first section, I will outline the basic theory of
an accelerator in spiral coordinates, focusing particularly
on the case of a logarithmic spiral. I will write down a
Hamiltonian, a magnetic field expansion, and an RF cav-
ity field expansion in these coordinates. In the following
section, I will demonstrate that this Hamiltonian, when
used with appropriately defined scaling fields, obeys the
usual scaling laws. In the next section, I will discuss how
to choose the RF cavity frequency (or more precisely, the
phase) to keep particles synchronized to the RF. In the
next section, I will discuss the effect of having a cavity
tilted in the machine. Finally, I will examine the effect of
closed orbit jumps due to the energy gain in the cavities
on the beam motion.

II. HAMILTONIAN IN SPIRAL COORDINATES

One first transforms into spiral coordinates

R = r Y = y Θ = θ −
∫ r

r0

tan ζ(r̄)

r̄
dr̄, (1)

where ζ(r) is the angle that the spiral faces make with
respect to a radial line from the center of the machine,
as a function of the radius r. For positive ζ, the magnet
edges move in the direction of particle motion as the ra-
dius increases, assuming that the magnet edges are along
lines of constant Θ. Note that Θ will eventually be the
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independent variable for the new system, but temporarily
we will use time as the independent variable for the pur-
pose of performing these transformations. This change
of variables induces a change in the conjugate momenta
to

pR = pr +
pθ

r
tan ζ pY = py pΘ = pθ (2)

Note that pR is different from pr, despite the fact that
R = r. Furthermore, note that the Hamiltonian with θ
as the independent variable is −pθ, and the Hamiltonian
with Θ as the independent variable is −pΘ.

It is important to understand the change of indepen-
dent variable: it means that the question that one is
asking of the equations of motion is changing. With θ as
the independent variable, one is asking about the radius,
vertical position, time, and their conjugate momenta with

respect to θ at a given value of θ. With Θ as the indepen-
dent variable, one is asking about the radius, vertical po-
sition, time, and their conjugate momenta with respect to

Θ at a given value of Θ. Notice two things have changed
in the question: where you are looking, and the nature
of the conjugate momenta. Understanding this fact is es-
sential to understanding why the spiral machine behaves
differently than the radial sector machine.

The Hamiltonian in these coordinates, with Θ as the
independent variable, is

− R cos ζ

{

pR sin ζ + qAΘ

+

√

√

√

√

(E − qΦ)2/c2 − (pR cos ζ − qAR)2

− (pY − qAy)2 − (mc)2

}

, (3)

where

AΘ = Aθ cos ζ − Ar sin ζ (4)

AR = Ar cos ζ + Aθ sin ζ. (5)

These are the components of the vector potential perpen-
dicular and parallel to the spirals, respectively.

A. Vector Potentials for Magnets

It is most convenient at this point to assume that ζ is
constant, which is required for meeting the scaling con-
dition in an FFAG. Writing the vector potentials in a
power series about the midplane

AR(R, Y,Θ) =

∞
∑

n=0

1

n!
ARn(R,Θ)Y n (6)

Ay(R, Y,Θ) =
∞
∑

n=0

1

n!
Ayn(R,Θ)Y n (7)

AΘ(R, Y,Θ) =
∞
∑

n=0

1

n!
AΘn(R,Θ)Y n, (8)

one can obtain a recursion relation for the coefficients
from Maxwell’s equations using the gauge ∇ · A = 0:

AR,n+2 = − ∂

∂R

[

1

R

∂

∂R
(RARn)

]

+
2 tan ζ

R

∂2ARn

∂Θ∂R

− sec2 ζ

R2

∂2ARn

∂Θ2
+

2

R2

∂AΘn

∂Θ
(9)

AΘ,n+2 = − ∂

∂R

[

1

R

∂

∂R
(RAΘn)

]

+
2 tan ζ

R

∂2AΘn

∂Θ∂R

− sec2 ζ

R2

∂2AΘn

∂Θ2
− 2

R2

∂ARn

∂Θ
(10)

Ay,n+1 = −cos ζ

R

∂

∂R
(RARn) +

sin ζ

R

∂

∂R
(RAΘn)

− sec ζ

R

∂AΘn

∂Θ
(11)

Starting with the gauge choice AR0(R,Θ) = 0, one also
has an equation for AΘ0 from By(R, 0,Θ):

By(R, 0,Θ) = −cos ζ

R

∂

∂R
(RAΘ0). (12)

If we have scaling fields, where

By(R, 0,Θ) = By0(Θ)(R/r0)
k, (13)

then

ARn(R,Θ) = ÂRn(Θ)(R/r0)
k+1−n (14)

Ayn(R,Θ) = Âyn(Θ)(R/r0)
k+1−n (15)

AΘn(R,Θ) = ÂΘn(Θ)(R/r0)
k+1−n, (16)

and the recursion relations become

ÂR,n+2 = −(k + 2 − n)(k − n)ÂRn

+ 2(k + 1 − n) tan ζ
∂ÂRn

∂Θ

− sec2 ζ
∂2ÂRn

∂Θ2
+ 2

∂ÂΘn

∂Θ
(17)

ÂΘ,n+2 = −(k + 2 − n)(k − n)ÂΘn

+ 2(k + 1 − n) tan ζ
∂ÂΘn

∂Θ

− sec2 ζ
∂2AΘn

∂Θ2
− 2

∂ARn

∂Θ
(18)

Ây,n+1 = −(k + 2 − n) cos ζÂRn

+ (k + 2 − n) sin ζÂΘn − sec ζ
∂AΘn

∂Θ
(19)

By0(Θ) = −(k + 2) cos ζÂΘ0. (20)
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B. Vector Potentials for Cavities

For cavities, it is best to take the gauge with zero elec-
tric scalar potential, in which case the recursion relations
for the power series in the midplane become

AR,n+2 = − ∂

∂R

[

1

R

∂

∂R
(RARn)

]

+
2 tan ζ

R

∂2ARn

∂Θ∂R

− sec2 ζ

R2

∂2ARn

∂Θ2
+

2

R2

∂AΘn

∂Θ
+

ω2

c2
ARn (21)

AΘ,n+2 = − ∂

∂R

[

1

R

∂

∂R
(RAΘn)

]

+
2 tan ζ

R

∂2AΘn

∂Θ∂R

− sec2 ζ

R2

∂2AΘn

∂Θ2
− 2

R2

∂ARn

∂Θ
+

ω2

c2
AΘn (22)

Ay,n+1 = −cos ζ

R

∂

∂R
(RARn) +

sin ζ

R

∂

∂R
(RAΘn)

− sec ζ

R

∂AΘn

∂Θ
. (23)

To start the recursion sequence, we assume there are elec-
tric fields ER0(R,Θ) cos(ωt + φ) and EΘ0(R,Θ) cos(ωt +
φ) in the midplane (parallel and perpendicular to the
logarithmic spirals respectively), and thus

AΘ0 = −EΘ0(R,Θ)

ω
sin(ωt + φ) (24)

AR0 = −ER0(R,Θ)

ω
sin(ωt + φ). (25)

III. SCALING LAWS FOR SCALING FFAGS

Now we can see precisely what “scaling” means for
a scaling FFAG. Assume that the vector potentials are
described by Eqs. (6)–(8), with the coefficients in those
equations given by Eqs. (14)–(16). The spiral angle ζ is
assumed to be constant. The vector potentials are taken
to be independent of time. Then for any of those vector
potentials,

A(λR, λY,Θ) = λk+1A(R, Y,Θ). (26)

Change variables from E to ∆, where E = E0 + ∆, and
assume that the scalar potential Φ is zero. The Hamilto-
nian is then

− R cos ζ

{

pR sin ζ + qAΘ

+

√

√

√

√

p2
0 + 2E0∆/c2 + ∆2/c2

− (pR cos ζ − qAR)2 − (pY − qAy)2

}

, (27)

where p2
0 = E2

0/c2 − (mc)2.

Consider the following transformation

R̂ = R(p̂0/p0)
1/(k+1) p̂R = pRp̂0/p0

Ŷ = Y (p̂0/p0)
1/(k+1) p̂Y = pY p̂0/p0

∆̂ =

√

Ê2
0 + 2cE0(p̂0/p0)2∆ + (p̂0/p0)2∆2 − Ê0

t̂ = t
p0

p̂0

Ê0 + ∆̂

E0 + ∆

(

p̂0

p0

)1/(k+1)

,

(28)

where p̂2
0 = Ê2

0/c2 − (mc)2. The Hamiltonian which gov-
erns the new variables is

− R̂ cos ζ

{

p̂R sin ζ + qAΘ

+

√

√

√

√

p̂2
0 + 2Ê0∆̂/c2 + ∆̂2/c2

− (p̂R cos ζ − qAR)2 − (p̂Y − qAy)2

}

, (29)

where now AR, Ay, and AΘ are all evaluated at R̂ and ŷ
instead of R and y.

The Hamiltonians for the two sets of variables are
clearly identical, with the exception that p0 is replaced
by p̂0. The interpretation of this is that if you know the
phase space dynamics near a total momentum p0, you
can find the phase space dynamics near any other to-
tal momentum p̂0 by applying the transformations (28).
Several conclusions can be drawn from this:

• Transverse tunes are independent of reference mo-
mentum.

• Closed orbits for different momenta are geomet-
rically similar, and their size is proportional to

p
1/(k+1)
0 .

• Normalized dynamic aperture in each plane is pro-

portional to p
(k+2)/(k+1)
0 . The shape of the dynamic

aperture is independent of momentum, except that
the transverse coordinate direction is proportional

to to p
1/(k+1)
0 , and the transverse momentum di-

rection is proportional to p0.

• The Courant-Snyder beta functions in normalized
coordinates (with units of m/(eV·s)) are propor-

tional to p
−k/(k+1)
0 , and thus the usual beta func-

tions (units of m) are proportional to p
1/(k+1)
0 . The

Courant-Snyder alpha function is independent of
p0.

• The momentum compaction is 1/(k + 1), indepen-
dent of energy.

IV. FREQUENCY PROGRAM FOR AN FFAG

Since the time for one turn along a fixed-energy closed
orbit of an FFAG depends on the energy for that closed
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orbit, the frequency of the RF should be varied during
the acceleration cycle. The simplest method of doing this
is to adjust the frequency of the RF to correspond to the
energy that one expects at a given time, based on the
desired energy gain per turn. If for whatever reason, the
current beam energy and the current RF frequency do
not correspond, the phase of the beam will adjust itself to
change the beam energy to achieve this correspondence.
This will work well as long as the acceleration rate is
sufficiently slow and the design phase is far enough from
the RF crest.

First of all, I will define some variables and functions.
The variable t is the time on the clock; it continually
advances as we accelerate. E(Θ) is the reference en-
ergy, and is a function of the independent variable Θ
described above, and should continually advance as we
accelerate. The reason for its dependence on Θ is that
generally one intends to accelerate a given amount on
each turn. I will assume that the energy continuously
increases, rather than in discrete steps. The time for one
turn is t1(E), and is a function of the energy. The RF
frequency should ideally be set to 1/t1(E).

When the RF frequency is not constant, it is most
convenient to speak of RF phase. The RF voltage V (t,Θ)
and phase φ(t,Θ) are defined so that the voltage as a
function of time is

V (t,Θ) cos
(

φ(t,Θ)
)

= 2π
dE

dΘ
. (30)

V and cos
(

φ(t,Θ)
)

are periodic in Θ. Presumably there
is some desired E(Θ), so this will be assumed to be
known. The frequency is the time derivative of φ, di-
vided by 2π.

Consider Θ to be a function of t. We know that

dΘ

dt
=

2π

t1
(

E(Θ)
) . (31)

This equation can be integrated directly by writing it as
a relationship between the differentials dΘ and dt:

t1
(

E(Θ)
)

2π
dΘ = dt. (32)

Integrating both sides,

tr(Θ) =
1

2π

∫ Θ

Θ0

t1
(

E(Θ̄)
)

dΘ̄. (33)

This function can be inverted to give Θr(t).
To meet the periodicity conditions on φ(t,Θ), that

function must take the form

φ(t,Θ) = φs(t,Θ) + h[Θr(t) − Θ], (34)

where φs is a periodic function of Θ.
Let’s take the case of a scaling FFAG with φs and V

constant, with V cos φs = ∆E. For the scaling FFAG,

t1(E) = t1(E0)
E

E0

(

E2 − (mc2)2

E2
0 − (mc2)2

)

−
k

2k+2

(35)

We then find

tr(Θ) = t1(E0)
k + 1

k + 2

E2
0 − (mc2)2

E0∆E
[

(

E2(Θ) − (mc2)2

E2
0 − (mc2)2

)

k+2

2k+2

− 1

]

, (36)

with

E(Θ) = E0 +
Θ∆E

2π
. (37)

Inverting, we find

Θr(t) = 2π
Er(t) − E0

∆E
(38)

Er(t) =
√

p2
r(t)c

2 + (mc2)2 (39)

pr(t) = p0

[

1 +
t

t1(E0)

k + 2

k + 1

E0∆E

p2
0c

2

]

k+1

k+2

(40)

p0 =
√

(E0/c)2 − (mc2)2. (41)

V. ANALYSIS OF CAVITY PLACEMENT

Start with a cavity which makes an angle of ζC with
respect to radial lines. To be able to produce some an-
alytic results, I assume ζC to be constant. The cavity
thus has a logarithmic spiral shape, unless ζC = 0. The
center of the cavity is given by

θ = θC + tan ζC ln(r/rC). (42)

Assume that the midplane electric fields in the cavity
are perpendicular to lines that make an angle ζC with
respect to radial lines. We will define the cavity fields
in coordinates which are along the logarithmic spirals
making angle ζC with respect to radial lines and which
are along curves which are perpendicular to those spirals.
We define these coordinates to be r1 and θ1 as follows:

θ1 = θ − θC − tan ζC ln(r/rC) (43)

r1 = rcos2 ζC rsin2 ζC

C exp[(θ − θC) cos ζC sin ζC ] (44)

Now, assume that the magnitude of the electric field in
the midplane is of the form

c(r1)d(θ1) (45)

Integrating in θ1 to find the on-crest energy gain in the
cavity (ignoring the time dependence of the electric field),
one finds the voltage to be

r1c(r1)

∫

d(θ1) exp(−θ1 sin ζC cos ζC) dθ1. (46)

If one wishes the energy gain to be independent of the
line along which you integrated, then c(r1) ∝ r−1

1 .
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Thus, in terms of r and θ, one can write the electric
field component in the θ1 direction to be

(r/rC)− cos2 ζC exp[−(θ − θC) sin ζC cos ζC ]

d
(

θ − θC − tan ζC ln(r/rC)
)

. (47)

Redefining d to eliminate the exponential, one can rewrite
this as

rC

r
E0

(

θ − θC − tan ζC ln(r/rC)
)

(48)

On performing the integral (46), we find the voltage to
be

rC cos ζC

∫

E0(θ)dθ (49)

In terms of the spiral coordinates for the Hamiltonian
and the electric field components used earlier (and taking
rC = r0 and ζ constant),

EΘ(R,Θ) =
r0

R
cos(ζ − ζC)

E0

(

Θ − θC + (tan ζ − tan ζC) ln(R/r0)
)

(50)

ER(R,Θ) =
r0

R
sin(ζ − ζC)

E0

(

Θ − θC + (tan ζ − tan ζC) ln(R/r0)
)

(51)

Note that if ζ = ζC , then ER = 0 (thus AR = 0 as
well), and the only R dependence remaining in EΘ (and
therefore AΘ) is an inverse dependence in R. Thus, such
a cavity following the spiral coordinates will not modify
the fixed-energy dynamics.

VI. CLOSED ORBIT SHIFT IN

ACCELERATION

Since there is nonzero dispersion at the cavities, when
a particle is accelerated, the orbit about which it is un-
dergoing betatron oscillations changes. This in principle
can lead to emittance growth.

Define the closed orbit as a function of angular position
and energy to be z0(θ;E). Define the linear map about
that closed orbit from θ0 to θ1 to be M(θ1, θ0, E). De-
fine the transformation that normalizes M at the point θ
to be A(θ,E); A transforms normalized coordinates into
unnormalized coordinates. The map in the normalized
coordinates is then R(θ1, θ0, E).

To determine if there is emittance growth, we want to
examine the evolution of the beam in normalized coor-
dinates. Say that on each turn, at a point θ, the energy
jumps from En to En+1. Define zn to be the phase space
coordinates at that point, just before the energy jump,
z0n = z0(θ,En), Mn = M(θ+2π, θ, En), An = A(θ,En),
and Rn = R(θ + 2π, θ, En). Then

zn+1 = Mn+1(zn − z0,n+1) + z0,n+1. (52)

In normalized coordinates,

wn+1 = Rn+1A
−1
n+1(Anwn + z0n − z0,n+1) (53)

= Rn+1A
−1
n+1Anwn

+ Rn+1A
−1
n+1(z0n − z0,n+1) (54)

where zn = Anwn + z0n.
To estimate the evolution of the magnitude of wn, one

can make one of two assumptions: that between turns,
the beam filaments completely into a circular disk, or
that the motion remains perfectly linear between turns.
Reality is probably closer to the latter assumption, but
it is instructive to assume the former first. Call λn the
magnitude of the largest eigenvalue of Rn+1A

−1
n+1An. Let

bn = Rn+1A
−1
n+1(z0n − z0,n+1). Then

|wn+1| 6 λn|wn| + |bn|, (55)

and thus

|wn| 6 |w0|
n−1
∏

j=0

λj +

n−1
∑

m=0

|bm|
n−1
∏

j=m+1

λj (56)

Assuming that Rn+1 is sufficiently far from linear reso-
nances, λn = 1.

If instead the motion remains linear between turns,
examine Eq. (54): it is of the form

wn+1 = Bnwn + bn. (57)

If Bn and bn were constant, the solution to the equation
would be linear oscillations about

(I − Bn)−1
bn. (58)

If Bn is nearly a rotation (it generally is), then to the
accuracy of that approximation, the maximum increase
in magnitude of w is the magnitude of Eq. (58). Bn

and bn are not constant, but they should be varying very
slowly, and thus this is a good approximation.

In fact, Eq. (58) gives the coordinates for what one
may call an “accelerated orbit.” As long as bn and Bn

vary slowly, the beam should follow this accelerated orbit,
and the changes in the normalized amplitude should be
small.

A. Scaling FFAG

Consider the case of a scaling FFAG. Then

An =





(pn/p0)
−

k
2k+2 0

0 (pn/p0)
k

2k+2



A0 (59)

z0n =

[

(pn/p0)
1

k+1 0
0 pn/p0

]

z00 (60)

Rn = R0. (61)



6

Therefore

bn =

(

pn+1

p0

)

k+2
2k+2

RA−1
0

[

(pn/pn+1)
1

k+1 − 1 0
0 (pn/pn+1) − 1

]

z00 (62)

Bn = RA−1
0





(pn/pn+1)
−

k
2k+2 0

0 (pn/pn+1)
k

2k+2



A0 (63)

For small changes in the momentum per turn ∆p, these
can be approximated as

bn ≈ −∆p p
−

k+2
2k+2

0 p
−

k
2k+2

n+1 RA−1
0

[ 1

k + 1
0

0 1

]

z00 (64)

Bn ≈ R. (65)

Near a symmetry point where the closed orbit has no pR

component,

A−1
0

[ 1

k + 1
0

0 1

]

z00 ≈ r0

k + 1

√

p0

β0

[

1
0

]

, (66)

where β0 is the Courant-Snyder beta function at the ini-
tial momentum and the symmetry point, and r0 is the
radius of the closed orbit at the initial momentum and
the symmetry point.

Under the assumption that the beam filaments com-
pletely between turns,

|wn| 6 |w0|

+
2k + 2

k + 2





(

pn

p0

)

k+2
2k+2

− 1





∣

∣

∣

∣

∣

A−1
0

[ 1

k + 1
0

0 1

]

z00

∣

∣

∣

∣

∣

,

(67)

which at a symmetry point is just

|wn| 6 |w0| +
2

k + 2





(

pn

p0

)

k+2
2k+2

− 1





r0

σ0

√
ǫnmc, (68)

where ǫn is the transverse normalized emittance, and σ0

is the RMS beam size. The average of |w0|2 over the
beam distribution is 2ǫnmc. Thus, there is a large rela-
tive increase in the beam size (by a factor comparable to
the ratio of the injection radius to the beam size!) under
this pessimistic assumption.

If instead we assume that the motion is linear between
turns, the magnitude of the closed orbit shift between
turns at the symmetry point is just

(

1

k + 1

∆p

p0

r0

σ0

)

csc µx
√

ǫnmc. (69)

The term in parentheses is just the orbit separation be-
tween turns divided by the RMS beam size. µx is the
horizontal phase advance per turn. This is the result
that one expects trivially. As long as this quantity is
small, one expects the beam to follow the accelerated
orbit described above.

VII. DISCUSSION AND CONCLUSIONS

I have developed a Hamiltonian formulation for dy-
namics in a spiral machine. In particular, it appears that
having any RF cavities follow the spiral of the magnets
will minimize longitudinal-transverse effects.

However, this latter conclusion is still somewhat spec-
ulative. There is longitudinal-transverse coupling that
arises from the having dispersion in the RF cavities. It is
conceivable that giving the cavity a different angle would
be able to reduce this coupling. However, it initially ap-
pears that the two effects do not come into the Hamil-
tonian in the same way. However, to verify this, the
longitudinal-transverse coupling due to finite dispersion
in the cavities should be computed.
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