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ABSTRACT  
 

 
Streamline-based assisted and automatic history matching techniques have shown great 

potential in reconciling high resolution geologic models to production data. However, a major 
drawback of these approaches has been incompressibility or slight compressibility assumptions 
that have limited applications to two-phase water-oil displacements only. We propose an 
approach to history matching three-phase flow using a novel compressible streamline 
formulation and streamline-derived analytic sensitivities. First, we utilize a generalized 
streamline model to account for compressible flow by introducing an “effective density” of total 
fluids along streamlines. Second, we analytically compute parameter sensitivities that define the 
relationship between the reservoir properties and the production response, viz. water-cut and 
gas/oil ratio (GOR). These sensitivities are an integral part of history matching, and streamline 
models permit efficient computation of these sensitivities through a single flow simulation. We 
calibrate geologic models to production data by matching the water-cut and gas/oil ratio using 
our previously proposed generalized travel time inversion (GTTI) technique. For field 
applications, however, the highly non-monotonic profile of the gas/oil ratio data often presents a 
challenge to this technique. In this work we present a transformation of the field production data 
that makes it more amenable to GTTI. Further, we generalize the approach to incorporate 
bottom-hole flowing pressure during three-phase history matching. We examine the practical 
feasibility of the method using a field-scale synthetic example (SPE-9 comparative study) and a 
field application.  

Recently Ensemble Kalman Filtering (EnKF) has gained increased attention for history 
matching and continuous reservoir model updating using data from permanent downhole sensors. 
It is a sequential Monte-Carlo approach that works with an ensemble of reservoir models. 
Specifically, the method utilizes cross-covariances between measurements and model parameters 
estimated from the ensemble. For practical field applications, the ensemble size needs to be kept 
small for computational efficiency. However, this leads to poor approximations of the cross-
covariance matrix, resulting in loss of geologic realism. Specifically, the updated parameter field 
tends to become scattered with a loss of connectivities of extreme values such as high 
permeability channels and low permeability barriers, which are of special significance during 
reservoir characterization. We propose a novel approach to overcome this limitation of the EnKF 
through a ‘covariance localization’ method that utilizes sensitivities that quantify the influence of 
model parameters on the observed data. These sensitivities are used in the EnKF to modify the 
cross-covariance matrix in order to reduce unwanted influences of distant observation points on 
model parameter updates.  The key to the success of the sensitivity-based covariance-localization 
is its close link to the underlying physics of flow compared to a simple distance-dependent 
covariance function as used in the past. This flow-relevant conditioning leads to an efficient and 
robust approach for history matching and continuous reservoir model updating, avoiding much 
of the problems in traditional EnKF associated with instabilities, parameter overshoots and loss 
of geologic continuity. We illustrate the power and utility of our approach using both synthetic 
and field applications. 
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EXECUTIVE SUMMARY 
 

 
 
 

Available information on subsurface heterogeneity can be broadly categorized into two major 
types: static and dynamic. Static data are time-invariant direct or indirect measurements of 
reservoir properties, such as cores, well logs, and 3-D seismic data. With recent advances in 
reservoir characterization, these data can now be integrated efficiently into coherent 3-D 
reservoir descriptions. Dynamic data are the time dependent measurements of flow responses 
such as pressure, flow rate, fractional flow and, with the use of 4-D seismic, time-lapse 
saturation and pressure. Geological models derived from static data alone often fail to reproduce 
the dynamic response from petroleum reservoirs. Reconciling geologic models to the dynamic 
response of the reservoir is critical for subsurface characterization and building reliable reservoir 
performance models. Integration of dynamic data generally leads to an inverse problem and 
requires solution of the flow equations several times using an iterative procedure. The process is 
commonly referred to as “history matching” and is usually the most tedious and time-consuming 
aspect of subsurface flow and transport simulation study. 
 Recently streamline models have shown great promise in history matching high 
resolution geologic models. Streamline models decompose the three-dimensional simulation into 
a series of 1-D simulations that are decoupled from each other and can be solved very efficiently. 
In spite of its significant potential, a major drawback of the streamline-based approaches has 
been the inability to include complex physics and incompressibility or slight compressibility 
assumptions that have limited applications primarily to two-phase water-oil displacements. In 
this work, we generalize streamline models to compressible flow using a rigorous formulation 
while retaining most its computational advantages. Next, we generalize the streamline-based 
history matching to compressible and three-phase flow including water, oil and gas phases. As a 
result of this work, streamline-based history matching can now be applied to a much wider class 
of reservoirs, including oil reservoirs below bubble point pressure and in the presence of three-
phase flow.   

With the advent of smart well and permanent downhole sensors, the petroleum industry is 
now able to collect data such as pressure and rate data, on a continuous basis. This has resulted in 
the need for methods for continuous model updating, much along the line of weather forecasting. 
The goal is to keep the models ‘live’ and updated as and when the data becomes available. This 
is in contrast to the current practice of history matching which is carried out only in the intervals 
of a few years, mainly because of the computation time and manpower involved.  In this work, 
we explore the use of proven techniques from weather forecasting viz. Ensemble Kalman Filters 
(EnKF) for continuous model updating. It is a sequential Monte-Carlo approach that works with 
an ensemble of reservoir models. Specifically, we propose a flow-relevant conditioning of EnKF 
that leads to an efficient and robust approach for history matching and continuous reservoir 
model updating, avoiding much of the problems in traditional EnKF associated with instabilities, 
parameter overshoots and loss of geologic continuity. We illustrate the power and utility of our 
approach using both synthetic and field applications. The field case is from the Gold Smith San 



7 

Andres Unit GSAU, a dolomite formation in west Texas. The CO2 injection pilot area consists 
of nine inverted five-spot patterns covering approximately 320 acres with an average thickness 
of 100 ft. The area has 20 years of waterflood production history before the initiation of the CO2 
project in 1996. The study area includes 11 injectors and 31 producers. Production history 
information from 9 producers is used because only these have significant water cut response. The 
field application clearly demonstrates the ability of our approach in assimilating production 
history continuously while preserving geologic realism. 

 
This final report is divided into two major parts that describes the major results and 

accomplishments from this project. The following papers were published based on the work from 
this research project. 

• Datta-Gupta, A., Devegowda, D., Oyerinde, D. and Cheng, H., “The Role of Streamline 
Models for Data Assimilation in Petroleum Engineering and Hydrogeology,” in 
Quantitative Information Fusion for Hydrological Sciences, Eds. Xing Cai and T.-C. Jim 
Yeh, Springer Verlag Publishers (2007). 

• Cheng, H., Oyerinde, D., Datta-Gupta, A. and Milliken, W. “Compressible Streamlines 
and Three-phase History Matching,” SPE Journal, 12(4), (December 2007). 

• Oyerinde, Adedayo., Datta-Gupta, A., and Milliken, W., “Experiences With Streamline-
Based Three-phase History Matching,” SPE 109964 presented at the 2007 SPE Annual 
Technical Conference and Exhibition, Anaheim, CA, U.S.A., 11–14 November 2007. 

• Devegowda Deepak, Arroyo, Elkin and Datta-Gupta, A., “Efficient and Robust Reservoir 
Model Updating Using Ensemble Kalman Filter With Sensitivity Based Covariance 
Localization,” SPE 106144 to be presented at the SPE Reservoir Simulation Symposium, 
Houston, TX, 26-28 February, 2007.(to appear in SPEREE) 

• Elkin Arroyo-Negrete, Deepak Devegowda, Akhil Datta-Gupta, “Streamline-Assisted 
Ensemble Kalman Filter for Rapid and Continuous Reservoir Model Updating,” SPE 
104255 presented at the 2006 SPE International Oil & Gas Conference and Exhibition in 
China held in Beijing, China, 5–7 December 2006 
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EXPERIMENTAL 

 
No experiments were performed at Texas A&M during the project. 
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RESULTS AND DISCUSSION: INTRODUCTION 
 

 
This research concerns history matching of high resolution geologic models consisting of 
hundreds of thousands to million-cell models in an efficient manner for improved performance 
predicitons of petroleum reservoirs.  The work consists of two major parts which are briefly 
introduced below. More detailed discussion on each part follows the introduction. 
 
In the first part, we propose a method to improve the current work flow of history matching. The 
traditional history matching approach generally involves periodically (once in a few years) 
updating geolgic models based on the avialable production data upto that point in time. It 
frequently uses local or regional multipliers of pore volumes and transmissibilities to modify the 
reservoir properties. By adjusting the regions and multipliers, a history match can often be 
achieved using trial and error. Such trial-and-error involves considerable subjective judgment 
and personal bias, and very often creates artificial discontinuities with loss of geologic realism. 
Automatic history matching or production data integration methods utilize inverse theory to 
minimize an appropriately defined misfit function to obtain a history match. Formally, this class 
of inverse problems is known as ill-posed, and must be managed (regularized), e.g., by 
constraining the solution to independent prior information. In our previous works we have shown 
that streamline models offer some unique advantages in automatic history matching. In this 
work, we build upon our previous success with streamline-based history matching to generalize 
the approach to handle a much wider class of reservoirs without any perceptible loss in speed and 
accuracy. Specifically, we generalize the streamline approach to compressible flow and extend 
streamline-based history matching to three-phase flow in the presence of free gas. Our approach 
will lead to significant savings in computation time and man power compared to the 
conventioanl history matching magnitude faster than conventional 
 
In the second part of the work, we explore new and evolving concepts in history matching viz. 
sequential updating of reservoir models based on data from permanent downhole sensors. The 
goal here is to update geologic models with production data as and when the data becomes 
available. Such continuous reservoir model updating is much along the line of weather 
forecasting and we explore the use of proven methods in weather forecasting viz. the Ensemble 
Kalman Filter (EnKF). The EnKF is a Monte-Carlo approach that works with an ensemble of 
reservoir models. Specifically, the method quantifies the relationship between reservoir 
parameters and production data using cross-covariances between measurements and model 
parameters computed directly from the ensemble members. This information is then used to 
sequentially update the reservoir models. For practical field applications, the ensemble size needs 
to be kept small for computational efficiency. However, this leads to poor approximations of the 
cross-covariance matrix and loss of geologic realism. In this work we propose a novel 
streamline-assisted EnKF that is quite general and avoids much of the problems in the traditional 
EnKF associated with instabilities, overshooting and loss of geologic continuity during model 
updating. Our approach leads to a systematic approach to sequentially update high resolution 
geologic models using dynamic data in a ‘near real time’ fashion. In this way, we can keep 
geologic models ‘live’ with respect to all static and dynamic information which will facilitate 
decision making in a very significant way. 
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RESULTS AND DISCUSSION: PART I 

 
Development and Field Experiences With Streamline-Based Three-phase 
History Matching 
 
Geologic models derived from static data alone typically fail to reproduce the production history 
of a reservoir. It is important to reconcile simulation models to the dynamic response of the 
reservoir, i.e., the production history. This necessity has been the motivation behind the active 
research work in history matching. Traditionally, history matching is performed manually by 
applying local and regional changes to reservoir properties. While this is still in general practice, 
the subjective overtone of this approach, the time and manpower requirements, and the potential 
loss of geologic consistency have led to the development of a variety of alternative workflows 
for assisted and automatic history matching. Automatic history matching requires the solution of 
an inverse problem by minimizing an appropriately defined misfit function.1-8 The objective 
function is usually formulated so as to match the production history and at the same time 
preserve geologic realism in the history matched models. 

Recent advances in geostatistics have led to the building of high-resolution geologic models 
consisting of millions of cells. Most of these are scaled up to the sub-million size for reservoir 
simulation purposes. History matching even the scaled up models is computationally prohibitive. 
The associated cost in terms of time and manpower has led to increased interest in efficient 
history matching techniques and in particular, to sensitivity-based algorithms because of their 
rapid convergence. Furthermore, of the sensitivity-based methods, streamline-based production 
data integration has proven to be extremely efficient computationally.2 

The computational efficiency of the streamline method as a ‘forward-model’ has historically 
been its major appeal to the petroleum industry. More recently, attention has been drawn to 
streamline simulation because of its rapid model calibration capability; specifically, the ability to 
calculate sensitivity coefficients using only a single forward simulation.  The recent extension of 
the streamline formulation to account for compressibility has extended its applicability.  This has 
also been the motivation behind the generalization of its inverse modeling capability to three 
phase flow data.9 In this work, using streamline-derived sensitivities, we examine the practical 
feasibility of the approach by applying it to both synthetic and field cases. 

For history matching, we use a previously proposed generalized travel-time inversion (GTTI) 
technique that has been successfully applied to many field cases involving two-phase flow.10 Our 
work here generalizes the approach to three phase flow by incorporating matching of water-cut, 
gas oil ratio and the flowing bottom-hole pressure at the producing wells. The highly non-
monotonic profile of the field observed gas/oil ratio data, together with measurement 
inaccuracies can be a challenge for field-scale history matching of three-phase flow using GTTI. 
The approach to history matching presented here requires the transformation of observed 
production data to composite quantities. This transformation of data helps us circumvent some of 
the difficulties. In particular, our proposed transformation leads to production profiles that are 
more amenable to misfit computations via the generalized travel time technique. We also show 
the need and importance of matching the bottom-hole pressure during history matching three-
phase flow. 
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The outline of our report is as follows. First, we discuss the basic steps in our proposed 
approach and illustrate the history matching procedure using a synthetic example. Next, we 
describe the streamline formulation for compressible and three-phase flow. We discuss the data 
transformation and the mathematical formulation of the analytical sensitivities for water-cut and 
gas/oil ratio during compressible and three-phase flow and also, the semi-analytic representation 
of the BHP sensitivity. Finally, we present field examples to demonstrate the practical feasibility 
of our method. 

 
Basic Steps of the Approach 
 
The main steps of the approach to three-phase history matching discussed in this work are as 
follows: 
 

• Three-phase Flow Simulation. We use a 3-D compressible streamline simulator for 
modeling three-phase flow in the reservoir and to obtain the water-cut, GOR and bottom-
hole flowing pressure response. However, the history matching approach presented here 
can be applied to finite-difference simulations also provided streamlines and time of 
flight are computed based on the finite-difference velocity field at the required time 
intervals.  

 
• Data Misfit via Generalized Travel Time. Production data misfit is represented by a 

‘generalized travel time’ at each producing well.10 A ‘generalized travel time’ or ‘travel 
time shift’ is computed by systematically shifting the computed production response 
towards the observed data until the cross-correlation between the two is maximized. The 
approach preserves the robustness of a travel time inversion and improves computational 
efficiency by representing the production data misfit at a well in terms of a single ‘travel 
time shift’. 

 
• Sensitivity Computations and Data Inversion. In the presented approach, we compute 

the arrival time sensitivity of composite saturation quantities to reservoir parameters as 
opposed to the arrival time sensitivity of water-cut and GOR to a reservoir parameter. 
The sensitivity is computed as 1-D integrals along the trajectory of a streamline. The 
sensitivity of the bottom-hole flowing pressure is computed using a low frequency 
asymptotic approach.11 Production history matching is performed via a generalized travel 
time inversion that minimizes ‘travel time shifts’ at the producing wells.10 An iterative 
least-squared minimization technique that utilizes the analytic sensitivity coefficients is 
used for this purpose.12 Additional constraints are imposed using a prior model to reduce 
non-uniqueness in the solution and also to preserve geologic realism. 

 
• Data Transformation.  Consistent with the sensitivity computation, we transform the 

production history (water-cut, and gas/oil ratio) to the equivalent saturation quantities for 
misfit computation via the generalized travel-time technique. The generalized travel-time 
technique is particularly effective when the field production history is nearly monotonic 
as it is the case for a typical water-cut profile. The same cannot be said about the gas/oil 
ratio data. Because of its highly non-monotonic nature, the GOR data can become a 
challenge for computation of data misfit using the generalized travel time technique. Our 
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experience shows that the transformation of the production history to composite 
quantities that are functions of well block pressure and saturation makes the production 
response more amenable to generalized travel time computations. This transformation is 
carried out on both the observed and simulated response and the misfit is then quantified 
in terms of travel-time difference in the transformed data space 

Before discussing the mathematical details, we first illustrate the procedure using a synthetic 
example described below. 
 
A Synthetic Example: This synthetic case is a nine-spot model and involves reconstructing a 
reference permeability field by the simultaneous integration of three-phase production data. The 
reference permeability distribution is shown in Fig.1a. The mesh size used is 21×21×1. The 
reference permeability distribution consists of a north trending low-permeability feature and a 
high-permeability trend towards the south. To perform the history match, we first transform the 
water-cut and GOR data to the composite quantities in a manner described later. Figs 2a&b 
show the match of the transformed quantities while Figs 2c&d show the match of the water-cut 
and gas/oil ratio data. In this case, the transformation not only retains the monotonic profile of 
the water-cut data, the non-monotonic gas-oil ratio data also becomes monotonic, making it 
suitable for the generalized travel time computations. The resulting permeability distribution 
shown in Fig.1b captures the general trend of the reference permeability field. The convergence 
of the inversion is shown in Fig. 3 where all the misfit indices are shown to have dropped to 
about ten percent of their initial value in just six iterations. The ten iterations shown only took 
about 8 minutes on a PC (Intel Xeon 3.06 GHz Processor) 

Fig. 2e compares the bottom hole flowing pressure (BHP) for the reference case to the 
well flowing pressure in the wells at the final iteration. It is obvious that while we have an 
acceptable match on the production data viz. water cut and GOR, we have not been able to 
adequately reproduce the reservoir energy. Next, we perform a simultaneous integration of 
water-cut, gas/oil ratio, and the bottom-hole pressure. The BHP sensitivity coefficients that relate 
perturbations in reservoir permeability to perturbations in pressure observations are obtained 
using a low-frequency asymptotic method.11 The matching of the bottom-hole pressure is carried 
out in the frequency domain by taking a Fourier transform of the BHP data. In our application, 
we have incorporated only the zero frequency expression of the zero-order expansion of the 
asymptotic solution to preserve computational efficiency. This is equivalent to matching static 
pressures only at the well. 

Fig.4 shows the match resulting from this inversion. For the same number of iterations, 
the match of water-cut and GOR somewhat deteriorates as compared to Fig.2 partly because the 
inversion is now more constrained. This trade-off, however, results in a better match of the 
reservoir energy as shown by the BHP match of the wells (contrast Figs.2e and 4e). Note that 
although we have limited to matching the zero frequency component only, we still obtain a 
reasonable match to the BHP response over all times for this case. The importance of matching 
the BHP will become clear as we discuss the mathematical formulation in the next section. 
 
Mathematical Formulation 
 
The advantage of streamline-based dynamic data integration is a direct consequence of the 
efficiency with which the parameter ‘sensitivities’ are calculated. The primary basis of these 
sensitivities is the streamline formulation, generalized for compressible three-phase flow. For 
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this reason, we first highlight the important features of this compressible formulation, thus 
paving the way for a thorough discussion of the derivation of the analytical sensitivities. 
 

Effective Density and Compressible Streamlines. In 3-D, streamlines are defined by the 
intersection of two bi-streamfunctions, ψ  and χ . For compressible three-phase flow in porous 
media, the conserved quantity is a total multi-phase mass flux. Accordingly, the bi-
streamfunctions are defined to incorporate the compressibility effects.13  
 χψρ ∇×∇=u  ...................................................(1a)   

where ρ  represents an ‘effective density’ of the total fluid. Since uρ  represents a conserved 
flux. 
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In streamline simulation, we work in the time of flight coordinates rather than the physical space. 
This coordinate change is characterized by the Jacobian of transformation. 
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Eq.2 shows that the operator identity τ
φ
∂
∂

=∇•u  used for incompressible streamline formulation 

holds good for compressible flow also. Applying the identity to Eq.1b gives the ordinary 
differential equation below. 
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τ
ρφ . …………………................….  (3) 

where the divergence of flux u•∇  is a constant within each grid cell but varies spatially along 
the streamlines from cell to cell. Integrating Eq.3 permits the evaluation of the effective density 
along the streamlines starting with a value of unity at the injectors. 
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With the initial volumetric flux χψ ΔΔ=ΔQ  being assigned to a streamline, the volumetric flux 
will vary along the streamline according to the relationship QΔ

ρ
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Three phase Black Oil Simulation. The mass conservation equation for the water phase is 
given by Eq. 5   
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Transforming to the streamline time of flight coordinate and noting that cu =•∇
G  gives, 
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The right hand side in Eq. 8 can be seen as a compressibility-induced source term attributable to 
fluid compression and expansion. For incompressible flow, c = 0 everywhere and the right hand 
term vanishes.  
 

The gas saturation equation along streamlines can be obtained following the same procedure 
as the water phase starting with the mass conservation equation for the gas, 
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After transforming to streamline time of flight coordinate, we get the following 1-D equation 
along streamlines, 
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Sensitivity Calculation for Compressible and Three-Phase Flow. In reconciling simulation 
models to dynamic data, we aim at minimizing the vertical (amplitude) difference between the 
observed and calculated production profiles at each observation time by adjusting reservoir 
parameters. Formulating the sensitivities accordingly results in what is termed an ‘amplitude 
match’. Alternatively, since production response is characterized by well node 
saturation/saturations, matching at each observation time the saturation/saturations characterizing 
production achieves the same purpose. In essence, the aim is to match the ‘arrival’ time of the 
characteristic saturation/saturations. This approach is termed a ‘travel-time’ match. In our 
approach, we avoid the traditional amplitude match because of its high non-linearity and we 
quantify data misfit in terms of travel-time. The central idea in the sensitivity computation is that 
for a fixed pressure, a given saturation (two-phase flow) or combination of saturations (three-
phase flow) uniquely determines a production response such as water-cut or gas/oil ratio. Thus, 
instead of computing the reservoir parameter sensitivity to a particular observed water-cut for 
instance, we compute the sensitivity of the arrival time of the saturation (two-phase flow) or 
saturations (three-phase flow) that characterize the water-cut observation. Clearly, for 
incompressible two-phase oil-water application, a given water saturation uniquely determines the 
fractional flow to water and thus, water-cut. In the case of three-phase flow the situation is more 
complicated even for incompressible flow. However, in general for a fixed pressure a given 
combination of water-cut and gas/oil ratio gives a unique combination of saturation (i.e. sg, and 
sw) and vice versa. This is illustrated in Fig. 5 where we have plotted truncated families of gas 
and water saturation variation with gas/oil ratio and water-cut at a fixed pressure. We can see 
that the intersection of a horizontal and vertical line on bottom plot of Fig 5 uniquely determines 
a saturation pair. This emphasizes the need for a simultaneous assimilation of BHP, gas/oil ratio 
and water-cut data. For a given pressure, a simultaneous match of gas/oil ratio and water-cut is 
equivalent to a simultaneous match of the composite quantities ww BS /  and 

osogg BRSBS // +  denoted 
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as wS′  and gS ′  respectively. It is the arrival-time sensitivity of these composite quantities that we 
are interested in. 

 
Water Saturation Arrival Sensitivity. To motivate the derivation for compressible flow, we 

briefly consider the incompressible flow case. The saturation velocity for a given saturation 
contour wS  along a streamline will be given by, 
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∂
∂τ . ........................................................(11) 

This follows from the incompressible water saturation equation. The arrival time of the 
saturation front will be, 
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In our previous work, we used the above relationship to compute the sensitivity of the arrival 
time of the saturation front based on the sensitivity of the time of flight to a perturbation in the 
reservoir parameter.1, 10 Specifically, the sensitivity of the saturation arrival time with respect to 
reservoir parameter m is computed as, 
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where the sensitivity of the time of flight is computed analytically from streamline simulation. 
We can generalize the sensitivity calculations using the saturation equation for compressible 

flow along a streamline, Eq. 8 which can be rearranged as follows, 
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In generalized travel time inversion of production data, we are interested in obtaining the partial 
derivative of the arrival time of saturation with respect to reservoir parameters, m  for example 
permeability.1 Let '

wS  represent the quantity ww BS /  in the water saturation equation. For a given 
pressure, '

wS  is functionally dependent on t (the arrival time) and τ (the time of flight) which in 
turn depend on m . For a fixed '

wS , we can express this implicitly as follows, 
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A simple manipulation of Eq. 15 shows that 
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Substituting Eq.8 for the denominator gives the required travel time sensitivity for a fixed '
wS . 
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For incompressible flow, c = 0, Bw is constant and Eq. 17 reduces to the familiar formulation 
for incompressible flow.10 All the terms in Eq. 17 can be computed along the streamline. 
Specifically, m∂∂ /τ  is computed analytically under the assumption that the streamlines do not 
shift because of small perturbation in reservoir properties.1 The remaining partial derivatives are 
approximated by a backward difference along the streamline. 
 

Gas Saturation Arrival Sensitivity. The conservation equation for gas is given in Eq. 10. Let 
gS ′  represent the quantity

osogg BRSBS // + , we rewrite Eq. 10 in the form below 
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For a given pressure, gS ′  depends on t (the arrival time) and τ (the time of flight). For a fixed gS ′ , 
we can express this dependence implicitly as follows, 
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Substituting Eq. 18 for the denominator gives the travel-time sensitivity to a fixed gS ′ . 
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Again, the parameters needed to compute the partial derivatives are readily available along 
streamlines. 
It is important to note that our sensitivity derivations have not explicitly accounted for the 
pressure effects. In fact, we can uniquely define '

wS  and gS ′  based on the water-cut and GOR only 
at a fixed pressure. Thus, it is critical to match the BHP along with the water-cut and GOR data. 
 

Sensitivity Calculations for the BHP.  We carry out matching of the pressure data in the 
frequency domain following the procedure outlined by Vasco and Karasaki.11 We take a Fourier 
transform of the bottom-hole pressure data and match only the zero-th frequency component of 
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the data. This actually corresponds to matching the static pressure at the wells only. As shown 
with the synthetic examples, matching simultaneously the zero-th frequency component of the 
pressure data along with the composite saturation quantities result in a reasonable match of the 
water-cut, GOR, and bottom-hole pressure data. After Vasco and Karasaki, the sensitivity 
coefficients for the zero-th frequency (ω =0) is given by 
 
 2( , 0) 2 ( ). ( ) ( )

( ) o o s
P x w P x y P x y

k y
ω∂ =

= − ∇ ∇ Ψ
∂

�
 ………....... (23) 

where ( )oP x y  signifies the zero-th order pressure amplitude at the point y due to a source at x, 
and ( )o sP x y , the pressure amplitude at point y due to a source at point xs. The term 2 ( )ωΨ  
accounts for rate variations and widowing in time. The readers are referred to the original paper 
for more details. To compute the sensitivity using Eq. 23, the zero-th order pressure amplitudes 
are obtained from the equivalent steady state solutions of the original problem. Since this 
approach requires steady-state solutions, it is computationally more attractive than alternative 
methods that require multiple solutions of the full transient problem. Note that the same 
simulator we use for the forward problem is used to obtain the steady-state solutions.  
 

Verification of Sensitivities. The sensitivity expressions for both wS ′  and gS ′  consist of a 
fractional flow and a divergence of flux term. For incompressible flow, the divergence of flux 
term vanishes. For compressible flow, the divergence term tends to dominate at early times and 
the fractional flow term dominates when the flow is fully developed. Fig. 6 shows a comparison 
of the gas/oil ratio sensitivity and the divergence of flux at three different stages for a synthetic 
quarter-five spot model. From the top to the bottom of Fig. 6, it is obvious that we transition 
from a divergence of flux dominated sensitivity to flow dominated sensitivity. This is highlighted 
by the loss of similarity between the divergence of flux and the GOR sensitivity with a 
concurrent increase in the alignment of the sensitivities to the trajectory of the streamlines along 
which fluid transport is calculated. 
 
Transforming the Observed GOR and WCT for History Matching. We described earlier the travel-
time sensitivity of the composite quantities,

'
wS  and gS ′  for three-phase flow. In order to compute 

the travel-time misfit between the observed and simulated response, it is necessary to transform 
the observed GOR and WCT data to these composite saturation quantities.  In the discussion on 
sensitivities, we stated that given a pair of GOR and WCT observation, there is a corresponding 
characteristic pair of gas and water saturation. Let us now look at this in more detail starting with 
the following relations, 
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These equations show that with the pair of observation data and a flowing bottom-hole pressure, 
we can iteratively solve for the corresponding pair of gas and water saturations given a PVT data 
set and a set of relative permeability curves. Once we obtain the unique saturation pair, we then 
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transform each observed pair of water-cut and GOR data to wS′  and gS ′  respectively. Similarly, 
for the simulated response, we compute the transformed quantities. It is these transformed 
quantities ( wS′ , and gS ′ vs. time) that we use to compute the travel time misfit between observed 
and simulated response as illustrated in Fig. 2. A match on both quantities ensures a match on 
the observed gas/oil ratio and water-cut as shown in Figs. 2, and 4. 

To illustrate the significance of the data transformation, Fig. 7 shows a comparison of the 
observed gas/oil ratio and its transformed equivalent. Also shown is the misfit computation using 
GTTI on both data. It is obvious that the transformed data gives a profile more amenable to shift 
time computation. In this particular instance, computed optimal shift with the observed data is 12 
days. This is erroneous as it suggests a close agreement between the observed and simulated 
profiles. The optimal shift using the transformed data however is about 200 days, a more realistic 
estimate. 

In our proposed approach, it is required that we have measurements of BHP at each 
observation. It should be noted that in the absence of the pressure data, we can not uniquely 
define wS ′  and gS ′  and also there is no guarantee that the reservoir energy has been adequately 
reproduced, thus limiting the value of the calibrated model. This further emphasizes the 
importance of pressure data in model calibration during compressible flow. For the common case 
of infrequent pressure data points, we recommend an initial match on the available pressure data 
alone. With the resulting pressure profile, production data can be transformed to the composite 
saturation quantities and a simultaneous match on the water-cut, gas/oil ratio, and BHP can then 
be done in the manner described here. 
 
Misfit function and minimization 
 
Reconciling geologic models to dynamic data typically involve the solution of an inverse 
problem. Various approaches for such data integration have been proposed in the literature and 
they can be broadly classified as either deterministic or Bayesian.14 While our method can be 
formulated either way, we discuss the deterministic approach here. The basic underlying 
principles behind the history matching algorithm are as follows. 
• Match the field production history within a specified tolerance. This is accomplished by 

minimizing the travel time misfit for the transformed saturation quantities. 
• Preserve geologic realism by keeping changes to the prior geologic model minimal, if 

possible. This is because the prior model already incorporates static data (well and seismic 
data) and available geologic information. 

• Allow for smooth and large scale changes because production data has low resolution and 
cannot be used to infer small scale variations in reservoir properties. 

Mathematically, these objectives lead to the minimization of a penalized misfit function. 
Additional constraints are imposed to ensure "plausibility" and stability of the solution.1, 10 These 
include a ‘norm’ constraint that minimizes the deviation from a prior geologic model and a 
‘roughness’ constraint that allows for large-scale changes only consistent with the low resolution 
of the production data both of which satisfy the second and third objectives above.14 The 
penalized misfit function thus consists of the following terms: 
 

1 22 2 2
γ γ+ +Δt - SδR δR LδR …............................ (26) 
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In Eq.26, Δt  represents the stacked vector of generalized travel-time shift at the wells for both 
saturation quantities ( wS ′ , and gS ′ ), and zero frequency pressure misfit. S is the stacked matrix of 
the sensitivity of generalized travel-time with respect to the reservoir parameter for both 
saturation quantities, and the zero frequency pressure sensitivity to reservoir parameters., L is a 
roughness operator given by the second spatial derivative and δR  is a vector representing the 
change in reservoir parameters during iterative model update. The weights 1γ  and 2γ  determine 
the relative strengths of the norm and smoothness constraint and guidelines exist in the literature 
for their selection. An iterative sparse matrix solver, LSQR12, is used for solving the augmented 
linear system efficiently. 
 
Applications 
 
A Field-Scale Synthetic Case: The SPE Example  
Our first field-scale example is the ninth SPE comparative study. The reservoir (Fig. 8) is 
represented by a 24×25×15 mesh with rectangular coordinates. The dimensions of the grid 
blocks are 300 feet in both the X- and Y- directions. Cell (1, 1, 1) is at a depth of 9000 feet sub 
sea at the center of the cell top. The remaining cells dip in the X-direction at an angle of 10 
degrees. Values of porosity and thickness can be found in the paper by Killough.15 The total 
thickness from Layers 1 to 13 is 209 feet (16 feet per layer in average), and Layers 14 and 15 
have thickness of 50 and 100 feet respectively. 

Fluid properties and relative permeability data are the same as provided for the comparative 
study. For our purposes, we have used the original permeability field of the comparative study as 
a true or reference model to generate production history from flow simulation. 

A total of 1 water injector (I1) and 25 producers (PROD1 to PROD25) were included in the 
simulation model. The injector was completed from layers 1 through 11. All producers except 
producers 8, 16, 22, and 25 are completed in layers 1 to 13. These producers are completed in 
layers 1 to 5 in order to avoid completion in the water leg. 

In order to generate a starting permeability field for the calibration exercise, we have 
geostatistically created a permeability realization from the original permeability field using the 
well data as control points. With this starting model, we follow through the procedure of data 
transformation, sensitivity calculation and minimization to reconstruct the original permeability 
field provided for the comparative study. In seven iterations of the joint inversion, all the wells 
showed good matches on the transformed composite saturation quantities and thus, the water-cut 
and gas/oil ratio. Fig. 9 shows the match obtained on a few of the wells. Again, the result 
emphasizes that a simultaneous match on the transformed data ensures a match on the measured 
quantities (water-cut and gas/oil ratio). On a global scale, comparing the histogram of the 
updated permeability field to the reference (Fig. 10), a visual inspection indicates that we have a 
better representation of the permeability distribution (Log Normal) after the inversion 

Since in this case, we have access to the true permeability field, we carry out more detailed 
analyses on the results of the inversion. We compared the changes made to the initial 
permeability field to those needed to be made for complete reconstruction of the reference 
permeability field. Fig. 11 is a random selection of layers showing a comparison of the changes 
made by the inversion algorithm to those needed. It is clear that we have captured, directionally, 
the permeability change required in most cases. The changes are guided mostly by the streamline 
trajectory along which the sensitivity calculations are done. In essence, in areas of low cluster of 
streamlines over the duration of the simulation, changes made may be inaccurate. This partly 
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explains the inconsistent changes made in some of the layers. That we lack resolution on a layer 
basis as would otherwise be provided by spinner data for instance, could be another reason for 
the few inconsistent changes made. As stated earlier, while we adjust the permeability to match 
the production data, we impose a ‘norm’ constraint to preserve the prior geologic model. Fig. 12 
shows the permeability distribution on a layer before and after the inversion. While the changes 
are obvious on this layer, we still see the imprint of the prior model. Overall, the match is 
satisfactory and the prior model is preserved. 
 
A West African Field Case  

The field case is a highly faulted, west-African reservoir from which production started early 
in 1971 with an underlying aquifer providing some pressure support. The reservoir model 
consists of twelve layers with each layer sub divided into a 182 by 51 grid of cells (Fig. 13). 
Fluid property in the reservoir is modeled by five sets of PVT data corresponding to the different 
identified equilibrium regions. The rock-fluid property is modeled by a normalized relative 
permeability curve with the end-points and critical saturations of each cell specified. The 
reservoir is produced under depletion with three producers (Well 17D, Well 21, and Well 41) 
downthrow of the major fault. Well 17D is completed in layers 6 through 8 and has over thirty 
years of production history without significant water production. Well 21, also completed in the 
same interval has observation limited to the early years of production. Well 41 is a more recent 
well completed in layers 3, 6, and 7. Of the three, Well 41 is the only well that has substantial 
water production. While there is sufficient pressure information on well 17D, the only pressure 
information available is a static BHP survey done in wells 17D and 21 and a RFT test done in 
well 41. 

In calibrating the reservoir model we first match the observed pressures using the low-
frequency asymptotic approach by matching the zero-frequency component of the Fourier 
transformed data.11 With the resulting pressure match (Fig. 14), there was sufficient information 
for transforming the production data to saturation components. Next, we proceed with the 
iterative simultaneous integration of dynamic data as described above. Fig. 15 shows the misfit 
reduction achieved for the saturation match. In 16 iterations, both the amplitude and travel time 
misfit have been reduced to twenty five percent of their initial values. While 16 iterations seem 
like many compared to our previous work using streamline-derived sensitivities, this is partly 
because of the complexity of the problem and the fact that production is under primary recovery. 
Fig. 16 shows the match of the observed production data. Overall, we have acceptable matches 
on the observed data. With limited production from Well 21, model calibration was done using 
mostly data from the other wells. While production from this well was limited, the pressure 
observation from the well was useful information for our purposes. Changes made during the 
inversion are limited to those regions as dictated by the sensitivities computed along the 
streamline trajectories. An illustration of this is seen in Fig. 17 through the pre and post inversion 
permeability histograms and statistics. Much of the prior statistics are preserved after the 
inversion. Furthermore, Fig.18 highlights regions in the model where changes were made to the 
permeability field on a layer by layer basis. It is clear that the prior model is for the most part 
retained. 
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   (a). Reference Permeability Field     (b). Reconstructed Permeability Field 
 

Fig. 1 Synthetic case: Comparison of reference and reconstructed Permeability fields 
 
 

 
          (a). Normalized GOR (b).Normalized WCT (c). Gas-Oil Rati (d) Water-cut (e). BHP after Inversion 

 
Fig. 2 History matching 3-phase flow for a Synthetic nine-spot heterogeneous case: Match and BHP 
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Fig. 3 Shift time and amplitude misfit reduction for joint water-cut and GOR matching for SPE9 problem 
 

Fig. 3 Nine Spot Synthetic Case: Rapid Convergence of GTTI on transformed composite saturation 
quantities 

 
 

 
  (a). Normalized GOR  (b). Normalized WCT  (c). Gas-Oil Ratio (d) Water-cut  (e). BHP Inversion 

 
Fig. 4 History matching 3-phase flow for a Synthetic nine-spot heterogeneous case: Joint Inversion of 

WCT, GOR, and BHP 
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Fig. 5 Plots showing truncated families of fixed water and gas saturation showing the unique 
correspondence between a pair of GOR / WCT data and a pair of Sg/Sw using PVT and SCAL data from 

the ninth SPE comparative study15  
 

 
     (a). GOR Sensitivity  (b). Divergence of Flux 
 
Fig. 6 Verification of Analytical Sensitivities: The two components of the sensitivity dominate at different 

times. 
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(a) Observed (Top) and Transformed (Bottom) data   (b) Misfit quantification on observed (top) and Transformed (Bottom) data 

 
Fig. 7 Transformation of observed data (WCT and GOR) to composite saturation quantities and misfit 

quantification 
 

 
 

Fig. 8. Field-Scale Synthetic case: Modified SPE9 Model (25 Producers and 1 injector) 
 

(a). Normalized GOR        (b). Normalized WCT      (c). Gas-Oil Ratio     (d) Water-cut   
 

Fig. 9 History matching 3-phase flow for a 3-D Synthetic case 
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(a). Normalized GOR        (b). Normalized WCT      (c). Gas-Oil Ratio     (d) Water-cut   
 

Fig. 9 (Contd.) History matching 3-phase flow for a 3-D Synthetic case 
 
 
 

 
(a). After Inversion   (b) Reference    (c) Initial 

 
Fig. 10 Histogram and statistics of permeability field 
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(a). Permeability changes made     (b) Permeability changes needed 

 
Fig. 11 Layer comparison of changes made and changes required 

 
 

 
(a). Prior Model    (b) Updated Model 

 
Fig. 12 Preservation of prior Model after inversion 
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Fig. 13 Reservoir Model 
 

 
 
 

Fig. 14 History matching 3-phase flow for a Field case: Initial match on Pressure Observation 
 
 

 
Fig. 15 History matching 3-phase flow for a Field case: Misfit reduction 
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`  
 

Fig. 16 History matching 3-phase flow for a Field case: Match on GOR (Left), and WCT (Right) after inversion 
 
 

 
Fig. 17 Histogram and statistics of Permeability field before (Left) and after (Right) inversion 
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Fig. 18 Field Case: Plot showing regions where changes have been made to the prior model for the History Match 
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RESULTS AND DISCUSSION: PART II 
 

Reservoir Model Updating and Uncertainty Assessment Using Ensemble 
Kalman Filter with Sensitivity-based Covariance Localization 
 

 
In recent years, there has been a paradigm shift from attempting to ‘history match’ a single 
reservoir model to generating a suite of realizations consistent with all dynamic data and prior 
geologic information. Predicting future reservoir performance with these multiple realizations 
would provide for a measure of uncertainty in model forecasts, leading to better reservoir 
development and management strategies. This effort has been aided by the development of 
robust and efficient algorithms for automatic and assisted history matching,1-3 and availability of 
greater computational power. The Ensemble Kalman Filter (EnKF) is one such promising 
technique for generating a suite of plausible reservoir models.4-10 The EnKF samples from multi-
dimensional probability density functions (pdf) that are consistent with our prior knowledge of 
the model parameters. These samples or realizations help specify covariances between model 
parameters and cross-covariances that relate measurements and model parameters. Instead of 
computing gradients as in variational methods, these covariances and cross-covariances are 
utilized to update the models.  

The increased deployment of permanent downhole sensors and intelligent well systems that 
provide a continuous stream of information has made the EnKF an appealing method for 
sequential model updating.4-10 The capability to maintain ‘live models’ combined with the ability 
to assimilate diverse data types and the ease of implementation have resulted in increased 
research effort and interest in the EnKF.  

In spite of its appeal, there are still outstanding challenges pertaining to the use of this 
technique. For practical field applications, the EnKF would be viable if the ensemble size could 
be kept small for computational efficiency. Experience has shown that small ensemble sizes also 
lead to erroneous cross-covariance estimation, particularly for grid points widely separated from 
the location of the observed data. This degrades the EnKF forecast as more data is assimilated. 
One important aspect in history matching is maintaining geologic continuity, that is, the final 
model should reproduce the large-scale flow paths and barriers within the reservoir. The EnKF 
tends to transform multi-modal permeability histograms to a more normal or Gaussian 
distribution over a sequence of many updates.10 Because of its maximum entropy characteristics, 
the Gaussian fields cannot reproduce the continuity of the extreme values, that is, the high 
permeability channels and low permeability barriers that significantly impact fluid flow in the 
reservoir. Previous literature in EnKF has also reported parameter overshoots/undershoots 
resulting in localized patches of low and high permeabilities that can lead to loss of geologic 
realism.4-6 The use of these ‘history matched’ suite of models for future forecasts or uncertainty 
analysis can cause  erroneous interpretation and sub-optimal field development strategies.  

A larger ensemble size will help reduce many of the above-mentioned problems. In previous 
applications of the EnKF in reservoir characterization, an ensemble size of 50-100 models was 
deemed sufficient. However, this is likely to be problem specific. Increasing the ensemble size to 
adequately capture the cross-covariance between the model parameters and measurements is 
computationally demanding, particularly for large-scale field applications. 

In this work, we describe an approach to mitigate some of the difficulties in the application of 
the EnKF for reservoir history matching. The primary appeal of our proposed approach is that 



 

31 

the updated model realizations tend to retain the initial geological features. Over a sequence of 
many EnKF updates, our approach maintains the shape of the initial permeability histogram by 
targeting and limiting changes to the prior model. This is accomplished by identifying ‘regions 
of influence’ for individual data points using parameter sensitivities. Our approach also controls 
the parameter overshooting reported in earlier implementations of the EnKF. Most importantly, 
all these are accomplished using a relatively small ensemble size.  

The essence of our approach is to utilize streamline-based sensitivities to modify or condition 
the cross covariance between production data and the model parameters. This does not entail an 
increased computational effort because the streamline-derived sensitivities are obtained 
analytically during the forward run of the simulator.1, 11-14 Our approach is equally applicable to 
both streamline and finite-difference simulators. For finite-difference simulators, the streamlines 
can be easily generated based on the velocity field.15 The ensemble based cross-covariance 
estimates are multiplied element by element with a weighting function computed from these 
analytic sensitivities. It has been shown that such ‘covariance localization’ is equivalent to using 
a larger ensemble of realizations in reducing errors in the cross-covariance estimates.16 

The outline of our report is as follows. First, we briefly review the major steps in the EnKF 
and show how errors in the cross-covariance calculations affect the analysis. We also show how 
these errors can be reduced with an increased ensemble size. This is followed by a brief 
discussion of the streamline-based sensitivity computations and their use to condition the cross-
covariance matrix in EnKF. We then illustrate the benefits of covariance localization using a 
synthetic example and examining the eigenvalue spectrum of the parameter covariance matrix. 
Finally, we demonstrate the power and practical utility of the approach using the benchmark 
SPE9 example involving three-phase flow and a field example from West Texas.  
 
Basic Steps of the Approach 
 
Sensitivities between production data and model parameters quantify and relate changes in 
production response at a well because of small changes in reservoir parameters. Thus, 
sensitivities identify regions in the reservoir where changes in the parameters will have an 
influence on the model prediction. Several approaches can be used to compute sensitivity 
coefficients of model parameters. In particular, streamline models allow us to analytically derive 
the relationship between perturbations in model parameters and changes in well responses, for 
example, water-cut and GOR.1,11-14 Most importantly, these streamline-based sensitivities can be 
computed simultaneously with the forward simulation resulting in significant computational 
efficiency.  

In EnKF, the cross-covariances computed from an ensemble of models are used to update the 
models at a given time. The cross-covariance calculations relate reservoir parameters to dynamic 
responses of the reservoir. In our proposed approach, these cross-covariances are weighted with 
a function related to the streamline-derived sensitivities. Our objective here is to eliminate 
spuriously large terms in the cross-covariance matrix resulting from a limited size ensemble. At 
each update step, the streamline derived analytic sensitivities are utilized to condition the cross-
covariance calculations. Other applications of cross-covariance conditioning have been reported 
in atmospheric data assimilation literature where a distance-dependent correlation function is 
utilized.16-17 The idea behind these previous approaches was to improve the EnKF analysis by 
excluding observations greatly removed from the grid point being analyzed by the use of a cut 
off radius.  
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The advantage of the streamline-based covariance-localization is its close link to the 
underlying physics of flow compared to a simple distance-dependent covariance function as used 
in the past.16 For fluid flow in highly heterogeneous media, the presence of flow channels can 
cause production response to be affected by permeabilities at large distances from the well. A 
distance dependent correlation function will artificially dampen the influence of these 
permeabilities. On the other hand, the streamline-derived sensitivities rigorously define the 
region of influence of the production data. Furthermore, it also quantifies the relative impact of 
grid block parameters on the production response.  This makes the sensitivity-based covariance 
localization particularly attractive. The major steps in our proposed approach are outlined below. 
 
• Ensemble Forecast Step. Using our prior knowledge of geology and static data, we generate 

a suite of reservoir models. We compute the dynamic response from each of these models up 
to the next available observation time using either a streamline or a finite-difference 
simulator. Simultaneously, we obtain the streamline-derived analytic sensitivities for the grid 
block parameters.  For finite-difference simulators, these require an additional step of 
generating the streamlines and computing the time of flight15. 

• Covariance Localization. For the well observation and the time of interest, we threshold the 
sensitivities using a sufficiently small cut-off to identify a ‘region of influence’ for the 
observation.  We then stack the region of influence from all ensemble members to define a 
‘common region of influence’. In EnKF, we compute the cross-covariance with respect to the 
grid blocks within this region only. The cross covariance matrix is then weighted term-by-
term using a covariance filter function derived from the sensitivities. This filter function has 
a maximum value of 1.0 and progressively decreases as the magnitude of the sensitivities 
decreases. It is simply a normalization of the absolute values of the sensitivities computed 
from all ensemble members. 

• The Ensemble Update. The cross-covariances computed in the previous steps are used to 
first estimate the ‘Kalman Gain’ which relates changes in model parameters to the data misfit 
(Eq. 6 discussed later). Finally, the ensemble members are updated using the ‘Kalman 
Update’ equation (Eq. 4 given later). The procedure is repeated until all the production data 
are assimilated.    

 
A step-wise outline for our proposed approach is given in the flow chart in Fig. 1. It only 
requires an additional step of sensitivity computation and covariance localization compared to a 
standard EnKF implementation. Because streamline-based sensitivities can be obtained easily 
during forward flow simulation, the extra computational overhead is minimal.  
 
The Benefits of Covariance Localization. In a previous paper, we illustrated the benefits of 
covariance localization using information from the streamline trajectories.10 The standard EnKF 
approach developed by Evensen18, 19 and later introduced to petroleum engineering literature by 
Nævdal et al6 was shown to be incapable of reproducing the bimodal nature of the permeability 
histogram after a sequence of updates. The bimodal permeability histogram was transformed into 
a Gaussian distribution that could not reproduce the connectivities of low and high 
permeabilities. Covariance localization, on the other hand, helped maintain the bimodal nature of 
the permeability histogram and was capable of retaining many of the geologic features present in 
the initial realizations.   
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 In this section, we illustrate the necessity and implications of our proposed sensitivity-based 
covariance localization in EnKF using a 2D synthetic example. Our goal is to update 
permeability distribution using waterflood response in a five-spot pattern.  We use the standard 
EnKF with flow simulation on a 41x41 grid. Three different ensemble sizes for permeability 
distribution were used: 40, 100 and 400.  The reference permeability field is shown in Fig. 2. 
Also superimposed are the streamline trajectories and time of flight. Fig. 3 shows the streamline 
trajectories and the normalized sensitivities to water-cut for two producing wells for a particular 
realization for a specific time.  

We can realize the significance of the covariance localization by examining the eigenvalue 
spectrum of the parameter covariance matrix.16 For this purpose, we compare the results from the 
standard EnKF with our proposed sensitivity-based covariance localization, referred to as the 
‘conditioned EnKF’. Fig. 4 shows the eigenvalue spectrum for the permeability covariance 
matrix after a sequence of EnKF updates for three different ensemble sizes. Assuming that the 
400-member ensemble specifies a realistic eigenvalue spectrum, we can see that using the 
conditioned EnKF tends to retain the character of the ‘true’ spectrum. However, without 
covariance localization, the standard EnKF leads to a steep drop in the spectrum, which means 
that there is insufficient projection of the variance in the direction of the trailing eigenvectors. 
The low energy present in these directions results in a smaller effective ensemble size, reducing 
the search space of the model parameters and resulting in a poorer estimation of the covariances. 
Therefore, without localization the covariance structure is easily degraded, leading to poor 
parameter estimates and potentially filter divergence.  

Fig. 5 shows the updated permeability distribution after assimilating water-cut data using 
EnKF with and without covariance localization. Clearly, without covariance localization, the 
changes to the permeability field appear to be more random and the updated field shows 
significant deviations from the initial permeability distribution (Fig. 5b). However, using the 
conditioned EnKF, we are able to preserve most of the features of the prior model. The changes 
are hard to discern because they are specifically targeted and kept minimal (Fig.  5c). This allows 
us to preserve geologic features during history matching. To illustrate further the implications of 
the covariance localization, in Figs. 6a and 6b we have shown the cross-covariance between the 
water-cut for one of the wells and the grid block permeabilities for a particular assimilation time. 
We can see that the standard EnKF shows spuriously large cross-covariance for distant grid 
blocks and these are effectively damped through the localization. 
 
Implementation of the EnKF and Calculation of Streamline-based Sensitivities   
 
This section briefly discusses the EnKF and the implementation of our proposed enhancements 
using the streamline-derived sensitivities.  
 
The Reservoir State Vector. In EnKF, the true state vector, yk, that we are trying to estimate at 
time k, could include static variables s

km  (e.g. permeability, porosity), dynamic variables d
km  (e.g. 

pressure, phase saturation), the production data dk (e.g. bottom-hole pressure, water-cut and gas-
oil ratio at the wells) and other observed responses, for example, 4-D seismic surveys. Static 
information from well logs, core data and seismic surveys along with geologic information helps 
us build a set of realizations based on the prior knowledge. Equivalently, this can be interpreted 
as random samples from the prior probability distribution function (pdf) of these parameters. A 
large enough set of realizations would capture the dispersion in these parameters and the 
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covariance matrix of these parameters reflects the variability around an expected value. The 
EnKF uses this ensemble of realizations to compute a mean and a covariance of the model 
parameters.  

The ensemble of state vectors is represented by Eq. 1 below. 
 
{ }p
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p
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where the state vector p
ky  for each realization at time k is defined by Eq. 2. 
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The superscript p denotes prior, s stands for static and, d stands for dynamic. Also, Ne represents 
the number of ensemble members.  
 
The EnKF Forecast and Update. The EnKF uses a forecast step to evolve the state vector using 
the dynamics of the physical phenomena under study. In reservoir simulation, this involves 
running the numerical simulator up to the time when an observation is available. This can be 
represented as follows. 
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where f represents simulation from time k-1 to time k. Note that the static variables like 
permeability and porosity do not change in the forecast step. The forecast step is followed by the 
update step whereby the state variables are updated using the Kalman update equation as 
follows18,19 
 

( )p
kk
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k

u
k ΗΨDΚΨΨ −+=  ……………………..……….. (4) 

 
The superscript u denotes updated and p denotes prior. Here, the matrix K is the Kalman gain 
and the matrix D represents an ensemble of sampled observations, both defined later. The 
measurement matrix H just selects the calculated production response from the state vector and 
is a trivial matrix given below. 
 

[ ]Ι0Η =   ………………..…………...…………...….… (5) 
 
where I is the identity matrix. The Kalman gain matrix is computed as follows18,19 
 

( ) 1−
ΨΨ += D

TpTp CΗΗCΗCΚ  ……………………......… (6)  
 
where p

ΨC  represents the state vector covariance matrix and CD represents the observation 
covariance matrix. The ensemble of sampled observations Dk can be represented as follows 
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eNkkkk ,2,1, dddD …=  …………………..…..…… (7) 
 

ikik εdd +=,  …………………………….……………... (8) 
 
where dk represents a vector of production data measured at time k, perturbed by the data noise εi  
assumed to be Gaussian and uncorrelated in time.  

Because the true state vector is not known, we approximate it with the mean of the ensemble. 
Then the covariance matrix p

ΨC  can be estimated at any point in time.  
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Because the vector y contains both the model parameters m and the measurements d, the 

covariance matrix can be re-expressed as  
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Thus, the full covariance matrix consists of four sub-matrices which are defined below 
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In the Kalman gain equation the covariance matrix in Eq. 10 can be computed, but is not 
necessary. In fact, the measurement matrix H selects only certain sub-matrices within the entire 
state-vector covariance, specifically the cross-covariance terms and the data covariances. Thus, 
in practice there is no need to compute the full covariance matrix, which can be extremely time-
consuming. Recognizing the fact that Cmd is the cross-covariance between the data and model 
parameters, we propose to condition this matrix using the streamline-derived analytic 
sensitivities, which define a region of influence of the data.  

We weight the terms in the cross-covariance matrix by a weighting function determined from 
the streamline-derived sensitivities. The covariance matrix is redefined as  
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where the operation ρ° in Eq. 15 denotes the Schur product operator which is an element-by-
element multiplication procedure.16,17 The term ρ is a weighting function acting as a ‘covariance 
filter’ and contains the information extracted from the sensitivities between the predicted flow 
response and the model parameters. Note that sensitivity-based covariance filter includes flow 
path information and the relationship between changes in the production response at wells to 
changes in the model parameters (see Fig. 3b).  

The weighting function ρ is defined as a matrix with the column j (referring to a particular 
well) containing the weights as shown in Fig. 3b for the grid locations i as shown in Fig. 3a. 
Wherever the sensitivities are below a threshold cut-off, the weighting function is set to zero. 
This ensures that erroneously large covariances computed for distant locations without data 
support are blocked out. Also, using the normalized sensitivities give a smoother transition to the 
cut-off. We build the weighting function at each assimilation time for each well, thereby creating 
an area of influence for each measurement weighted by their relative significance.  
 
Sensitivity Computations. We briefly discuss here the streamline-based sensitivity computation 
for completeness. The details can be found elsewhere.1,11-14 First, we can compute the streamline 
travel time or time-of-flight sensitivities analytically as simple integrals along streamlines. For 
example, the time-of-flight sensitivity with respect to permeability is given by1 

 
 
…………...........…..……... (16) 
 

 
where the integrals are evaluated along streamlines and the ‘slowness’ which is the reciprocal of 
interstitial velocity  is defined as  
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These quantities are available after a forward run of the streamline simulator or can be 

derived from a finite-difference simulator based on the inter-block fluid fluxes.15 
 
Water-Cut Sensitivity. Using the compressible streamline formulation, the sensitivity of the 
arrival time t of a particular water cut for model parameter m (permeability in this case) can be 
defined as11 
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where c represents the divergence of flux, tu∇⋅
G along the streamline and can be computed from 

the velocity field.. The sensitivity of water-cut at a particular time can then be computed via 
chain rule.12 
 
Gas-Oil Ratio Sensitivity. The sensitivity of the arrival time t of a particular value of gas-oil ratio 
to model parameter m can be defined as11 

 
 
 
 
….....…. (19) 
 

 
 
 
where c represents the divergence of flux as before. Again, the sensitivity of gas-oil ratio at a 
particular time can be obtained by chain rule of differentiation.12 
 
The Covariance Filter, ρ. Given these streamline-based sensitivities, we can now populate the 
matrix ρ. The sensitivities are rescaled to a maximum of one and a minimum of zero. The matrix 
ρ then contains information about the streamline trajectory and the relative importance of each of 
the gridblocks to the production response of water-cut or gas-oil ratio. The fact that the 
covariance localization is flow-relevant is crucial here. The sensitivities ensure that the 
gridblocks that are adapted are indeed related to the measurements and no unwanted averaging 
takes place, thereby preserving permeability connectivity. 
 
Errors in the Covariance Matrix and the Effect of Ensemble Size. Following the approach of 
Hamill and Whitaker16, we show how errors in the covariance matrix are related to the ensemble 
size for a simple two-dimensional example. In fact, based on this result, we can infer that the 
covariance localization used here has similar effects as increasing the ensemble size. 

Consider a bi-variate random vector ZT=(X, Y). An initial realization of this random vector 
may be denoted by zp

T=(xp, yp). The covariance matrix P of this random vector can be written as 
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 The error in estimating the covariances between X and Y are related to ensemble size n 
and the true correlation ρ by16 
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We can see that an increase in the ensemble size ‘n’ reduces the error in predicting the 
covariance between the variables, X and Y. We can compare the error in the covariance with the 
expected value of the covariance and call it the relative error. 
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Fig. 7 shows how the error in the covariances varies with ensemble size and with the 

coefficient of correlation. The results are intuitive. With increasing correlation, the second 
variable Y is predicted with less uncertainty or with less variance in the predicted estimate. Thus, 
the effect of a covariance estimation error is reduced with greater correlation between the 
variables. As the correlation decreases, the relative magnitude of the error is higher, and the 
prediction variance of the estimate is also higher, consequently, the errors increase. With a larger 
set of realizations of the random vector, it is possible to obtain an estimate of the true covariance 
with lesser inaccuracies, hence the error decreases. The covariance localization attempts to 
reduce the error by keeping ρ high within the region of influence. 

 
Application and Discussion 
 
We demonstrate the application and advantages of the Conditioned EnKF using two examples. 
First, we use the benchmark SPE-9 case to illustrate the applicability for general three-phase 
flow conditions.11 Next, we illustrate the practical feasibility of our proposed approach using a 
field example that involves integrating 20 years of water-cut data.  

 
The SPE-9 Example. The SPE-9 test case was used to demonstrate the application of the 
Conditioned EnKF to a 3- phase example. An ensemble of 60 realizations for the permeability 
field was generated geostatistically using the well data.20 One of the realizations was used as a 
reference case and the water-cut and gas-oil ratio corresponding to this permeability field was 
used as observed measurements. For flow simulation, we used the commercial streamline 
simulator FRONTSIM®.  

We history matched the water-cut and GOR response using the standard EnKF and the 
Conditioned EnKF. The total production history was available for a period of 900 days. We 
assimilated production data for 570 days, every 60 days.  Next, using the updated models at the 
end of 570 days, we forecast the production response for the next 330 days. 

Fig. 8 shows a comparison of the initial and updated gas-oil ratio and water cut for the 
Conditioned EnKF. We can see that within the specified noise tolerances, the technique is 
capable of matching the observed history for the first 570 days. The next 330 days is the 
prediction interval and as expected, the spread in the predictions from different ensemble 
members is considerably reduced after assimilating the production data. It is worth mentioning 
here that similar performance was also observed from the standard EnKF for this example. 

The advantages of the covariance localization for the Conditioned EnKF can be seen after 
analyzing the final permeability maps. Fig. 9 compares the updated permeabilities for one 
realization from the standard and conditioned EnKF techniques. As can be seen the standard 
EnKF tends to cause permeabilities to overshoot and to create localized patches of high and low 
permeabilities. Moreover, the updated field does not seem to be consistent with the initial model. 
However, with the conditioned EnKF, the updated permeabilities are more consistent with the 
prior model and honor the geologic information present in the initial model. We also do not 
observe any overshooting of permeability at any location. 
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The Goldsmith Field Case. We now discuss the application of the standard EnKF to a field case 
and compare the results with the Conditioned EnKF. The field case is from the Gold Smith San 
Andres Unit GSAU, a dolomite formation in west Texas. The pilot area in Fig. 10 consists of 
nine inverted five-spot patterns covering approximately 320 acres with an average thickness of 
100 ft. The area has 20 years of waterflood production history before the initiation of the CO2 
project in 1996. The study area includes 11 injectors and 31 producers. Production history 
information from 9 producers is used because only these have significant water cut response. The 
detailed production rate and the well schedule, including infill drilling, well conversions, and 
well shut-in can be found elsewhere.14 The study area was discretized into 58x53x10 grid 
blocks. The initial 50 realizations of porosity and permeability were obtained using sequential 
Gaussian co-simulation conditioned to well and seismic data. Fig. 11a shows one of the initial 
realizations. Notice that the permeability histogram is non-Gaussian with multi-modal features. 

Using the standard EnKF, we conditioned the ensemble of realizations to the water-cut 
history. Fig. 11b shows one of the ensemble members after a sequence of updates. Notice that 
the permeability distribution is now completely Gaussian. The standard EnKF was unable to 
preserve the initial multimodal nature of the permeability histogram leading to loss of geologic 
structure in the permeability field. In addition, initially the ensemble members have 
permeabilities ranging from 0.005 md to 500 md. After assimilating the water-cut data, the 
updated permeabilities range between 1.6x10-5 md and 1.8x105 md. Others have also observed 
such overshooting/undershooting problems.4-6  

Next, we use the conditioned EnKF to update the realizations to honor the production data. 
The permeability field in Fig. 11c is the result of using our covariance localization scheme. 
Clearly, we are able to preserve the multimodal character of the permeability distribution. The 
water-cut matches are shown in Fig. 12 and the conditioned EnKF performs quite well in 
matching production data. The same kind of match was also obtained using the standard EnKF.  

Fig. 13 shows the cross-covariance between the water-cut at a particular well and the 
permeabilities in the rest of the field for a certain time step. With the unconditioned standard 
EnKF with a limited ensemble size, the covariance matrix can be seen to be noisy and there is a 
strong, but inaccurate, relation to distant grid blocks. However, this is not the case with the 
Conditioned EnKF where the support is more localized and the effect of distant grid blocks has 
been reduced. Thus, the changes are minimized and targeted by the production response. This is 
why we are able to preserve much of the character of the initial permeability distribution. 
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Run the reservoir simulator up to next available
observation time for each ensemble member

Run the reservoir simulator up to next available
observation time for each ensemble member

Read simulator output and compute data misfitRead simulator output and compute data misfit

If observation
available

If observation
available

ExitExit

Compute the Kalman Gain MatrixCompute the Kalman Gain Matrix

Trace streamlines and compute sensitivitiesTrace streamlines and compute sensitivities

YES

Start with a ensemble of reservoir states
and observations to be assimilated

Start with a ensemble of reservoir states
and observations to be assimilated

Compute the covariances localized by the 
sensitivity derived covariance filter

Compute the covariances localized by the 
sensitivity derived covariance filter

Update each member of the ensembleUpdate each member of the ensemble

Yes

No

 
 

Figure 1. Algorithm for the Conditioned EnKF. The conditioning step appears only when 
computing the Kalman Gain Matrix. 

 
 

 
Figure 2. Streamlines and the Time-Of-Flight throughout the field for the reference model. 
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a

b

 
Figure 3. The streamline trajectory and the normalized streamline-derived analytic 

sensitivities to water-cut for two wells for a selected realization in the ensemble.  
 
 
 

Eigenvalues With No 
Covariance Localization

 
Figure 4. The Eigenvalue spectrum for different ensemble sizes. The 400-member ensemble 

is assumed to be representing the true spectrum. Reducing the ensemble size tends to 
degrade the eigenvalue spectrum. However, with covariance localization, the tendency to 

have reduced variance in the trailing eigen-directions is mitigated.  
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a          b   

       c  
Figure 5. The resultant log-permeability fields for one realization. (a) is the initial model, 
(b) is the final permeability field obtained from the Standard EnKF and (c) is from the 

Conditioned EnKF. The permeability fields were conditioned to water-cut data from the 
reference field.  

 
 

 
a          b 

Figure 6. The cross-covariance between water-cut and permeability at a certain time for 
one well computed for an ensemble size of 40.  (a) shows the cross-covariance computed 

from the ensemble, (b) is the cross-covariance computed from the ensemble and 
conditioned using the sensitivities 
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Figure 7. Variation of the error in the cross-covariance with ensemble size and the 

coefficient of correlation. Notice that even with a high correlation, the relative error is large 
for small ensemble sizes emphasizing the need for covariance localization. 

 
 
 
 
 

 
 

Figure 8a. The water-cut for 3 sample wells showing the initial water-cut spread at the top 
and the history matched water-cut at the bottom for the corresponding wells. The history 

match was performed for 570 days and predictions run for the next 330 days. 
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Figure 8b. The GOR for 3 sample wells. The initial GOR spread is at the top and the final 
history matched GOR at the bottom. The history match was performed for 570 days and 

predictions run for the next 330 days. 
 

 
a          b    

     c 
Figure 9. Comparison of the initial and updated permeability for one representative 

ensemble member. (a) Initial model (b) Updated using the standard EnKF (c) Updated 
using the conditioned EnKF 
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Figure 10. Goldsmith study area; 9 producers with water cut data highlighted in yellow; Injectors 
in blue (from He and Datta-Gupta.14 ) 

 

 
a: Initial Model              b: Updated Model,  Standard EnKF         c: Updated Model, 
                                                                                                      Conditioned 

EnKF 
Figure 11. The updated permeabilities for the Standard EnKF and the Conditioned EnKF 

and the respective log-permeability histograms.  
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Figure 12a. The initial water-cut at four of the wells in the field for 50 ensemble 

realizations 
 
 

 
Figure 12b. The matched water-cut at four of the wells in the field for 50 ensemble 

realizations. 
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a                    b 

Figure 13. The cross-covariance computed between the water-cut at a well and the 
permeabilities in the field.  (a) shows the cross-covariance using 50 ensemble members with 
the Standard EnKF and (b) shows the same for the Conditioned EnKF. Note how the effect 
of distant data points has been reduced or eliminated using streamline-derived sensitivity 

conditioning. 
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CONCLUSIONS 

 
Part-I 
 
A computationally efficient and practical approach to history matching three-phase flow data is 
presented. We have validated the technique by applying it to both synthetic and field cases. The 
importance of a pressure match in any three-phase production integration has been emphasized 
and in our application, we have combined the streamline technique for water-cut and GOR 
arrival time match with low-frequency asymptotic method for pressure inversion in reconciling 
geologic model to three-phase production data. To facilitate the travel time inversion of the non-
monotonic GOR data, we present a transformation of the production data and provide the 
appropriate streamline-based sensitivities for data inversion.  Some specific conclusions are 
summarized below. 
 

• We have presented a method for history matching three-phase flow that involves 
simultaneous inversion of water-cut, GOR and bottom-hole flowing pressure data. 
Whereas the water-cut and GOR related sensitivities are obtained using the streamline-
based approach, we have used a low frequency asymptotic approach for computing the 
pressure sensitivities. 

• The effectiveness of the generalized travel time inversion is demonstrated using synthetic 
and field examples. We have shown that a simple transformation of the production data 
makes it much more amenable to the application of the GTTI.  

•  Although we have not explicitly accounted for pressure in our saturation sensitivity 
formulation, we have incorporated the zero frequency component of a low-frequency 
asymptotic approach to pressure inversion into our workflow while preserving the 
efficiency of the streamline-based inversion. The seamless incorporation of pressure 
inversion in our workflow ensures a simultaneous match on water-cut, GOR and 
pressure. 

• The practical applicability of our proposed approach has been demonstrated by its 
application to synthetic and field cases. 

 

Part-II 
 
We have presented an enhancement to the standard EnKF by utilizing parameter sensitivities to 
localize the covariance matrix.  Our approach uses streamline-based sensitivities from the 
selective flow path information and weights the cross-covariance matrix using a covariance 
filter. The approach avoids much of the problems associated with standard EnKF related to 
parameter overshoots and loss of geologic realism during history matching. The synthetic 
example and the field applications presented demonstrate the practical utility and robustness of 
our approach. Some specific conclusions are summarized below. 
 
• The use of streamline-derived analytic sensitivities for covariance localization mitigates and 

reduces some of the reported problems in the use of the EnKF related to overshooting of the 
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reservoir parameters and the loss of geologic realism for strongly non-linear problems or 
non-Gaussian distributions, particularly for practically feasible ensemble sizes for field 
applications (50~100).  

• The ability of the Conditioned EnKF to retain the shape of the non-Gaussian nature of the 
histograms lends to a more reasonable updated model, which retains spatial continuity and 
reproduces the flow barriers and flow channels. This key feature improves the quality and 
confidence of the forecasts from the history-matched models since they are consistent with 
geologic information.  

• Our approach can also lead to a significant saving in computational effort. We have shown 
that in order to realize the same benefits of our proposed covariance localization, the standard 
EnKF would require a significantly larger ensemble size. This can make the approach 
computationally very expensive, particularly for field scale applications. 
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LIST OF ACRONYMS AND ABBREVIATIONS 

 
Part-I 

 
gwo BBB ,,  = formation volume factor, Oil, Water, Gas 

c = divergence of total flux 
gwo fff ,,  = fractional flow, Oil, Water, Gas 

k = permeability 
kro, krw ,krg = relative permeability, Oil, Water, Gas 
krog = relative permeability to oil (oil-gas-connate water) 
Krow = relative permeability to oil (oil-water) 
M = reservoir parameter 
P = pressure 
Po=zero-th order pressure amplitude 
P
�

=zero frequency pressure component 

gwo qqq ,,  = volumetric flux, Oil, Water, Gas 
Qo, Qw, Qg =  production rate, Oil, Water, Gas 
Rs = solution gas oil ratio 

gwo SSS ,,  = saturation, Oil, Water, Gas 
t = time 
uG  = total Darcy velocity 
τ = time of flight 
φ  = porosity 
ρ  = effective density 
χψ ,  = bi-streamfunctions 

gwo μμμ ,,   = viscosity, Oil, Water, Gas 

tλ  = total mobility 
 

 
Part-II 
 

p
ky =Prior model-parameter state vector, at time k 
py = Mean of the prior model-parameter state vector 
s
km = Static variable vector at time k 
s
km = Dynamic variable vector at time k 

dk= Observed or calculated data 
K= Kalman gain 
Dk = Ensemble observation at time k 

 
H = Measurement matrix 
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p
ΨC = State vector covariance matrix 

tp HCΨ  = Model data cross covariance matrix 
tp HHCΨ  = Calculated data covariance matrix 

DC = Data observation covariance matrix 

eN = Number of members in the ensemble 

kΨ = Ensemble of state vectors 

iε  = White random noise data observation 
ρ  = Correlation function 
τ  = Streamline time of flight 
φ   = Porosity 
So, Sw, Sg=Saturation, Oil, Water, Gas 
fo, fw, fg=Fractional Flow, Oil, Water, Gas 
Bo, Bw, Bg=Formation Volume Factor, Oil, Water, Gas 
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