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Abstract

We calculate the optical diffraction radiation generated by a bunch of high energy par-
ticles as they pass through a round hole within an annular metallic ring. We derive ex-
pressions for the differential angular spectrum in the far-field and the intensities of the
horizontal and vertical polarizations. The sensitivity of the spectrum to changes in beam
size and position is shown. The total photon yield from the bunch is calculated and used to
set limits on the detectable wavelengths.



1 Introduction

The use of optical diffraction radiation (ODR) as a diagiostol has increased in recent years.
The potential of this technique has been demonstrated eralesxperiments at KEK [1], APS
[2], FLASH [3] and possibly other facilities. These expeeims were performed in extraction
beam lines of lepton machines. However this technique com la¢ applied to high energy
hadron beams. In this report we consider the ODR produceddiylseams with the target as a
round hole and apply the results to the Tevatron.

This radiation is produced when a beam passes in the viawi@dyconducting target. The
electro-magnetic fields due to the beam induce currents etatiget and as the beam propa-
gates, the currents change in time producing radiationindtie direction of beam propagation
and along the direction of specular reflection from the targhis latter radiation, also termed
backward diffraction radiation (BDR), is more useful foagnostics since it can be directed
out at the same longitudinal location as the target. Thigtemh is different from optical tran-
sition radiation (OTR) in which the beam passes through ahtatget. Transition radiation
is not suitable for continuous monitoring of a beam in a delfidue to the beam energy loss
and emittance growth and the fact that the target may be dean&tpwever the techniques for
analyzing ODR are similar in many respects to those for OTR.

Measurements of the radiation intensity either in the nedd Br far-field have been used
to determine beam positions and sizes. For example, the biearand beam position of a 1.28
GeV electron beam were measured in an extraction beam liK&kt[1] using the far-field
angular distribution of the radiation. The near-field image used to monitor the relative beam
size of a 7 GeV electron beam in the extraction line at APSIf2principle, measurements of
the beam divergence are also possible using the interfer@©DR between two targets, as
has been done with OTR.

This paper is motivated by the desire to use this techniqumliiders, especially for the
LHC and possibly for future colliders envisaged such as themrcollider. A brief report on
these prospects was presented earlier [4]. If the technyigles beam measurements with suf-
ficient accuracy and reliability then the non-invasive natwould allow continuous monitoring
during the length of a luminosity run. This would be valuaibkhe beam can be imaged close
to the interaction points.

Synchrotron radiation is already used as a non-invasivgndistic tool in the Tevatron and
will also be used in the LHC. The principal advantage of ODEh&t it can be generated in a
straight section and therefore used for imaging in an erpartal insertion. The disadvantage
is that the ODR flux is less copious than synchrotron radia¢@@SR) and imaging will take
longer than with OSR.

In Section 2 we briefly discuss the parameters of differedrdra colliders. In Section 3
we derive the basic results for the angular differentialcspen of ODR from a round hole
due to a bunch. We apply these results in Section 4 to find thgtsety of the spectrum to
beam size and offset changes. In Section 5, we calculatexfrecteed photon yield from a
bunch per turn as a function of frequency and we use this tatiedrequency range where a
sufficiently strong ODR signal can be obtained. In Sectione6dw a brief comparison of the
ODR spectrum with the OTR spectrum. We briefly list in Sectfothe experimental issues



Tevatron RHIC LHC

Energy [GeV] 980 250 7000
Bunch intensity 2.7x10' | 2x10* | 1.1x10t

Beam size fim] 400 1012 807
Beam div/opening angle | 2.9x1073 | 1.2x107° | 5.7x10°2

Number of bunches 36 55— 120 2808

Revolution frequency [kHz] 47.6 78.2 11.2

Table 1: Table of parameters for hadron colliders

associated with measuring ODR when two beams are presergntM@ith our conclusions in
Section 8. We will use CGS units throughout.

2 Hadron colliders

Optical transition radiation (OTR) has been used in the ffemaat injection energy to image
the beam [6]. At collision this technique is not feasibletbbecause of the impact on beam
quality via multiple scattering in the target and the damiagene target itself. However ODR
is non-intercepting and has the potential to be a usefulndisiic tool at collision energy. This
technique also has potential in the LHC where we envisiohglaing ODR targets on both
sides of the interaction point (IP) and before the first imt#&ion region quadrupole would allow
a non-invasive measurement of the beam size at the IP. At RkH@nergy is lower so one
would have to use longer wavelength ODR for a substantightiad flux.

Table 1 shows some of the key parameters for these hadrddessll The beam size in
the Tevatron was calculated at CO while for RHIC and the LHCations in front of the first
interaction region quadrupole were chosen. The ratio obtem divergence to the opening
angle of the radiation~ 1/y) is very small in all the colliders, hence the distortion bét
spectrum due to the beam divergence should be negligible.

3 ODR from a round hole

The fields induced by a beam as it passes through a hole depetits beam energy, the beam
size, the beam position relative to the center of the holetla@dhape of the hole. In this paper
we consider a round hole as a target. First we analyse thes figch a single particle and
generalize results obtained many years ago by Ter-Mikaghp Next we consider the ODR
fields and spectrum generated by a Gaussian bunch of particle

3.1 Single particle fields

Consider the case where a single particle moving at cong&otity v goes through a round
annulus made of conducting material with inner and outeii G#da,,, anda,,; respectively.
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The fields of the particle induce fields on the surface of theuars. We introduce the Fourier
transform of the fields as

E, — / Epxe “dw Ey= / Eye “dw (1)

The Fourier transformed transverse fields of a particle ngat constant velocity along the
Zaxis are given by [5]

qa X
E(}J,X: EEeIwZ/VKl(ap>
_99Y Jawzyv
Ewy = nvpe' Ky (ap) (2

The origin of coordinates is at the center of the hole and rtiqdar the hole is in the=0
plane.qis the particle charge, and

w_ K 2 1/2
0=—=-, p=(R+
=y Pl ¥

K, is a modified Bessel function of order one.

3.1.1 Particle at the center of target

We will first consider the simpler case of the particle moving center of the target. We will
derive equations for the fields and angular spectral digioh which will serve as a useful
check of the more general case when the particle is offset the center of the hole.

Consider the field at any arbitrary point on the surface oftble. Given the axial symmetry
of the target, we use polar coordinates. The coordinatepoird (x,y) on the target are

X=pCosp, y=psing

Then

Eox | _ 0Q cosQp
e ] e | Sy ®

We will calculate the fields at an arbitrary location usinglac diffraction theory. Within
this approximation of assuming scalar diffraction thearype valid, the fields from the entire
target at an arbitrary observation point P can be found lagnatting over the annulus

Ewx | ikga [ an - kR cosg
[E@y}— s . 00e [ a0 k(ap) | ot @)

whereR is the distance from the point on the target to the obsemvatnt P. If(x,y, z) are the
coordinates of P, then

R = [(x—pcosp)®+ (y— psing)?+ 2"/ (5)



Far field spectrum
The observation point P is assumed to be sufficiently far filoertarget so that all points on

the target have nearly the same phase from P. In this cas@eéae timensions of the target are

small compared to the distance from the target. This is there of Fraunhoffer diffraction.
If Ris the distance from the center of the hole to the point PR.e.[x? +y? +22|%/2, then
we assume here that,,a,; < R. Thus in the phase tergf® we expand

2 , .
R~R[1- Eg(xcosgoqtysmqo)]l/z ~ R—psin6,coq@ — @)

where we define

X = PpCOSEh, Y= PpSiNg, sinGP:p—l_\f’, E:ksinep (6)
Then
o | ik an e e o ioocosa_ o) | €00
B e e [ dekiap)exi-kocosa—a) | 5ot | )
To do theg integrals, we use the integral representation of the imtBgsesel functions
in pem .
J”(Z):ZT /0 exp—izcosy| cosnpdg (8)
Then o )
L _ cosp | _ 2m_ - COS@
/0 exp—ikp cos( ¢ m)][sinq,}— iJl(kp)[sinq,J (9)

The integral over the radius yields

Bout — 1 - _
A pApK, (ap)Ay(kp) = 5 (sl (Keou ) K, (@2ar) — 03 (Ko Kyt
—ay, [k, (kay, Ky (aay,) — ady (kay ) K,(aay,)] } (10)
Using the recurrence relations

X3 1 (X) = 2nJn(X) — X3, _1 (%), XK 1(X) = 2nKn(X) —XK|,_(X)

we can write a B B B
A n pdpKy(ap)dy(kp) = 153 [T (@ K) = T (@, K)] (11)
where _ L _
T(a;k) = —alkJy(ka)K, (aa) + aJ,(ka)K,(aa)] (12)
Thus the fields are
Eox | kgae® 1 = o | cosgs
| e [TMeasi - T(an) | o | 13)



The Poynting vector is

C- =
—ExB*=

S c *Q *\3 5
S= 41T ET[_BEZEXX_BEZEyy+B(|EX|2+|Ey|2)2] (14)

where we have used
Bx = —BEy7 By = BEX7 Bz: 0

The total energy deposited by the fields onto an element afd#as the time integral of
the projecteg Poynting vector

aw e
ﬂ_/_mdts-n (15)

whererTis the unit normal to the element. For an element orthogantile direction of propa-
gation or direction of specular reflection

dw ® Bc [
= as=1 [ EP+ IE ) = 2m [ dwllEun+ Eay]  (26)
Hence the differential angular spectrum is
w1 5 5
d0dw ~ QBCR2[|Ew,x| + [Ewyl] (17)

wheredQ is the solid angle subtended by the element at a distriicem the source.
Thus in the far field, the differential spectrum is

dw  1_ kqa ., 1 = —2
dQdw EBC( v ) K21 a2 [T (aout; k) — T (85: k)] (18)
Define a critical frequencyy, and dimensionless parameters, g as
yC w . Aout
W=-—, U=—, t=ysinB,, g=— (19)
Gin e P 8in

Then other parameters can be written in terms of these diomdass parameters bs= yu/(Ba;,),
a =u/(Ba,) etc and

T (Bous k)~ T (8 0|2 = <3>2{g[wo<igut>r<1<igu>+Jl<igut>r<o<lgu>1

B gk 59Kl
—[t%(%ut)Kl(%w+Jl<%ut>+<o<%u>]}

The angular spectral distribution thus is

AN 2
d006 — 2 e { S K o)+, G u)
(UK, (u) + 4y (SuK (1u>]}2 (20)
otgT/ g T g0

We comment on some features of this expression

6



e This spectrum depends on the magnitude of the inner ragjumly through the critical
frequencyx.

e The main dependence of the spectrum on the size of the targebugh the dimension-
less ratiog = a,;/&;,,. This is important since it suggests that the target hole bey
enlarged to allow more space for the beam while at the saneitinoreasing the outer
radius without changing the spectrum. The parameter tHatkange in this case is the
critical frequencyw, and consequently the dimensional frequeacy

Th differential spectrum may be found by integrating over $blid angle

dw dw 4 (v d?W t

v Jo dQdw /1-12/y?

Define the function

14 t 1 1 1 1 1

F,u:/dt {tJ—utK—quJ—utK—u
(9:u) o A L P 9lto(Z U)K, (QU) + 3, (FOU)Ko( FOU)]
1 1 1 1 .
—tdh(=sut) K, (=u) +J, (s ut)Ky(=Uu 22

(UK + 3, Gu Kol | 22)

The number of photor8N emittedby a single charged particle into a bandwidtihw is
dN 1 dw
which can be written as
1 Aw

wherea, = g?/(hc) ~ 1/137 is the fine structure constant. This depends on thevelf-
quencyu = w/ . and the relative bandwidihw/ c.

Example: Tevatron parameters

We evaluate the spectrum and the number of photons perlpddiche Tevatron. Energy
= 980 GeV, number of particles per bunbly = 2.7 x 101, Figure 1 shows the differential
angular spectrum as a function of the paramegdrsvith the frequency fixed ab = «. Figure
2 shows the spectrum as a function of the parameterat a fixed ratiog = 1.5. See the figure
captions for comments.

Figure 3 shows the number of photons per particle calculasaty the expression Eq (24)
and assuming@ = «. and a 1% bandwidth dkw/w = 0.01. The curve again shows that there
is little gain in intensity when the target size increasegobeg > 2.5. After some transverse
distance from the particle, its field has dropped to suffityelow values that no radiators in
the target can be excited and therefore there is no furtlveease in the ODR radiation with
increasing material in the target. The number of photongtechby a single particle in one pass
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Figure 1: The differential angular spectrum as a functiotihefratio of the outer and inner radii
of the targeiy = ay /&, and the angular variabte= ysing, at constanti= 1. Note that the
spectrum saturates as a functiorgdbr g > 3.

Figure 2: The differential angular spectrum as a functiothefratiou = w/w. and the angular
variablet = ysin6, at constanyy = 1.5. The spectrum peaks closeue= 1, i.e. close to the
critical frequencywy.
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Figure 3: The number of photons per particle as a functiorhefgarameteg emitted at the
critical frequencyw,. We observe that fog > 2, the number of photons increases slowly with

a.

through the center of the target can be found from this curwelis calculated for the critical
frequencyw.. For example at

g=11 =AN=144x10"

A very simple estimate for the number of photons emitted byiach in a single pass at the
frequencyuy is therefore

AN(bunch = Np x AN = 3.2 x 10°

This in fact is an underestimate since it assumes that diicjess are at the center of the
target and therefore furthest from the material of the tardemore precise estimate using the
density distribution of the bunch will be obtained in theldaling section.

Near field spectrum

Here we calculate the field distribution at a distance closeigh to the target that the phase
differences between different points on the target to theepkation point is significant. This is
the region of Fresnel diffraction.

Here in the expansion fd® we keep the next order term pyR. Thus

2 2
R — Ri1—2PPp 1/2 1%

P B Aa B 4
R62cos(g0 (pp)+R2] ~ R— psinf,coq ¢ (pp)+2

The integration for the fields contains the extra phase faotgikp?/(2R)] when compared to
the fields calculated in the far field approximation.



Define the dimensionless variables

P R _ a Aout yu kp 2

p=_— r=_- a=_—, g=——, N=-5, = = =NpP (25)
8in 8in 8in 8in 2pr 2R

Define the complex function

2

- a - K
sakr] - %iz | pau(ko)K, (aa)expiz]dp
/0 ’ le(%uthﬂ%up) explinp’jdp (26)

Then following similar steps as in the previous sectiorglitivs that the Fourier transforms
of the transverse electric fields are

| -t sgien) - swicn) [ S | @7

-

The angular spectral distribution is

dw 1 ¢ (
dQdw 2mBc

n?)?| [S(g;k) — S(1:K)] |2 (28)
The frequency spectrum is found by integrating over thedsaigle
dw 4 v d?W t

do Vo df)dcm/l—tz/yzdt 29)
Define the function
D(g,u,r) / dt—— t2/ iy | [S(gik,r) —S(L;k,1)] 2 (30)

The number of photons emittday a single charged particle into a bandwidtiAw is there-
fore

1 4 Aw
ANg, = (H—Baf)u D(g,u,r)z (31)

This depends on the inner radiag through the scaled variablgs= a,/a,,,r = R/a;,,u =
W/ We.

3.1.2 Particle offset from the center of target

Our final aim is to find the spectral distribution from a bundtparticles. Towards that end
we first need to know the field distribution from a particleseff from the center of the target.
The target is in the = 0 plane and the particle moves with uniform veloaitglong the z axis.

Figure 4 shows a sketch of the target with center at O, thecpears at B and the field on the
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R1

0Q =P,

Figure 4: The target centered at O is an annulus of inner sagjtand outer radiug, ;. B is
the location of the patrticle offset by a distaritirom the center of the target, A is the arbitrary
location on the target for the field calculation. In the figare the right, P is the point of
observation, Q is the projection of P onxe-y plane.

(QD\\

X

Figure 5: P is the observation point, an@leis the angle with the z axis ang is the angle
with the x axis made by the projection onto the x-y plane.
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target is calculated at point A. Again we use polar coordisaparticle at B has coordinates
(b, x) while point A has coordinatego, ¢) with respect to the center O. The distance of A
relative to the particle at B is

r, = [p?+b?—2pbcogx — ¢)]"/? (32)

while the separation along tt{g y) axes are individually

X=X, —Xg = PCOSP —bcosy, y=Yy,—Yg=psing—bsiny (33)
Hence the Fourier transforms of the transverse fields at A are

[wa ] _qaKy(ap,) { pcosp—bcosy

o p, psing—bsiny (34)

E&W

As beforeR is the distance of the observation point P from the locatighefield, thus

R = [(% — pcosp)?+ (yp — psing)? + 22|/

where(Xp, Yp, Zp) = (PpCOSEs, PpSiNgs, Zp) are the coordinates of the point P. Figure 5 shows
the relevant angle;, ¢-.

Integrating over the annulus, the fields from the entirediaag the point P are (using scalar
diffraction theory)

{ E@x} _ ik qa Aoyt /271 j (apL) p cosp — bcosy (35)

Ewy C2mnv o, psing — bsiny

Far field spectrum
We assume that the point P is sufficiently far from the target the far field approximation
is valid. The phase term is expanded as

KR dkR -
e _ e'_efikpcowffpp)
R R

wherek = ksin8p, 65 is the angle made by OP with taexis or sirf, = pp/R.
The integrations are simplified if we write the integrandsl@svatives with respect to vari-
ables that are not integrated. We note first that

akK,(ap,) [ pcos(<p—x)—b]
Ki(a — NP 3
[ ] ol@P) o, bpsin(¢— x)
Next we transform the fields to a frame rotated by angleith respect to théx,y) axes, i.e.
E, | | cosx siny Ewx
{ E, } - { —siny cosy } { Ewy } (36)
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Then using the derivative expressions above, we find

E,]_ ikqéeR|l & /aout 2n pcoto-a
[Ez}_ 2nv R | 83 | Ja, Jo dpdg pKy(ap, )e (37)

The double integral can be factorized into the product gjlsimtegrals by using the expansions

[ee]

Ko(a[p?+b?—2bpcog o — x)|Y?) = > In(ab)Kn(arp)en(@X)

[oe]

exp—ikpcos@—@p)] = 3 (—i)"n(kp)e"? %) (38)

N=—o0

The integration oveg is trivial and the double integral reduces to

00

ag 2n = )
H z/' ut/o dpdg pKy(ap, e POt %) — 21 5 (—i)"lz(ab)e "X %)

n<=o
< [ pnko)Ka(ap)dp
The integration ovep can be done symbolically using Mathematica [7] which yields
[ onoikatapide = K, (@Kn(aa) - ad(kaK,, (a)
— —EZJ’:‘?[EJH_l&a)Kn(aa)+aJn(Ea)Kn_1(aa)]

where recurrence relations for the Bessel functions wezd.ubhen defining a functiof(a; E)
similar to the one defined in Equation (12) in Section 3.1.1,

Tn(a;k) = —alkd,_;(ka)Kn(aa) + adn(ka)K,_,(aa)] (39)

n-1
After some further simplifications we can write

:E% icﬂln(ab)[Tn(aoutr K) — Tn(&n; k)] cosn(x — @) (40)

where
Ch=1 forn=0; Ch=2(-i)" forn>1

and the rotated fields are
{ E, } _ ikagq €
E, | mvk¥+a?) R

[(ab)cogn(x — @)]
n< o) sinn(x — ¢b)]

The fields in the lab framgE, x, Ey, y) are obtained by applying the inverse rotation
Ewx | | cosx —siny E,
{ Ewy } N { siny cosy } [ E, (42)
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Limit of zero offset
Before proceeding further, we first check that the expressderived here reduce to the
expressions derived in the previous sub-section in the timat the offset is zero.

X W,y 2

Now using the fact that

. In(ab)  «
llalino b 55”71
Then only then = 1 term in the sum contributes and we have
. Eox | _ kqa gkR COS@:
b,')'{ﬂo{ Ewy ] T Tk +a?) R [Ty(Bou; K) — Ty (8 K)] singk (43)

These expressions agree with the expressions in Equatyulétived earlier.
We return now to the case with offset. The differential aagsgpectrum is proportional to
the square of the absolute norm which is preserved underaasa

|Ew,x|2+ |Eoo,y|2 = |E1|2+ |E2|2

Hence the differential angular spectrum is given by

w1 5 5
d0dw ~ QBCR2[|E1| +[E,|] (44)
The spectrum from a single particle therefore is
d>w 1 kgqa .
m|partic|e: QBC (2 +a?) Z Canan (45)
where we have defined
Vim = Um{ln(ab)ly(ab)cosm(x — @) cosn(x — @) (46)
+mn% sinm(x — @) sinn(x — @)} 47
Um = [Tm(aout:K) = Tm(Bin: K] [Tn(@ou: k) — Tn(8yn: )] (48)
It is helpful to use the scaled variablgsl, t introduced in Equation (19). Then
W tu kga  \?_ ay, 1
“~Ba, <" a7 Ba, <nv(k2+a2>) ) e @
Furthermore
— = u ut u ut u
Tn@asi k)~ (@ K] = —3 {g[wml(gﬁ K ) +-In( " K 1)
ut u ut u
2 (Kl )+ 05 o a1 (50)
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HenceUm(g,u,t) is only a function of the scaled variablgsu,t but does not depend on the
inner radiusa,,. Similarly we define the scaled offset

b u
bs=—, = ab=bs=
S ain SB
This shows tha¥m (g, u,t,bs) is also independent of the inner apertase
SinceVm is real and symmetric under the interchange of indices, wencéde

5 S Crivim = %mzo 3 (ClG+CiCoVi
Using the definition o€, we obtain
Cn+tCy, = 0 modd
= 4(-1)™2  meven
CiCi+CiCh = 0 m—nodd
= 8(—1)™M"/2  m_neven

Hence
d2W 1 ay.2 1 m/2
d0de partice(@WLD.X) = SBc(_C) W[VOO+4m: .4““(—1) Vino
+4 Z Z (_1)(m—n)/2an] (51)

mM=1n=1; |m—n|=even
In the limit that the offset goes to zero, this reduces to

_dw 1 1
é@om‘ particle — Qﬁc(%)zmull (52)
which agrees with the expression in Equation (20).

The dependence of the single particle spectrum on the péeesxg, u,t) is similar to that
seen in Figures 1 and 2. Figure 6 shows the dependence oftyle particle spectrum on the
angle of observation for two different offsdifrom the center of the hole. With an increased
offset the particle is closer to the material of the targstiteng in a larger radiation flux .

The intensities of the different polarizations can be fofrodh the components of the elec-
tric field. From Equation 42 it follows that

i jkR
Eor =~ R 3 ColT i)~ Ty )]
X {Iﬁ,(ab) cogn(x — @ )] cosy + nlng{abm sinn(x — )] sinx} (53)
i jkR
Ewy = —W(:(ETGZ) eIR ;Cn[Tn(aout;k) — Tn(ajp:K)]

X {Iﬁ,(ab) cogn(x — @ )] sinx — nlnfﬂ)m sinin(x — @)] cosx} (54)
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Figure 6: The differential angular spectrum from a singlgipie vs the angle of observation
(t = ysinBy) with two different offsetd = 0 andb = 0.5a,,. Other parameter values are fixed
atg=1.3,u=1,x =0, @ = 1r/4. With non-zero offset, both the minimum and the maximum
value of the flux increases. Note that the position of th maxmalso changes with the offset.

Hence it follows that the intensities of the two polarizasare given by

T80 = ST 5 Ay
+4W§1n:1;mzn:w<—1><m”>/2vrﬁ;¥] (55)
where
Voo = Unnliy(ab) cosim(x — )] cosy + m'™ 2 sinfm(x — gy)]sinx
<[1p(@b) cosgn(X — )] cosx + "™ sinin(x — gy)] sinX (56)
W = Unnllp(ab) cogm(x — gp)]sing —m'™ 2 sinjm(x — )] cosx]
<[1p(@b) cosin(x — )] sinx "™ o sinjn(x — gy)] cos (57)

We will use the polarized intensities to examine their g@nti to beam parameters in the
next section.

3.2 Spectrum from a bunch

So far we've dealt with the spectrum from a single partickvéting through the hole. Now
we’ll consider the spectrum from a typical bunch. We assuere b Gaussian distribution of N
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particles with transverse rms sizeg oy. We also assume that the bunch center is offset from
the center of the target with offsefs,,y,). Then

_ _N (Xx=%)*  (y—¥)?
pxy) = 2r0,G, X 203 ]
bscosy — X, )2 (bssiny —yq )2
— N eXd—(s X2 X07s> _(s X2y07s)] 58)
211040y 2025 202,
= ZHGXGyps(bS’X’XO,S’stv Oxs; O-y7s> (59)

The last equality defines the scaled denpiggand we have scaled the other variablesfythe
inner radius of the hole,

b X0 Yo Oy gy
b:—, =—Yos= ,:_70,:_ (60)
> Qin XO7S in 0s Qin . Qin & an
The differential angular spectrum averaged over the bursthaution is
d2w d2w 42w
dew|bunCh - /bdb/dx p(b7X) de_w|partic|e:aizn/bsdbs/dx p(bs’x>7dew|particle
N d’w
- o [ bsdos [[dx P~ (61)

It is important to note that the spectrum depends only on tiaed variables introduced in
Equation (60) but not on the absolute valuesigf (o, gy), (X,,Y,). Hence this is a universal
expression; the only dependence on machine specific pagsmebn the beam energy and the
bunch intensity.

The two-dimensional integrals ovéss, x ) can be factored as the product of single integrals
overbs and x individually. However the integration over introduces a triple summation and
the integrals oveb cannot be performed analytically. Instead we will evalubteintegrations
over the bunch numerically.

The bunch spectrum has the same dependence on the targatisigethe scaled frequency
u and the scaled angle of observattoa ysing, as the single particle spectrum. Figure 7 and
8 show the dependence of the spectruni@t) and(u,t) respectively. As before, the intensity
initially increases withg but flattens forg > 2.5. In the sequel | will seg = 1.3 in order to
limit the size of the target. Larger sizes than this if febesiiesult in significantly larger ODR
intensities mostly at low frequencies but do not changentensity much at high frequencies.
Figure 8 shows that the angular spectrum as a function otifnecy peaks in the vicinity of
u=1 orw = w. when viewed at the angle of maximum intensity correspontbrig= 1.6. At
other angles, the first peak moves to other valuasasid the peaks are of comparable height.

4 Sensitivity to beam parameters

The beam parameters that we wish to measure with ODR are #ra bees and the beam
positions. The angular spectral distribution is sensitivéhese parameters and we examine
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Figure 7: The differential angular spectrum from a bunch amation ofg = a,/a,, and the
angular variablé = ysing, at constanti = 1. As a function of, the spectrum is relatively flat

forg > 2.5.
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Figure 8: Top: The differential angular spectrum from a buas a function of the scaled
frequencyu and the angular variable= ysing, at constang = 1.3. Bottom: The spectrum
as a function ol att = 1.6, and other parameters at the same values. The spectrus geak

aroundu = 1.1.
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Figure 9: The differential angular spectrum of the horiabpblarizationd®S‘/dQdcw for two
different beam sizes. The red curve is obtained for the ddadam sizeoy s = 0.1 while the
blue curve is obtained faoy s = 0.12. Both the minimum and maximum values change with
the beam size, the minimum increases more rapidly on avelstiale.

here the dependence on these parameters. Since the detdict@ve a finite bandwidth in
frequency acceptance, we include this in our analysis. Vileala finite bandwidth spectrum
by integrating over the frequency as

d’s du d?w
dQdw Jau dQdw

Here we assume a 1% bandwidth for.

Consider the sensitivity of the separate polarizationhanges in the beam size. Figure 9
shows the horizontal polarization intensityS*/dQdw as a function of the angle variatiiéor
two different values of the scaled beam s&&g. When the beam size is larger filling more of
the aperture, the intensity increases at all observatigteanWhile the absolute change in the
maximum intensity is larger with larger beam size, the redathange in the minimum intensity
(att = 0) is larger than that in the maximum intensity.

This was exploited in the KEK experiments [1] where the be&a was determined from
the ratio of the minimum to the maximum of the angular spentand we apply the same
technigue here. The top plot in Figure 10 shows the ratio @itimimum to maximum of the
horizontal and vertical polarization intensitie€S‘/dQdw andd?S’ /dQdw respectively, as a
function of the scaled horizontal beam sizgs. We mention an important point here: the ratio
is independent of the energy, bunch intensity etc but depentyy on the scaled parameters
(9,u,t) and scaled beam parametety s, 0y, %, o, Yo s)- Hence as long as the scaled variables
have the same values, these ratios will be the same for therdey LHC etc. The figure shows
the data points calculated from the expressions in Equai{dh), (61) and (62) as well as a
quadratic fit through these points. The ratio for the horiabpolarization increases quadrati-
cally with the horizontal beam size but the vertical polatian is insensitive to the change in
horizontal beam size. Since the fit to the horizontal spetisiquadratic, a 1% increase in the

(62)
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horizontal beam size results in a 2% increase in the mininoumeaximum ratio. This suggests
thatif intensity differences at the level of 2% can be resolved, then beam size changes at the
level of 1% can be detected. The bottom plot in Figure 10 shows the ratio for the horizbnta
polarization at three frequencies:= 0.5,1. The ratio increases quadratically with at all
frequencies. Furthermore, the ratio increases wiihowing that the sensitivity of the beam
size measurement increases with frequency.

We consider now the sensitivity of the angular spectrum angles in the beam offsets. To
be useful for diagnostics, the spectrum should be sensdigbanges in offset which are frac-
tions of a beam size. We find that when the offsets are in thger@h- 1) x g, the maximum of
the angular spectrum does not change significantly. How&eeminimum of the spectrum at
t = 0 does change rapidly. So we examine instead the relati\mgeha the minimum intensity
as the offset changes. Figure 11 shows the relative chardfStt = 0)/dQdw to changes in
the beam offset shown in units of the beam size for three galtithe frequency. We observe
that as the horizontal offset increases from zero to onestitme beam size, the minimum hor-
izontal polarization doubles in value. The relative chamgthe minimum is nearly the same
for the three values af, so at these frequencies the relative change in the miniraumativery
sensitive to frequency. The bottom plot in Figure 11 showvesrttio of the minimum to the
maximum of the horizontal polarization. This ratio alsorgases quadratically with the offset
and more importantly is sensitive to the frequency, indrepat higher frequencies. These re-
sults show that if changes in the minimum intensity at thell®ef a few % can be measured,
then changes in beam offsets of fractions of a beam size cdatbeted.

5 Photon yield

We start by calculating the differential spectrum for a &nparticle that is offset from the
center of the hole. This will generalize the results in Set8.1.1. We will then use this result
to calculate the photon yield from a bunch and its dependend®am and target parameters.

The differential spectrum for a single patrticle is found byegrating the single particle
differential angular spectrum over the solid angle,

dw d2w 2m d2w t
%'pa”_/dgdwpans'”epdepd% /dt/ P dade ™ e @

Substituting from Equation (48) and integrating over thgamometric functions we find

| A = Tl (G AR Gt (-1 U (64)

wherednn is the Kronecker delta and we have umg,m = (—=1)"Umm. Note that the de-
pendence orx has disappeared after this integration oger After some simplifications we
find

dw o

— — ’ m
deolpart(@:U,bs) = — Uoo'%+4zum,m(|n%+ (u—ki)zlr%‘) (65)
m
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Figure 10: Top: The ratio of the minimum/maximum horizomgalarization intensity and verti-
cal polarization intensity vs the scaled horizontal bearagj s at constanti=1,9= 1.3, 0ys =
0.1,%¢=001=y,, The horizontal polarization intensity increases quackaly with the
beam size as shown by the quadratic fit while the verticalrpraiaon intensity is insensitive
to the horizontal beam size changes. Bottom: The minimumagimum of the horizontal
polarization intensity for two values af: 0.5,1. At u= 0.5, the ratio is smaller which shows
that the minimum intensity is less sensitive to the beam &izbe lower frequency. However
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the ratio still increases quadratically with the beam size.
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Figure 11: Top: The change in the minimum of the horizontdapation intensity in % as a
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u. This change is not sensitive to the frequencies in thisgaBgttom: Ratio of the minimum to
the maximum horizontal polarization vs the offset for theweavalues ofi. This ratio increases
with the frequencies.
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where we have defined the integrated functions

— y 1
Umm(Q,u,y) = /0 dt

t
V1) (L mnl@

The differential spectrum from a bunch is found from

u,t) (66)

dw dw _ . dw
(5o bunen(@.u.y) = [ dob [ WOOX) g = B [ dbs Dups(s) gy (6)
where we have integrated over the scaled density
ps(bs) = /dXPs(bs,)o (68)
From the expression for the density in Equation (59) it fedhat we can write
2
1 %
ps(bs,X) = exp— (XOZS + 2 exp—bZo, Jexp—b2o_ cos ]
Oys
x exp| cosx] exp PYos 2 siny] (69)
xs ax7s
Here we have defined the scaled beam parameters
1.1 1
O,s==[—5+— (70)
+,s 2[0.x275 O—)%s]
Expanding the exponentials of the trigopnometric terms iadééfunctions, we have
bsXg s b bsXy
exg—b20_ ,cos2( + )'D;D,D (k50 —2
P=bso-sc0s2 OZs ZJk>OIZ) “ -l Ofs )
<1 ( ;/ )cos 2 x coskx cogl (11/2— x)]

Y,S
where
D;=1 for j =0, D;=2 forj > 1

After integrating over the angle, it follows that

b — Texg_tX0s , Yos
ps(bs) = Eexq—é(@"‘aﬁs)]qbs) (71)
by s, bsYo
G(bs) = exp[—bgaﬁs] [4Ig(b§U,s)|0( 02’5)|0< 020/5)
X,S Y,S
bsyog beOs
+ (— 1)'+'DD i (bo_ o)l ( ){D b ()
j >0
bsxo s
+Dz(j+|>'z<j+|)(ﬁ>}} (72)
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If the offsets vanish, i.ex, = 0 =y, this simplifies to

lim _ps = 2mexpi— b3, dJlg(bio_ ) (73)
Xo-Yo— '

Define the following function obtained after integratingeofss

ubs m_B

ubs

Fm(u; Oxs, O'y,sﬂ(o?sa)’oS / dbs bsG(bs)K m(—- B ) +<ubs)2|’%( B )] (74)
In the limit that the offsets vanish, this simplifies to
- _ 2 2q ubs,.o  MB 55 Ubs
Jim P = 4 [ dbsbsexi—t0, 13650 9l 52+ (PR (79

The differential spectrum from a bunch is obtained from

dw q2 N 1 X(z)s yOs
exp—=(— U, 45 Unmh 76
( dw)|bunch 27'lV Ux,say,s Xq 2(0-x275 O-)?s)] 0,0 O + le mmm ( )
The photon yield into a bandwidihw is
oF N 1 X% yOs Aw
ANy, = 5=5 (20U o +4 Y UnmF 77
ph 27TB Oy.s0ys Xq 2( )%S—i- ays>] 0,0 0+ mZ]_ m,mm w ( )

This is the photon yield from a single bunch per turn over thietfrr solid angle, the number
of photons intercepted by the detector will be reduced bytioeptance of the detector.

Figure 12 shows the photon yield (plotted on a logarithmalescfrom a single bunch per
turn into a 1% bandwidth as a function of the scaled frequeneyw/ w; for three values of
the scaled beam sizg s. We have set the offseg, y, to zero for this calculation. The photon
count is about 1®photons per bunch per turn at= 1 which should yield a detectable signal.
The dependence of the photon yield on frequency can be fitgorential curves with two
different exponents below and abave- 1. For example, fooy s = 0.125 we find that

ANy, ~ exp—1.28, u<l1
~ exp—182], u>1 (78)

These exponents are not very sensitive to the beanugize.g the exponents below and above
u=1 are(—1.29u,—1.85u) for oxs = 0.1.

The photon yield does not depend sensitively on the beamasilmv frequencies but at
higher frequencies, the sensitivity to beam size increases

The scaled frequenaycan be converted to a physical frequency by making a choitieeof
inner radiusa,, of the hole. If we assumeys = 0.125= oys or g, = 80 ando ~ 0.4mm at
the CO location in the Tevatron, then the critical wavelenit corresponding to the critical
frequencyuy is Ac = 2ma,,,/y = 19um. This is in the infra-red range. Detection in the optical
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Figure 12: Photon yield (on a log scale) from a single bunahtpa into a 1% bandwidth as
a function of the scaled frequenayfor three values of the scaled beam sig. In all cases
Oys = Oxs. Tevatron bunch intensity and energy were used in this lon. The photon
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Figure 13: Photon yield (on a log scale) from a single buncttyra into a 1% bandwidth as a

function of the scaled frequencyfor two values of the target size Here the scaled beam size
is chosen agy s = 0.125= Oys.
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range seems to be ruled out since we find that at19 or A = 1um, the photon count is
about 108/bunch/turn or practically zero. We can increase the pheiefd by increasing
the target size to sag = 2.5, the optimal value found earlier. Figure 13 shows the gield
for g=1.3,2.5. At low frequenciesi < 1.5 the difference is significant but not so at higher
frequencies. There is therefore no advantage to be gairtbcavarger target size if we choose
to operate at frequencies abave- 2.

We can use the photon yield to choose the frequency at whidbserve the ODR. In
practice the minimum photon yield will be determined by tlffeceency and resolution of the
camera and the level of the background synchrotron radiattuch should be below the ODR
photon yield. If for example we set the minimum photon yiegdoe 1¢ photons/bunch/turn
into a 1% bandwidth, then the highest scaled frequency fraplots above is = 3.5. For the
Tevatron, this implies that observable wavelength has tatloe above 5.Am. If we integrate
the signal over all 36 bunches and the bandwidth is greader 1Bo, then the wavelength could
be reduced some more. However it will be in the few microngesand not in the optical range.

6 OTR vs ODR spectrum

OTR is generated when the beam goes through the materia¢ dathet. The expressions for
the OTR spectrum can be found from the ODR spectrum by takiadimit a,, — 0. With
OTR we cannot define a critical frequenay and OTR observations show that there is no
frequency at which the frequency peaks. This is a qualeéatifference from the ODR spectrum.
Similarly we cannot also define universal expressions QMR spectrum which depend only
on dimensionless parameters.

In this section we will briefly discuss the OTR single padispectrum as a limiting case
of the ODR spectrum. First consider the single particle atdénter of the OTR target. From
Equation (18) it follows that the differential angular spam in the far-field is given by

d2WOTR kqa

1 , 1 —
dode Pt = 2P ) e g

(a;k)?

2 2 _ _
- %%u.ﬁﬁ)z[kJo(ka)Kl(aa)+aJ1(ka)K0(aa)]2 (79)

Herea s the radius of the targeit,= ksin6,, a =k/y.

Figure 14 shows the dependence of the single particle OTRCEIDR spectrum on the
angular variablg. For the parameters chosen hesigy(= 1.3a,,, u = 1), the maximum OTR
intensity is about 8 times larger than the ODR intensity. l@,ta factor of 2.45 is due to the
different areas of the material in the target for OTR and OBlthermore, the OTR spectrum
peaks at a smaller angtex 1 = 6, ~ 1/y while the ODR spectrum peaks tat 1.6. This
figure shows that ODR is beamed in a broader cone and at a ngér than OTR. For the
single particle spectrum with the particle offset from teater, Equation (51) is still applicable
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Figure 14: Comparison of ODR and OTR intensities for a sipgleticle centered on the target.
The outer radius,,; is assumed to be the same in both cases.

for the differential angular spectrum except tbia}, defined in Equation (48) simplifies to

Umn = a2kd, ,(ka)Km(aa)+adn(ka)K,, ,(aa)]
x[kd,_;(ka)Kn(aa) + adn(ka)K,_;(aa)] (80)

The OTR bunch spectrum can be similarly found by taking tinétla,, — O in the appro-
priate expressions above.

7 Experimental Issues

The devices and experimental conditions needed to obsdd®ei®the Tevatron requires a sep-
arate detailed discussion. Here we will only mention sontheissues. Synchrotron radiation
from the upstream dipoles hitting the target is an imporsantrce of background and needs to
be mitigated. Preliminary calculations [8] show that theeleof background at a target near
the CO point in the Tevatron is less than the anticipated ODR # mask placed upstream of
the target may help to reduce this background to acceptedddsl The wavelength at which to
observe the ODR depends on several competing factors. getomavelengths the ODR flux
is higher but far infra-red detection is less sensitivewsloand complicated by other matters
such as choice of windows which are sufficiently transpaa¢iidnger wavelengths. The syn-
chrotron radiation background also increases at longeeleagths. A satisfactory compromise
might be in the vicinity of m. Given the likely speed with which the ODR images will be
acquired, it is unlikely that bunch by bunch and turn by tumaging will be possible with the
ODR monitor. Averaging over turns will most likely be necagsbut it should be possible to
update images on the time scale of seconds. CalibrationeoODDR measurements requires
measurements by other beam imaging devices nearby. At E@ytichrotron light monitor is
relatively close and would be suitable for calibration af tADR monitor. If a circular target
is used, it would likely be made of two semi-circular halvesiatr will be moved in towards
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the beam on separate stepper motors. These two halves eilltoebe precisely aligned and
their positions measured with respect to the beam. It is Megly that due to the nature of the
helical orbits, the target in the Tevatron will only be sbigafor one beam. We would choose
the proton beam for ease of availability and greater intgnsi would be preferable but not
essential to choose the longitudinal location of the tasgethat both beams are not present
simultaneously to avoid any effects from their parasitiefaction. Independently of this, the
circular target may not be suitable if the helical orbitssgparated by several beam sizes at the
target. In this case the desired beam may have the requipadas®n from the target but the
opposing beam will not be far enough from the target. Thidatba avoided by having the two
halves of the target separated by a gap. Instead of senuilairfoils, rectangular foils on either
side may be preferable in this case.

We envisage that if initial measurements are success®IOIBR monitor could be used a
passive device monitoring beam parameters and their ckahging the length of a store. Here
other operational challenges will arise. For example, beation which changes the position
relative to the target will need to be included in the aut@dd@DR measurement. Wake fields
due to the target and heating of the target by beam inducels ek likely to be negligible but
need to be considered. Some of these same issues have adskeean resolved with the use
of the pick-off mirrors for the synchrotron light mirror amdll benefit from that experience. A
detailed account of these and other relevant issues widapgisewhere.

8 Conclusions

Our main concern here was the far field ODR spectrum from ad-dwbe in a collider and
specifically the Tevatron. We list the main conclusions

e Existence of a critical frequency and universal curves.

There is a critical frequency associated with ODR at which the angular spectrum
intensity peaks. There is no such frequency with OTR Thisvieknown phenomena.
However we have also shown, something not previously reézednthat the spectrum
for a round hole depends only on dimensionless parametezacdHthe results seen in
Figures 7 to 11, especially the sensitivities, are univgrsgplicable to all machines
when these dimensionless parameters have the same values.

e Sensitivity to beam sizes.

The ratio of the minimum to maximum intensity is very sensitto the beam size as
seen in Figure 10. The sensitivity increases with obsemmdtequency. The horizontal
polarization is sensitive to the horizontal beam size andlaily for the vertical plane.
This differs from the dependence with rectangular slits str@ight edges.

e Sensitivity to beam offsets

We found that the minimum of the angular spectrum along thection of specular re-
flection is most sensitive to changes in the beam offset. @&tie of the minimum to the
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maximum can also be used, this has the added advantage ef Bigsitivity at increas-
ing frequencies. Again, we found very good sensitivity (sgeFigure 11) to changes in
beam offset of fractions of a beam size.

e Photon yield.

We calculated the photon yield from a single Tevatron burtcd88 GeV. The photon
yield decreases exponentially fast with frequency. Assignain & separation between
the beam and the target, the critical wavelength igrh9 The calculation predicts that
photon yields of 10* photons/bunch/turn into a 1% bandwidth will be obtainedoata
a 5um wavelength. Detection at optical frequencies does nohdeasible. It is clear
that the lower wavelength limit for observable ODR signalghe far-field is at a few
microns, in the infra-red regime.

In this paper we did not consider the near-field spectrum ichhuetail except briefly in Sec-
tion 3.1.2. That discussion as applicable to the spectram & bunch and a detailed discussion
of experimental details will appear separately
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