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Abstract 

 

Radiation-induced damage due to atomic displacements is essential to correctly predict the behavior of 

materials in nuclear reactors and at charged-particle accelerators. Traditionally the damage due to 

hadrons was of major interest. The recent increased interest in high-energy lepton colliders gave rise to 

the problem of prediction of radiation damage due to electromagnetic showers in a wide energy range 

– from a few hundred keV and up to a few hundred GeV. The report describes results of an electron- 

and positron-induced displacement cross section evaluation. It is based on detailed lepton-nucleus 

cross sections, realistic nuclear form-factors and a modified Kinchin-Pease damage model. Numerical 

data on displacement cross sections for various target nuclei is presented.  
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Introduction 

 

Radiation-induced damage due to atomic displacements is essential to correctly predict the 

behavior of materials in nuclear reactors and at charged-particle accelerators. Traditionally the damage 

due to hadrons was of major concern. It was shown recently that in a high-flux nuclear reactor the 

radiation damage to structural materials due to electromagnetic showers (EMS) is not negligible and 

can be comparable to that due to neutrons [1]. For nuclear reactors usually coupled neutron-gamma 

transport calculations are performed while secondary electrons and positrons are considered to be 

deposited locally. Therefore, gamma-induced displacement cross sections were evaluated that take into 

account the electron- and positron-nucleus interactions implicitly [1-2]. Another essential feature of 

the studies is that, being based on the second Born approximation, the cross section evaluations were 

not performed for target nuclei heavier than iron. This study deals with an evaluation of electron- and 

positron-induced displacement cross sections because for high-energy accelerators electron and 

positron transport is modeled explicitly. The energy region for this evaluation is extended well above 

the level of 10–15 MeV which is characteristic of nuclear reactors. At high energies the finite size of 

nuclei becomes important and a nuclear form-factor is taken into account. In addition, the Mott 

electron-nucleus cross section is employed [3], so that the study is not limited by the second Born 

approximation and target nuclei heavier than iron are accounted for. 

 

 

Formalism 

 

A displacement of an atom from its equilibrium position in a crystalline lattice due to irradiation 

gives rise to a production of an interstitial atom and a vacancy in the lattice which is a radiation 

damage [4].The number of atomic displacements per target atom (DPA) due to irradiation is expressed 

in terms of damage cross section, d , as follows: 
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where E is kinetic energy of the projectile (electron or positron), T is kinetic energy transferred to the 

recoil atom, dT  is the displacement energy–the minimal transferred kinetic energy required to produce 

a displaced atom, maxT  is the highest possible–from the standpoint of kinematics–kinetic energy 

transferred to the recoil atom, dTd /  is an elastic scattering cross section of the projectile, )(T  is 

the damage function which takes into account the multiplicity of the displaced atoms in the cascade 

generated by the primary knock-on atom (PKA) of energy T  [4-5]. The displacement energy depends 

on target material and various authors use slightly different datasets. The data on dT  used in this study 

is given in Table 1. 

 

According to relativistic kinematics, the maximal kinetic energy of a PKA is expressed as 

follows: 
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where em and M  are the rest masses of the projectile and target, respectively, and c  is the speed of 

light. The minimal projectile kinetic energy, minE , required to displace an atom in lattice from its 

equilibrium position can be derived from Eq. (2) and is expressed as follows: 
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The numerical data on minE  shown in Figure 1 reveals high sensitivity of the data to the displacement 

energy.  

 

Table 1. The displacement energies, dT , used in the study 

 

Target atomic number, Z  
dT  (eV) 

13 

22 

29 

41 

42 

73 

74 

82 

All others 

25 

30 

30 

60 

60 

90 

90 

25 

40 

 

 

 
 

Figure 1. Minimal electron kinetic energy, ,minE  required to produce a lattice displacement according 

to Eq. (3). Circles correspond to target nuclei with dT = 40 eV while triangles refer to nuclei with other 

displacement energies. 
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Elastic scattering cross sections 

 

At energies above several keV the results of a detailed fitting to the Mott electron-nucleus cross 

section, M , are used [3]. Namely, the authors performed the fitting to the ratio of RM  / , where 

R  is Rutherford cross section, for almost entire periodic table with the average error less than 1% as 

compared to exact values of M . The McKinley-Feshbach cross section, MF , was derived in the 

second Born approximation [6]  and is valid when   ,1/
2
Z  where   is the fine structure 

constant, Z  is the target nucleus atomic number, and   is the ratio of the velocity of projectile to that 

of light.  

 

At high projectile energies one has to take into account a nuclear form-factor because the 

presence of the damage function, ),(T  in the integrand of Eq. (1) gives rise to high sensitivity of d  

to transferred energy (see below). A symmetrized Fermi function [10] was used for form-factors of 

deuterium, carbon and nuclei with Z > 9. For the other nuclei a modified harmonic-oscillator model 

[11] was applied. A simple Gaussian nuclear form-factor with the same average radius as in the above 

models was considered as well.  The difference in PKA  due to including nuclear screening is 

negligible–it is about one percent even for heavy nuclei at high energies. 

 

In order to demonstrate the quality of the cross sections over the entire energy range, Figure 2 

shows a comparison for the integral cross section of PKA production. The latter is defined as follows: 
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Figure 2. Integral cross section of PKA production, ,pka , calculated for a pointlike 
207

Pb nucleus 

according to Mott ( M ) and McKinley-Feshbach ( MF ) formalisms.  
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The McKinley-Feshbach approximation is as follows: 
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where 0  is   ,
2

0Zr  0r  is classical electron radius,  EMcMc 2/ 22  , max/TTy  , and the 

term which includes Z  is positive for electrons and negative for positrons. The asymptotic value 

of pka  at E  can be shown to be  
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and for a 
207

Pb target nucleus the asymptotic cross section is equal to 182 barn.  

 

The Mott cross section is considered to be exact and at energies around 1 GeV it virtually 

coincides with the McKinley-Feshbach cross section. It justifies using the latter at high energies even 

for target nuclei heavier than iron. At energies below 10 MeV the disagreement between M  and 

MF  is about a factor of two, so that at low energies one has to use the Mott cross section. At low 

energies the disagreement between M  and MF  decreases when the target atomic number decreases 

and for iron the two cross sections practically–within a few percent–coincide.  

 

 

Damage function 

 

The damage function, )(T , is the number of displaced atoms generated by a PKA of energy .T  

It can be expressed as follows (see [4, 5, 7, 8]):  
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where A  is the target atomic mass and the energy T  in Eq. (10) is in eV. The function )(Tk is given 

by the following expression: 
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where ,,, 111 CBA  and X  are -9.57, 17.1, -8.81, and T20 , respectively, while T  is in keV.  

 

The function )(Tk , called displacement efficiency, replaces the constant of 0.8 used in earlier 

studies [4-5]. It was introduced as a result of simulation studies on evolution of atomic displacement 

cascades [9]. The function )(Tk  was found to depend weakly on target material and its temperature.  

 

At transferred energies above dT5.2  the damage function reveals some growth with .T  Therefore, 

taking into account the nuclear form-factor, ),( 2qF  is important to correctly predict the damage cross 

section at high energies. Figure 3 shows the average recoil energy of PKA for lead. For an iron target 

nucleus the recoil energies calculated with McKinley-Feshbach and Mott formalisms practically 

coincide. One can see from Figure 3 that for incident electrons with energies from 10 MeV up to 1 

TeV the average transferred energy is above dT5.2 , so that neglecting the form-factor would 

significantly overestimate the damage cross section. It should be noted that average recoil energy 

calculated using the simple Gaussian form-factor agrees within about a percent with results obtained 

with more precise and complicated models.  

 

The calculated damage cross sections with and without form-factor are shown in Figure 4. The 

importance of the form-factor in a wide energy region–from the onset of the effect at about 50 MeV 

and up to the highest energy studied–is clearly seen in the Figure 4.  

 

Importance of correct description of the displacement efficiency )(Tk  [12] is shown in Figure 5. 

For iron, starting at 100 MeV and above, the difference in d  due to the difference in description of 

the displacement efficiency is about 20%. One accepts the same Eq. (12), derived initially for iron, for 

all target nuclei as far as a weak dependence on material was observed [8-9]. 

 

 
 

Figure 3. Average recoil energy, T , of PKA vs electron energy for  lead. Calculations were 

performed with the McKinley-Feshbach (thick lines) and Mott (thin lines) cross sections for a 

pointlike (solid lines) and extended target nucleus (dashed lines). 
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Figure 4. Damage cross sections calculated for iron with McKinley-Feshbach (lines) amd Mott 

(circles) cross sections for a pointlike (solid line and full circles) and extended target nucleus (dashed 

line and open circles). For the purpose of this comparison, the displacement function, )(Tk , equal to 

0.8 was used instead of Eq. (12). 

 

 

 
 

Figure 5. Damage cross section for aluminum (thick lines) and iron (thin lines) calculated with the 

displacement efficiency of 0.8 (dashed lines) and with Eq. (12) (solid lines).  
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Results 

 

All the damage cross sections presented in this section were calculated with the realistic nuclear 

form-factors taken into account [10-11]. The damage cross sections for a number of target nuclei are 

shown in Figure 6. One can see that, due to high sensitivity of d  (see Eq. (1)) on the lower 

integration limit, the irregular displacement energies (see Table 1) give rise to significant variations in 

the damage cross sections. From practical standpoint it is reasonable to consider the target nuclei with 

40dT eV and all the other nuclei separately. For the former target nuclei the dependence d  on 

target atomic number is pretty smooth if one neglects the small variations due to irregularities in 

atomic masses (see Figure 7. Therefore, in practical calculations for target nuclei with 40dT eV one 

can make a simple interpolation in .Z  For the other nuclei separate calculations are required. 

 

 
 

Figure 6. Calculated damage cross sections for various target nuclei and for two electron energies. The 

displacement function )(Tk  from Eq. (12) was used. Circles correspond to target nuclei with 

40dT eV while triangles refer to nuclei with other displacement energies. 

 

 
 

Figure 7. Damage cross sections calculated for several electron energies and for various target nuclei 

with 40dT eV. The displacement function )(Tk  from Eq. (12) was used. 
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Detailed fitting to the Mott cross section [3] was performed only for electrons as projectiles. 

Therefore, one can distinguish electrons and positrons as projectiles only when using the McKinley-

Feshbach formalism [6] which means the difference can be correctly expressed only for target nuclei 

not heavier than iron. On the other hand, the difference is negligible at high energies–above 10 MeV 

for aluminum and above 100 MeV for iron (see Figure 8). As a result, one can choose the following 

approach in order to describe positron-induced damage cross section for target nuclei heavier than 

iron: (i) applying the same positron-to-electron ratios as observed for iron under 100 MeV and (ii) 

assuming equivalence of electron and positron damage cross sections above 100 MeV.  

 

 

 
 

Figure 8. Calculated damage cross sections for electrons (dashed lines) and positrons (solid lines) for 

aluminum (thick lines) and iron (thin lines) according to Eq. (5). For the purpose of this comparison 

the displacement function, )(Tk , equal to 0.8 was used instead of Eq. (12). 

 

 

Conclusions 

 

 

The formalism used to calculate damage cross sections due to electrons and positrons is 

described. It employs the following: (i) Mott electron-nucleus cross section and McKinley-Feshbach 

electron- and positron-nucleus cross sections; (ii) realistic nuclear form-factors; (iii) damage function 

according to the modified Kinchin-Pease model with a corrected displacement efficiency. Importance 

of taking into account the nuclear form-factor and correct displacement efficiency function is studied. 
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