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Abstract

This report presents the results of our efforts to applhhipgrformance computing to entity-
based simulations with a multi-use plugin for parallel catipy. We use the term ‘Entity-based
simulation’ to describe a class of simulaton which incluttesh discrete event simulation and
agent based simulation. What simulations of this class slaaet what differs from more tradi-
tional models, is that the result sought is emergent fronrgelaumber of contributing entities.
Logistic, economic and social simulations are members isfdlass where things or people are
organized or self-organize to produce a solution. Entédgea problems never have ampriori
ergodic principle that will greatly simplify calculationBecause the results of entity-based simu-
lations can only be realized at scale, scalable computidg iggueur for large problems. Having
said that, the absence of a spatial organizing principalemdke decomposition of the problem
onto processors problematic. In addition, practitionerhis domain commonly use the Java pro-
gramming language which presents its own problems in a pegfermance setting. The plugin
we have developed, called the Parallel Particle Data Mamercomes both of these obstacles
and is now being used by two Sandia frameworks: the Decisiwalysis Center, and the Seldon
social simulation facility. While the ability to engage U-$Szed problems is now available to the
Decision Analysis Center, this plugin is central to the sgsad Seldon. Because Seldon relies on
computationally intensive cognitive sub-models, thiskigrnecessary to acheive the scale neces-
sary for realistic results. With the recent upheavals infiti@ncial markets, and the inscrutability
of terrorist activity, this simulation domain will likelyeed a capability with ever greater fidelity.
High-performance computing will play an important part maeling that greater fidelity..
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Preface

The practice of modeling and simulation, or more specifiahjity modeling is as old as digital
computers. Because the most common application is compkierag and emergent behavior
from a large number of contributing entities, scale is redtuta concern. There is no natural limit
for this type of simulation; if a model that tracks every marén a county is relevant, the model that
tracks every person in the state, country or world is alsevegit. Because emergent behavior from
complex systems is, absent other information, dependeatl @tales, the larger the system the
more accurate the solution. So there is an implicit needdorputational methods and algorithms
that provide scalability to entity simulations. The purpad this work is to create a plugin toolkit
that brings scalable high-performance computing to agased modeling.

At this point (September 2008) we have two major consumemipfechnlogy: the Decision
Analysis Center (DAC) framework and the Seldon Social Sinmaframework. While the prob-
lems that justify high-performance computing for DAC haet o materialize, the results of this
work, the Parallel Particle Data Model (PPDM), is nothingsléghan enabling for Seldon. It is
hard to imagine that entity-based modeling will not reqtive capabilities of high-performance
computing as models require more fidelity and thus become mmnplex. It is our hope that this
work will put Sandia in a better position to take advantagtha future.



Summary

We present the design and performance of a parallel entitylation framework called the Paral-
lel Particle Data Model (PPDM). Based loosely on a Partiok&Eell algorithm, the PPDM orches-
trates and supports agent-based simulations on a parigleplerformance platform. The PPDM
is targeted at social simulation applications and is desigio be portable to a variety of high-
performance platforms. In this paper we show that the PPDbpas well for two agent-based
simulations on a clustered platform. We hope that this walki@rm the cornerstone of a reusable
toolkit for modeling and simulation.
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Chapter 1

Introduction

Enterprise modeling, social simulation, system-of-systavar gaming, and related techniques
simulate complex environments and systems (hereaftereeféo as Human Dynamical Systems
(HDS)) and compute observables which manifest themselissmply as emergent phenomena.
To improve fidelity of these HDS systems, increasingly lacgenputations are needed and are
accessible only through high-performance computing (HRGputer-based simulation of HDS
has long been used within the military for war games, to cautytraining, assess new technolo-
gies, and evaluate tactics. Recently, the Department of Homd&ecurity (DHS) and other federal
agencies charged with disaster preparedness and res@veserhbraced simulation for modeling
a variety of complex phenomena including response to athgk/Veapons of Mass Destruction
(WMD) and natural disasters. Sandia National Laboratorasdeveloped a number of simula-
tion applications to support different programs examiniiiglD countermeasures and concepts of
operation, defense applications, terrorist networks,eamhomic consequences from natural dis-
asters or terrorism affecting critical infrastructurese$e simulation applications differ in several
respects, yet they share an underlying commonality: alteonthemselves with modeling com-
plex "systems of systems” where the system components seceetke (such as people, autonomous
land vehicles, or companies) and interact in highly complays with other system components.
Historically, modeling of HDS has not taken advantage offpar processing hardware or tech-
niques. There are at least two reasons for this:

1. The phenomena in question was not modeled at a fidelitynbald require the extra com-
plication of parallel computing.

2. The history of simulation of HDS has favored developeanrfdly environments, use of widely
available computing hardware and software, and incorjmoraif sophisticated graphical
user interfaces (GUIs) over speed of execution. This emgbagapid deliverables portable
to a wide variety of platforms led to the use of virtual ma@ilrased languages such as Java,
Python, and Tcl over C and C++, because most programmers aie mare productive in
these languages. Most programming for high performancallphprocessor systems has
taken place in languages like C, C++, and (historically) FORNR#ecause they give the
programmer fine-grained control over allocation of memarg ather processor resources.

Increasingly, however, HDS must reproduce significant pheana/effects at credible fidelity
while being fast enough to enable human-in-the-loop andlyilbatch-oriented analysis. Recently
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developed requirements for the next generation of soamaligition applications have shown that
the current capability, based on conventional computieitectures, falls short in both respects,
requiring extension to HPC platforms using parallel preges Also, improvements to Java and
other virtual machine-based languages have made them rttometige in the domain of high
performance computing.

We have developed components and tools for HDS simulatiadhads in a parallel HPC set-
ting. In particular, we are addressing the challengesrmedlabove:

1. Create a portable, scalable, and general software erggipaiticle simulations. Referred to
as the Parallel Particle Data Model (PPDM), it is a faciliy multi-use in agent-based HDS
simulations.

2. Ensure the PPDM will be compatible with the developemidig Java language for which
Sandia already has a considerable investment. It bridgega between this rapid develop-
ment language and traditional HPC languages like C/C++.

3. Develop and demonstrate this new capability by prototypi large-scale homeland security
simulation (crowd dynamics, disease propagation, etbgw3he new capability to possible
sponsors and gain visibility in the community.

4. Engage external research community through presemsadiod publications.

5. Identify synergistic R&D efforts within the laboratory@develop those partnerships. Spe-
cific leveraging opportunities include (1) prototype usete PPDM in existing Decision
Analysis Center (DAC) applications, and (2) demonstrate PRD&high performance par-
allel Seldon computation.

The principle research objective of this LDRD was to creat@@ecfacility for particle cal-
culations processor/data decomposed using geometryastmParticle-In-Cell (PIC) algorithms.
The original research goals are accomplished and a papescgapted and presented to the 2nd
World Congress on Social Simulation. This code facility has &een integrated into a number of
Sandia projects (Seldon, PopulationDAC, DavisDAC, BioDAC BMEV).
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Chapter 2

Related Work

Many simulations have been created to study complex Humaramical Systems. Two excel-
lent examples originally developed at Los Alamos Natiorabdratories and now hosted by Vir-
ginia Tech’s Network Dynamics and Simulation Science Labmy include TRANSIMS[3] and
EpiSims[4]. TRANSIMS uses detailed urban travel data to rhivdasportation networks and can
model the effects that changes to those networks will hateadiirc. EpiSims uses that same travel
data to model disease epidemics and can be used to test pahlib mitigation strategies. An-
other example of work in this arena is Generative Socialr®@ewhich uses simulations to help
discover the underlying dynamics of complex social sysf&gjs In this work Epstein makes a
hypothesis of the sets of rules that govern a given dynanu@akgystem. An agent-based model
(ABM) implementation of those rules is then created and thelte are measured against historical
data. The closeness with which the generated data matahésstorical data gives credibility to
the hypothesized rules. During the span of this LDRD Joshwseitpalong with Jon Parker and
fellow colleagues at the Brookings Institution developegl lthrge-Scale Agent Model [26]. This
a flexible, large-scale, distributed agent based epiderodetrthat is able to simulate the spread
of a disease on the scale of several hundred million ageirtg parallel processing. The model is
being further refined to allow the simulation of billions @femts.

As the modeling of HDS has grown in popularity, a number obedle agent-based modeling
toolkits have emerged to simplify the work of the develogeePast[9] is arguably the most pop-
ular framework in the ABM community and provides developeithWwbraries for agent creation,
event scheduling, and data charting and visualization.oMj@2] provides similar functionality but
focuses more on light-weight models meant to be run manystifmeMonte Carlo-type studies.
While these toolkits can be run in a parallel batch mode onste@tad environment, neither toolkit
lends itself for use developing models that run singularlparallel across a cluster of computers,
thus limiting the size and complexity of such models.

The PPDM in its present form operates in a time-steppeddasHDiscrete event simulation
(DES) provides a different time management paradigm foukition. Instead of advancing time
in globally synchronous fixed steps, DES advances the lacallation time to the exact time of
the next local event. DES scheduling delivers events ingtamap order at all nodes allowing it
to achieve performance gains if the simulated events aggutarly spaced in time or space. The
greatest successes of DES to date have been in the areasvoflnsimulation and war gaming.
Several frameworks and systems have been created to stipigorThe High Level Architecture
(HLA) standard[16] specifies an API for distributed DES that seen wide use, particularly in
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work done for the Department of Defense. An example of parBIES (PDES) used for social
simulation is the SCATTER traffic simulator[28]. PDES schauuhas also provided time man-
agement for an agent-based simulation system[19]. Agpmiesusing PDES have scaled to over
1500 nodes[15]. In an exceptional scaling exercise, Pdtafp8] ran a test program on 16384
nodes of a Blue Gene supercomputer. Though the PPDM in itempréam makes no use of DES
concepts, we envision future DES extensions. To our knaydedo agent-based simulation sys-
tem in widespread use provides the distributed synchrtarzaeeded for true PDES scheduling.

In a work that highly influenced our design, a more traditlgparticle-in-cell based, time
stepped model was used for simulating the evacuation o ln@vds in a building environment[30].
In this work, the Social Forces algorithm was implementechdhat the simulated geometry and
populations were divided up among a cluster of computerg31ha similar approach was used
for large crowd simulation but made novel use of the Play&ia’s high performance Cell archi-
tecture.
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Chapter 3

Architecture

In our work modeling various HDS, we identified a great dediuofctional commonality in our
simulation codes. We also observed that future simulafiotise problem domain would be grow-
ing in population size and complexity. This led us to cre&ie Parallel Particle Data Model
(PPDM), a Java-based, reusable programming toolkit thgitis HDS simulations and can scale
to a large number of processors.

The HDS simulated by Sandia are generally composed of laygelations of agents (people,
vehicles, etc.) spread across a geography of segmentdtlmauch as cities, census tracts, or
even households and businesses. Each location containfaggents that are able to interact
with each other as well as with agents in neighboring locatioThe agents can move between
locations as time evolves. Various modules of the simutati@ed to update or gather information
from the agent populations in different ways based on thexpimena they model. Examples
include infection of people due to a biological hazard pluonéetection that a car should trigger
a radiation sensor alarm.

We designed the PPDM to accommodate this method of intacaetith the simulated pop-
ulations while operating in a distributed environment. HfDM uses a particle-in-cell (PIC)
data structure which divides the simulated geography ialis that contain populations of agents.
The PPDM then distributes these cells across a number oégsocs. Agents directly affect other
agents residing in the same or neighboring cells. Non-t@ighg particles can interact through
special, less efficient mechanisms.

Even though Java is not renowned for its high performancepetimg capabilities we chose
it as the PPDM'’s implementation language. The primary nesiseere to support legacy code, to
utilize existing programmer skill sets and to provide eds#ewelopment. Evolving improvements
to the JVM’s performance and extensive open source codarids; including several new high
performance communication libraries, have also incredsedtractiveness. The end result is that
Java tools can provide a portable and easy to use framewohkgio performance computing.

To make use of the PPDM, the user must first define the geométhe@roblem domain.
Currently, we have implemented two types of geometry. A uaerspecify either an n-d lattice
(Figure 3.1) or a graph of cell locations (Figure 3.2). Alongh the geometrical structure,
the user must define the number of functional patches intatwtiiey would like the geometry
broken. A patch represents a grouping of cell locationsdhaguaranteed to be collocated on the
same processor. Each processor is allocated a number bepdtcprocess. Modelers write their
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Figure 3.1. Box Domain Model

algorithms and agent update code to work on a patch-by-atcéll-by-cell basis which enables
the PPDM to distribute the user’s program across many psocgs

3.0.1 Data and Particle Fields

After specifying the domain geometry, modelers define mpldtdata and particle fields across this
geometry. A data field holds a single unit of data (such as aorifloat) for each cell in the
domain, while a particle field allocates to each cell in thendm a list-like data structure called
a particle set. The particle set data structure allows theéeheo to store and organize agents and
provides other useful utility functions. In creating a datgoarticle field, the modeler specifies a
locality stencil for that field. This defines each cell’s Ibdata neighborhood within the overall
defined geometry. In the case of 2-d lattices, a modeler withmonly specify a 4 point stencil
in which a cell's neighbors include adjacent cells to thetimoeast, south, and west. In a graph
geometry, on the other hand, the graph structure directirognes cell neighborhoods. The local
neighborhood defines a region of shadow data that each patshnmake available to the cells
it maintains. Shadow data is a read-only copy of neighbocelgs data. After doing a shadow
update for a particle field, each patch will have the datalfercells it maintains as well as a read-
only copy of data from its neighboring cells that are maim¢ai by other patches. If a patch has
neighboring cells that are located on another processta,adenmunication must take place. The
transfer of shadow data enables the simulation to updatetsigetate using data from their own
cell as well as neighboring cells. This method is similartattused in a parallel implementation
of the social forces model [30]. The shadow data construmpi®nal. If a particular domain does
not need to have neighbor cell interactions this featurébesasisabled. To summarize, a processors
will be allocated a number of patches. Each patch is composachumber of cells. Each cell
contains a number of particles or agents.
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While processing the agents, modelers also have the abiligttedule the movement of agents
from cell to cell. This cell movement can span patches andgssors. The PPDM takes care of the
actual movement of the agents and transfer of shadow ddtee thodeler guarantees that particle
movement only occurs between neighboring cells, the PPDivhtake optimizations that reduce
the amount of communications needed between processersbthallowing greater speedup. The
PPDM'’s capabilities hide a lot of parallel processing caewjil from the modeler.

To better enable parallel processing, the PPDM limits thelete’s interaction to the data
and patrticle fields by allowing only cell-by-cell or patcl-patch access to the data. A modeler’s
algorithms have full access to all agents owned by the p&teh process, as well as read access
to agents of neighboring cells of that patch. The PPDM’suieaset encourages modelers to build
their algorithms with locality in mind. This allows the algthms and data to be more easily and
efficiently distributed across multiple processors. Fram @xperience in prior simulations, we
consider this restriction acceptable. We also offer varicanvenient yet less efficient mechanisms
to handle global communication between processors.

Several patterns for interacting with the particle popale are available. The most common
method of particle access is to submit particle algorithcm¢he PPDM (Figure 3.3). Particle
algorithms are data structures that implement the visigdtepn. When particle algorithms are
submitted to the PPDM, the PPDM duplicates them across edlgssors and schedules them to
be executed at regular intervals. The algorithms visit eathor patch owned by the processors
on which they are located and perform their needed opesationthe contained agents. The
particle algorithms can optionally coordinate with thespces on other processors and send back
aggregated data to their parent modules or other subsgnifairticle algorithms (Figure 3.4).

In our simulations, various modules work together in a detaidimanner by submitting parti-
cle algorithms that enforce their desired behavior or afe@oncern on the agents. This deviates
from standard agent-based techniques, which initializeatients with a given behavior and state
and allow the agents to evolve their state. This differentsea because the PPDM grew out of
our experience with prior simulations composed of separaidules that ran on their own Java
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Figure 3.4. Particle Algorithm Output

virtual machine. Each of these modules needed to interdbtthe population. Rather than mov-
ing the population data to each of the modules, we allowedrtbdules to move their code to
the population data. This is similar to how distributed eyss$ interact with a common database
through sql or stored procedure calls. One can duplicatetire traditional agent update behavior
in the PPDM through the use of a simple particle algorithm tadls an update method on all or
a selected number of the agents at scheduled intervals. gedrgsathemselves would contain all
of the logic needed to interact with neighboring data anchtmyand perform all necessary updates
and movement. Another alternative would be to have the wanmodules inject differing behavior
strategy objects into the agents upon initialization whicheventually be called during updates.
Dynamic languages like Ruby would provide an ideal envirominmh@r this technique.

We are also looking into incorporating patch-based evertugs into the PPDM to allow
for algorithms or agents themselves to make use of the deseneent simulation programming
model[16]. The queues would allow the PPDM to dynamicallg@dts updates to the resolu-
tion needed by the particular model being studied and caddlitin great compute time savings.
However, since the PPDM operates in a distributed fashich an addition would require some
additions for synchronization.

3.0.2 Communication implementation

The PPDM uses the MPI model for parallel data communicat@mmmunication occurs between
copies of particle algorithms running on differing patchesen agents move between cells owned
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by different processors, and to update shadow data locateegighboring processors.

When necessary, the particle algorithms communicate andlic@be with each other across
patches using standard parallel processing messagingasuttte MPI broadcast and reduction
methods. We have provided modelers with simplified intesaio these functions. We have also
implemented a messaging service to allow agents to commgnweith other agents that are not
located on their patch. The PPDM organizes and sends m&sssigg a regularly occurring batch
update process. The messaging service is optional and whese it requires additional overhead
because it must track agent locations to enable routing.

The PPDM handles particle movement during a regularly sdeedbatch update where all
processors work together to redistribute agents to theecblocations (Figure 3.5). We handle
copying of shadow cell data for neighboring cells in a simiteanner. This requires the various
processors to remain synchronized in time (Figure 3.6).

19



Modelers can configure the PPDM to make use of mpiJava [2] ol Epress [23] for the
MPI services. Both of these are object-oriented implemamntatof the MPI protocol using the
Java programming language. They differ in that mpiJavaigesva JNI wrapping over a native
MPI environment (such as MPICH or LAM), while MPJ Express isoaplete implementation
of the MPI protocol using only Java. We found MPJ Express téalbenore portable and easier
to use since it removes the native MPI compilation and iratiegmn steps. In Java, serialization of
object data to byte data is a major cpu cost. We hope thatrmouséoialization code will reduce
some of this cost and are looking into the serialization adraunication libraries from the Ibis

project[7].
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Chapter 4

Example Simulations

In this section we demonstrate the use of PPDM in three diffeexamples and conclude with
an illustration of its parallel capabilities. The problehms/e been formulated in an agent-based
fashion, but carry a PIC flavor in the sense that agentstestare collated into “bags”/cells with
in-cell (in-bag/near-field) behavior modeled at a far gee&itelity than the far-field (out-of-bag)
behavior.

4.0.3 Spread of disease in a 2-species population

This example approximates the spread of a disease in twoatepspecies, humans and (non-
human) primates, with primates acting as a reservoir fomptitbogen. The pathogen, modeled
loosely on Ebola, is communicable within each of the spearesis also capable of primate-to-
human jumps. This example models both humans and primatesligglual agents. A number
of primates and humans are collocated into settlementseAii@nans may come in contact with
primates and contract the disease. Both humans and primatgsnove between cells, though
primates’ movements are significantly more circumscrilbeshthumans.

4.0.3.1 Disease model

In this work we use a compartmental disease propagationimBdtn the humans and the primates
go through five compartments/states of health - SusceffiplExposed (E), Mildly Symptomatic
(MS), Severely Symptomatic (SS), and Recovered/Dead (RA® ré@sidence time in each of these
states of health is a random variable, which follows a distron (usually log-normal). The process
of infection of humans is governed by their contact with otmemans, cadavers and primates, i.e.
it depends on their closeness of contact and the probabilitpeeting an infected individual,
primate or cadaver. Transmission within the primate pdpras entirely by contact. We will
assume that both the Mildly Symptomatic and Severely Symptic stages are contagious, for
both humans and primates.
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4.0.3.2 Movement model

We assume that there exigt human settlements, each containing a number of primatdsr- In
actions between human and primate occur between thosenpiiasthe same settlement. The
human and primate populations in each settlement are dremm the log-normal distribution
Z (Nmedian, S), whereNmegian IS the median an® the standard deviation. In each settlement we
use a median of 1000 and standard deviation of 500 for the hynopulation and a median of 50
and standard deviation of 12.5 for the monkey population.

For each settlement we define a mobility fadwin andMm for the human and monkey pop-
ulations. This mobility factor determines the percentafjeach population that will relocate on
a given movement step. The indexing of settlements reflemtgrgphical proximity. Primates
travel to other human settlements primarily because ofipniix Once the connection routes are
determined, a settlement’s mobile population is distedidcross its connecting settlements using
the above probabilities as a weighting factor.

The model can be configured with two modes of population m@remin the first, agents are
assigned a fixed day-night routine. In the second mode, sgemte randomly several times a day
to connected settlements using the above probabilitiesvarghts, and at night they return to their
home settlement. Mildly symptomatic individuals move, severely symptomatic ones do not.

4.0.3.3 Disease Model Implementation and Scaling

The disease model initializes the PPDM with a 2-d latticengeiny. The model represents each
settlement by a cell in the lattice where a cell is given ancalocation to determine its distance
from other cells. We initialize two separate particle fidiisthe human and monkey populations.
We submit four configurable particle algorithms to the PP@\volve the disease agents. These
algorithms create the initial population distributionsitialize the agent movement patterns, per-
form agent movement at a set rate, and evolve the diseaseoétifie agents. The algorithms are
modular and can be replaced with different implementataingarying complexity to study how
changes to the population or disease dynamics effect tlvemet of the epidemic. For this model,
two types of inter processor communication take place. mauaigent movement some agents will
need to relocate to neighboring processors, and after esgasg update the master disease algo-
rithm coordinates with its neighbor algorithms to outpie #ggregated disease statistics for that
time.

We performed experiments testing both the strong and wealklsitity of this model on the
PPDM. In the strong scaling test, we initialized the popalatvith a fixed 2,048 settlements, each
containing an average population size of 1,000 for a totpufadion of 2 million agents. We then
varied the number of processors allocated to the PPDM antheasimulation for a simulated 2
months. Figure 4.1 shows the results of the strong scalsigTée results show near-ideal scaling
up to 16 processors, after which the particular problempsbgins to scale poorly. This poor
scaling results because we keep the problem size fixed. Asarmease the number of processors,
each processor has less to do and communication and syigdtions costs take over.
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In the weak scaling test, we initialized the population vatfixed 2,048 settlements. We then
scaled the population size up linearly with the number oftpssors allocated to the PPDM so
that each processor would maintain a fixed number of agenésraw/the model for a simulated
2 months. The Estimated Single-Node plot line represemteipected time that a single node
would take to perform the problem size if it had infinite megynand did not succumb to non-
linear effects. Under the weak scaling case where the prokiee grows with the number of
allocated processors, we achieve fairly good scaling with @4 node case within twenty-five
percent of the ideal result. We see this good scaling bedéweseommunication load for each
processor is balanced by the increasing computational [blaese results show that we can scale
up our modeled size by increasing the available number afgssors. Figure 4.4 shows a further
exploration of the scaling data space. For a given procedsmation we plot the timing response
for problems of increasing scale. The problem size reptesefinear scaling of the population
allocated to each cell while the number of cells remains fiXddssing data points exist when a
problem size is too large for the number of allocated pramsss

To further test the weak scaling of the PPDM, the disease hHsgo®blem growth strategy
was modified. In this case as the number of processors wasasenl the population per cell was
kept constant but the number of total cells allocated waseas®ed linearly. This led to a fixed
number of cells and people allocated per processor. Thelaiom run time was also increased
to 3 months to mask some additional initialization costsguFeé 4.3 shows the resultant weak
scaling numbers. Figure 4.6 shows additional plots of thidbesed scaling of the disease model.
Surprisingly, the scaling results are quite a bit worselfics tase. Even though the scaling results
show that the problem complexity does scale linearly fovagprocessor allocation, the run times
for a given problem size are much greater than ideal betwemepsor allocations. We have yet to
determine the cause for this deviation from the previouskvgealing case as the communication
loads between processors are similar. Despite the worskgehis level of scaling is still useful
because it allows one to run problem sizes much larger that @dn be run on a single processor.

1000 T 600
Ebola Model ; Ebola Model
Ideal - : Ideal -
3 Estimated Single-Node -
500
100 ¢
2 5 a0|
£ E
E =
10 |
300
1 s s
1 10 1 10
Number of Nodes Number of Nodes
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4.0.4 Seldon

Cognitive Seldon is a software toolkit that combines tecbgpland concepts from a variety of
different research areas, including psychology, socieinee, cognitive science, and agent-based
modeling and simulation. It has been used to study urban gaorgitment and terrorist network
recruitment. This second example demonstrates the utiliognitive Seldon and the PPDM in
analyzing the effect of media on populations.

Previous uses of Seldon involved rather few1®)) agents, and serial implementations gen-
erally sufficed. However, large agent populations wereireduo study the effect of media, which
in turn required parallel computing. Further, the indiatlagent models were enhanced to include
a cognitive model. The cognitive models are essentiallyas#im graphs of concept activations
and edge weights that allow for realistic processing of mé@tormation. They lead to an increase
in the computational intensity of individual agents, funtlspurring the need for parallelization.

Cognitive Seldon has two types of agents: individuals antratts Abstract agents represent
social or institutional concepts that can influence an iddial (e.g. schools and mosques). Since
they contain a set of individual agent members, they can ggdyriconnected nodes in the overall
structure. For this reason, we have distributed the alisiigents across the processors to avoid
bottlenecks. They interact with the local individuals ahdrt communicate across processors to
synchronize their state.

An interaction between two agents involves significant pssting. Sets of attributes are ex-
changed and modified according to linear attraction andariament rules. Concept activation
vectors are also exchanged, causing nodes to fire in the sengaaphs, and thereby changing
their cognitive states.

The simulation commences with an unconnected set of agdataophily is used as the basis

24



1000

1000 [ ¢ / 1 S
I3 / e -~ S
i / - -
" / - - S 4
800 (| F T 1
A - - S s
i i - s o /
I3 7 P L S 4
/ i - s ,
/ .
j .
; .

% 600 ©
£ E p
= iy 1 proc B , 1-proc
400 Hi 7/ P 2 proc ————- 1 / _-2proc -
iy S 2 proc ideal =+ o _-Zproc ideal -
o 4 proc / - 4 proc’
S I 4 proc ideal -—==-- R 4 proc ideal -----
200 [/ 7 T e e AEPIOC oo 1 S e 16 proc ------
- = 16 proc ideal - L e 16 proc’ideal ~----
64 proc ——-- . e 64 proc ——--
64 proc ideal - 64 proc ideal -~
0 ‘ ‘ : : : 100 : ‘ .
10 20 30 40 50 60 70 10 100
Problem Size Problem Size

Figure 4.4. Disease Performance (Cell Size) Figure 4.5. Disease Performance (Cell Size
log/log)

of attraction, and relationships form as interactions pealc Each agent has a maximum amount
of relationship energy, thus providing a flexible cap foheita large number of weak relationships
or a small number of strong relationships. Agents also havegmality factors, which affect their
interactions. For instance, an extroverted agent mightact more than an introverted agent. As
relationships evolve, social networks form, ranging frazguwaintances to cliques. These, in turn,
drive subsequent interactions, so that agents are motg liknteract with close friends in cliques
than acquaintances.

Each timestep in the algorithm consists of a couple of stépst, the individual agents de-
termine their membership with the abstract agents, andttieemteractions occur between them.
Next, the individual agents identify other individual agewith which to interact. The interac-
tion procedure consists of three parsend, receive, andrespond. Agent A sends a subset of its
information to Agent B, who thereceives the information, compares it to its own, aredponds
to Agent A. The procedure is transactional, so both agerdagd their emotional state, or both
stay the same. Interactions occur between agents throegbréation of message objects, and
large numbers of messages are routed and delivered contturr&incereceive messages can
createresponse messages, processing continues until there are no moreagesssThis barrier
synchronization ensures that each step finishes completédye the next step begins.

We parallelized Seldon by decomposing the problem acrasepsors in a load-balanced man-
ner. We also maximized the likelihood of intraprocessor camication by using Zoltan [11], a
load-balancing library, to invoke graph-partitioning @ighms in ParMETIS [21]. Zoltan uses
the social network structure (with relationship strengassedge weights) to calculate the opti-
mal agent-to-processor mapping. It also provides a diggibdirectory capability to track these
mappings for routing. The data migration is performed sajgdy and involves packing and un-
packing agents at the source and target processors, stmithe process of message delivery.
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When repartitioning, Zoltan exploits the current decomgmsito reduce data migration. An ad-
ditional difficulty involved multi-language integratiosince Zoltan is implemented in C/C++ and
Seldon is implemented in Java. We created a JNI wrapper drdattian using Swig [5], which
then provided access from Seldon.

To study scaling characteristics, we used a cognitive maatél agents for individuals and
media outlets to simulate the shift in public opinion in Ammmadordan, after the November, 2005
bombings. The individual agents were provided with cogaiinformation automatically gener-
ated from Jordanian newspapers published before and atbenidne of the bombings. The weak
scaling runs held the number of individuals constant at 1@@®strong scaling runs used 1600
individuals, whereP is the number of processors. There were 40 media agentsrimall

In Figures 4.8 and 4.9 we plot results from strong and wealabi#y studies. It is clear
from the weak scalability analysis (Figure 4.9) that therétile locality in the agent-interaction
pattern - cross-processor communication costs increadeegwocessors (and the total problem
size) are increased. The strong scalability run is somewltaie promising, following a quasi-
ideal convergence till around 10 nodes; thereafter divergdrom ideal is abrupt, as the high
communication costs (observed in the weak scalabilityyemg)l overwhelm the steadily decreasing
computational costs. At a point (around 30 nodes), the comgation costs dominate and a
follow the trend observed in the weak scalability study (fFey4.9) where communication costs
are roughly proportional to the number of processors.
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4.0.5 Parallel Social Forces

A parallel implementation of the social forces algorithm pedestriam simulation [17] was built
using the PPDM. The social forces algorithm is used for sateal the movement behavior of
crowds. Each person’s movement is directed by the summafiaf social forces acting upon
them. Repulsive forces come from nearby people, obstriesanh as walls, and dangers such as
fire. Attractive forces come from a person’s desired exitamesone that person wishes to follow.
A person tries to reach their goal while keeping a 'comfdgabistance from near by people or
obstacles. When properly calibrated using these forceseadistic replicate crowd behavior and
produces emergent behavior observed in real life such aféamation and exit bottlenecks. This
application space provided an ideal situation for the PPidesthe problem fits nicely with the
particle-in-cell processing paradigm. In fact, parts & BPDM'’s design were inspired by another
parallel implementation of the social forces algorithm evhused C and MPI [30].

The test social forces application uses a 2D domain sinmgjativery large room. This room
is divided into a grid of cell locations. This grid is furtheubdivided horizontally into a series of
patches designating one patch per processor. For our f@gtaon we populate the room with a
configured number of people put in random locations. Eacbqpeis also randomly assigned one
of four goal locations. When a person reaches a their goaldheyeassigned a new random goal
location. A person is color coded based on their current igaation.

At each time step the location of each person in the simulateeds to be calculated. All of
the processors first receive the updated location of peagleeir shadow cells from neighboring
processors. This is necessary because people in a celfeceedfby the other people in their cell
as well as people in neighboring cells, which may be managesekternal processors. Next the
processor must now update the people in the cells that it gesnaFor a given cell each person
is updated by calculating all of the forces acting on thasper First the social forces of nearby
people are applied. This is done by iterating through thelesio the cell and neighboring cells.
Next the forces of obstructing objects is applied. Findllg goal seeking force is applied. Once
all of the forces have been added the person’s next locataynba set. Finally all people must be
relocated to their new cell location. This may require mgwime person to a new processor. After
all updates on all processors have been performed a ceéidotiation update is performed by all
processors which results in the master processor holdirsg @f [people’s location. This location
listis used to update the display.

Such code could be used as the base of a crowd evacuatiora8onuiool. By using the
PPDM, such an application could be distributed across & lamgnber of processors and simulate
very large crowds, with complicated behavior, in fastenth@al-time. This simulation could be
used to launch a batch of jobs to test different evacuati@iegies in the face of an impending
emergency and could be used to redirect crowds as emergenditions changed. However, we
have only a toy implementation of the social forces algamittind such a crowd evacuation tool
would need significant additions over the current toy immatation. These additions include the
ability to build the simulated crowd environment includibgilding floor plans and obstructions
as well as the tools necessary to properly load balance thelgton and geometry across the
allocated processors. It would also need enhanced crowal/lmel such as panic and leadership,
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and a path search component.
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Chapter 5

Codebase

The ideas behind, and some of the code for the PPDM came froohi&@&BioDAC project. Bio-
DAC simulated a biological attack on an urban environmene Wished to refactor BioDAC's
population simulation code to create a reusable toolkildage agent calculations that could be
used in other projects. We also wanted to extend this coddaw & to run in parallel across
a number of machines. This is the primary reason behind tbeelof Java as the implementa-
tion language. Java was also ideal in this case because tdrfeeamount of Java developing
experience found in the teams that would be creating andjbis tool. Java is also widespread
outside of this community and many code libraries are aplglfor use in creating and extending
the PPDM. The Java community is also rich with many develogn®ols for building, testing,
debugging, and profiling Java code.

5.0.6 Build Tool

At the beginning of the project we experimented with a nevaJaoject management and build
tool named Maven [37]. The key feature of Maven is build awtomn through convention. It
boasts advantages over the standard Java build tool Antod@)ase it provides a standardized
project layout and automates the most common build prosessd as compiling, testing, and de-
ploying. This standardization could save developers aflotr® when switching between projects
that all use Maven. Maven also has the advantage of autamtgtdownloading dependency li-
brary jar files from local or remote repositories. This akoier easy library upgrading and allows
different projects to share library files.

However, in practice Maven ended up costing our team more thman it saved and caused
many head-aches when compared to Ant. To be fair, the dexelayf the project had much
experience with Ant and no experience with Maven. Maven kssraade improvements over the
years that may have solved our original problems. The autxhauild processes were nice but
we found adding additional build tasks to be much more dilffitian in Ant. We also did not reap
the benefits of the standardized layout since no other geoyeere using Maven. The automated
downloading of jar files also caused problems. This requsetting up a local Maven repository
for us to host libraries not found on remote repositories. Weee plagued with proxy problems
and the process for uploading and downloading these lésg@rioved much more complicated than
the Ant standard of simply keeping all jar files in a lib di@gt We eventually switched back to
using Ant for our build process. The Maven project seems tarbexcellent idea but in practice it
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would need to be adopted across an organization and inaade training to see its benefits.

5.0.7 Development Environment

The PPDM projects used Subversion [20] for its revision margoftware and had no troubles.
Developers were free to use any development tools they ¢hdaseost used the Eclipse IDE [14]
for its rich Java development feature set. A powerful congmbrof Eclipse is the many available
plug-ins such as Subclipse [35] which made the functiopafiSubversion available from Eclipse.
A DokuWiki [32] based Wiki was set up as a collaboration toot the development team to
document the build process, project progress, and any conpnodblems. Unfortunately the Wiki
quickly fell out of use. Wiki’s can be very useful to a projectd aid in the documentation and
sharing process. Unfortunately they also require disogptin the development teams part and can
suffer from a drop in momentum. Another important comporaérthe development environment
was the use of JUnit [6] for unit testing. The JUnit framewonkkes creating and launching
standardized test cases for Java code very easy. Develmgersghly encouraged to write and
run test cases for all functionality. The testing procedpshspeed up the process of creating
correct code by being able to quickly determine when and &/tieere are errors. It also leads to
the creation of code that is easier to test. Another beneftlafge suite of tests is that one can
refactor the code base and feel more confident that they didreate any new bugs if all of the
tests pass.

5.0.8 Java and Parallel Computing

On top of working with existing and future Java based Sanidmlation programs, a second re-
quirement of the PPDM was to perform large, complex simoletiacross a cluster of computers.
Unfortunately, Java has not been the language of choicesihith performance computing com-
munity. This community typically prefers C, C++, and Fortrahieh offer faster and more direct
access to memory and io devices and consequently has a ladgeobtools to support parallel
and distributed computation. Fortunately, the stigma gaJaeing a low performance language
has abated with improvements in its Just In Time compiledsiaaproved garbage collector imple-
mentations, as well as new advanced IO and communicaticari@s. Java libraries such as Java
Fast Sockets (JFS) [34] also exist to allow users to takerddga of advanced high performance
communication interconnects that were previously unatsel to Java developers. This has lead to
the creation of new parallel communication tools for Javan®& studies are finding that such im-
provements and libraries are making distributed Java bagglitation’s performance comparable
to and in some cases even better than those programmed inEberah [1].

We selected the Message Passing Interface (MPI) for Jatadd?PDM'’s parallel communi-
cation. MPI is a well established protocol for parallel cartgtion with a long history. We felt
that the maturity of this protocol and the previous expergeld by some of the developers made
it the best choice. In the process of building and testing?R®M two different Java based MPI
libraries were used.
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mpiJava provides an object-oriented Java interface to tRélMrary. It uses the Java Native
Interface to wrap a natively compiled MPI library. In effetdt Java calls are forwarded onto the
native MPI library (usually written in C) that was compiled fbhat machine. With mpiJava, the
user still needs to be able to compile a native version of MBt will work with their machine.
Their version of Java and mpiJava also need to work corragttythe native library. Much time
was spent getting such a setup working and difficultiesatitiur when moving the PPDM to new
machines. However, mpiJava’s use of a native MPI libraryuithbelp boost performance over
alternatives since the native library should be optimizedlie machine and have direct access to
the most efficient communication devices. We had the mostssdn using MPICH2 as the native
MPI library. We were unsuccessful in getting mpiJava on oachmnes to work with LAM/MPI
and Open MPI. But even with mpich2 we still experienced progfieeezes and crashes. Most of
these would occur in the native code making debugging irlchedifficult.

Seldon is an agent-based social simulation that uses th&R®Dmessage passing and agent
migration. Seldon also uses Zoltan, a load-balancingrybitzat is based on MPI as well. Unfor-
tunately, MPI is not set up to run multiple instances at thmeséime. If more than one library is
statically linked against MPI, the instances wait for eattteoand the program hangs. To avoid
this, we needed to build MPI with shared libraries so thahZailtan and the PPDM could dynam-
ically link to them. The following command was used to buil®Mspecifically, mpich2 v1.0.5p4)
with shared libraries:

$ ./configure —prefixéMPI install path) —enable-sharedlibs=gcc —disable-cxx —with-rsh=ssh

We then added MPI’s shared library directory to LIBRARY _PATH, and set the MPICRUSE SHLIB
variable to “yes”:

$ export LD LIBRARY _PATH=(MPI install path/lib
$ export MPICHUSE SHLIB=yes

Once you set MPICHUSE SHLIB, you can configure mpiJava in the standard way ($ ./con-
figure —with-MPI=mpich) and it will use the MPI shared libies. For Zoltan, we first compiled
it with “-fPIC”, and then we pulled it and the MPI shared libies into the Seldon shared library
with “gcc -shared”.

MPJ Express is the second library we tested. This is a puieidgdementation of the MPI
protocol. Its interfaces also match those of mpiJava afigwis to easily swap between the two li-
braries. The advantage of MPJ Express is that no native Mplemmentation needs to be compiled
for the machine. This allowed us to easily run the PPDM on nwifigrent architectures. Errors
were also much easier to track down using Java’s exceptiodling capabilities. This proved to
be a much more stable platform for running the PPDM. Unfately because it is a pure Java
implementation it can not make use of the cluster’s high dpeterconnects. This provides a
tradeoff of stability and speed. MPJ Express is definitetydhoice when prototyping new parallel
applications.

A third Java implementation of MPI that exists is containathim the Ibis project [7]. Unfor-
tunately even through the classes, functions, and ovenaditionality are the same as the previous
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two libraries, the Ibis project chose to use a different pagekstructure. Code changes to the
PPDM would be needed in order to utilize Ibis. ProActive [8]ain additional pure Java based
distributed programming environment that is gaining papty and has advanced features that
could be used by the PPDM. This points out that the PPDM coeitebfit by abstracting its use of
the underlying communication library. Such an abstractionld allow users to try out different
communication libraries with the PPDM. A user could use tiaenework the best matches their
application’s convenience and performance needs.

5.0.9 Launching the PPDM

Much effort was needed in debugging the launch process odPBi2M. This is simple in serial
mode where PPDM can be treated as a normal Java componenddmda@requirements to the
program launch process. Difficulty arose when using the PRDparallel mode.

1. MPI Libraries require special launch configurations

The two MPI Java implementations provide similar yet degfgrways of launching programs
that use their library. They are similar in that both provadseries of batch scripts and sup-
porting programs. Both require that daemon applicationsibaing on all compute nodes.
A starter program is launched from the master node. Thisstaka series of arguments
needed for the MPI configuration as well as the actual progfance the starter program is
launched it connects to the daemon programs running on gposting compute nodes. The
start program sends the needed launch arguments and themaeograms launch the the
actual Java application. Proper care must be taken to iisarprogram codebase is avail-
able to the compute nodes. A shared file system eases thisamgut but results in slower
speeds. Both MPI libraries provide scripts for their staates daemon applications, however
their arguments differ and in some cases need to be changedyfeen deployment. This
necessitated the creation of separate PPDM launchingséoipthe different library types.
This script put together the proper Java class path for tipicapion and constructed the
arguments and calls for the library used and helped hide rofttye problems previously
faced by the user.

2. Batch Job Scheduling

Batch scheduling of jobs is an important feature of the PPDMs &llows one to submit
many jobs to a cluster to be run in parallel. We used the gqsubdeding tool found on San-
dia’s compute clusters for this purpose. Unfortunatelyimgdifferent cluster environments
require different gsub arguments. We again created sdaptle different environments to
hide these complications from the user. Special care isatetbe sure the daemon and
starter programs get launched correctly. We made use ohtéective option (-I) for much
of our debugging when running parallel jobs. Care and somagtghg is still necessary
when moving the PPDM to new parallel environments.
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Chapter 6

Integration

We integrated the PPDM with several existing simulatiomfesvorks on an experimental basis.
This was used to see how well the PPDM could work with San@igi'sting simulation codebase
as well as how it might work with future simulation programs.

6.0.10 HLA

We first used the PPDM in conjunction with an HLA federatiof][fo simulate a moving popu-
lation in a large metropolitan area. This was an importasithecause the primary purpose of the
PPDM was to add parallel support to the Weapons of Mass DetnuDecision Analysis Center
(WMD-DAC) suite of simulation tools. These tools consist ofadlection of interacting submod-
els that simulate different parts of the overall system urstiedy. Each submodel consists of a
HLA Federate. By incorporating the PPDM into one of these Fatds, we allow that particular
submodel to scale in size and complexity beyond what coulpgrbeessed on a single computer.
In this integration we tested the PPDM in three modes of djzera

1. Single Machine Figure 6.1

In the first mode of operation all of the HLA federation was nma single Windows ma-
chine. Part of this federation was the Population Federaiehncontained an instance of
the PPDM running in serial mode. The PPDM was used to maiataghupdate the people
agents in the simulation. The other federates could subamitgie algorithms as well as
other supporting data objects through HLA to the Populaiederate. The algorithms were
then run by the PPDM to update the state of the agents andajermertput statistics. Output
data was passed from the PPDM to the Population Federaténanaitit to all subscribing
Federates via HLA. This integration was the least com@itatue to the fact that a good
portion of the source of the PPDM came from a previous vergfahe Population Federate
used in the BioDAC program and there were no parallel proogssidistributed computing
issues. This integration was successful and several ¢uBeardia applications are using the
PPDM in this manner.

2. External Machine/Cluster Connection Figure 6.2

In the second mode of operation the HLA federation was againon a single Windows
machine to be further referred to as the client. As opposadove, the PPDM was started
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separately on a Linux compute cluster in parallel modeainidj a configured number of
compute nodes. The launching of the PPDM can be done iniseglyobr through a job sub-
mission client. Once both the Population Federate on tkeetciind the PPDM on the cluster
are started a connection is made between them using a tuniftelding a custom imple-
mentation of Java’s Remote Method Invocation (RMI) functidgpa The HLA federation
on the client runs as above but makes calls to a RMI proxy to BieNP. These calls are
forwarded to the PPDM on the compute cluster using the RMIe¢un8etting up the RMI
tunnel between the client machine and cluster proved to bekoated. Cluster nodes are
not addressable from outside of the cluster and the clielchina is not addressable from
inside the cluster. A daemon application was setup on theteafs head node to solve this
problem. The head node of a cluster is generally used foclang jobs as well as accessing
resources on the compute nodes. When launching the paaddlehjthe cluster the daemon
application must also be launched on the head node. When th#epgob starts up one
of the processors is set to be the master node and providediation between all of the
worker nodes. This master node connects to the daemon afppticon the head node via
RMI. When the Population Federate starts up on the client madhialso connects to the
daemon application on the head node. RMI traffic can then passthe client application
to the head node, then from the head node to the master PPDM Hio@&cessary the master
PPDM node then distributes the data to the PPDM compute nddesrall, this mode of
operation is quite complicated and the tunnel between ibatahode and the cluster nodes
adds a lot of communication overhead. However such a setupaa off if the size and
workload of the population processing is high. This setug &80 necessary in the case
where the application could only run on a Windows machineis ktup allows the heavy
processing and size of the population code to be distribatedss the cluster allowing the
Windows client to process larger and more complicated saena

. Cluster Figure 6.3
In the third mode of operation both the PPDM and the HLA Fetilanaran on the cluster.
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However, the test application in question was only a singje@togram since the larger HLA
federation program only worked on Windows. The clusterts gobmission tool was used
and upon launching each test federate was started on its@wpute node. An instance of
the PPDM was also launched in parallel across a number of gtemodes. The master node
of the PPDM was located on the same node as the PopulatioRd@state. Communication
between the PPDM and the test federate occurred again thiMg even though both were
on the same machine. This use of RMI and associated overheil lw® removed if both
the Population Test Federate and the master node of the PRB&/Istarted in the same Java
Virtual Machine. This is just a mater of solving some comgiicns in the launch code for
Federates and the PPDM. Running everything inside of theéecluspresents a more sane
and less cumbersome mode of operation. Federates can hbutiest over a number of
processors and the Federate to PPDM connection is much nnecé d his mode represents
the best case for non interactive, batch data analysis.

6.0.11 RePast

We also used the PPDM as the underlying data structure foobtie demo application models
of the RePast Agent-Based Modeling toolkit [9]. RePast is a & open source agent based
modeling toolkit and is very popular in the social simulatmmmunity. The tool was originally
developed at the University of Chicago but has subsequestiprbe an open source project re-
ceiving much development support and direction from ArgoNational Laboratory. This toolkit
provides many utilities for agent creation, visualizatigeometry, scheduling, and data analysis.
It incorporates the use of dynamic scripting languages asdBroovy and also provides tools for
some concurrent event processing, allowing the utiliraitbmulti-processor/multi-core systems
as well as clustered batch processing mechanisms. Howeigelimited in that that it currently
does not support distributed, fine grained parallelism ofoc@eh To clarify, a single model can
not be run distributed across multiple computers. Thistfirthe size and complexity of a model
to what can be stored and processed on a single machine sthisvery task that the PPDM was

39



Test
Federate 1

PPDM

RMI

opulation
Federate

Joint -
HLA/PPDM Test
Master Node Federate 2

Compute Cluster

Figure 6.3. Cluster

designed to handle.

An ad-hoc integration between the two tools was undertakeprdve that a RePast model
could be run distributed using the PPDM. A similar approachdding parallelism to RePast can
be found in [27]. To provide the integration, the 2d landgcapthe model was replaced by a
PPDM Domain with one Particle Field. The PPDM was run in Singfogram, Multiple Data
(SPMD) mode and each processor was in charge of creatingnaese®f the agent population
based on its id. No changes were made to the RePast modelis agagent update code. We did
have to make some changes to the ReBastdul e class to maintain synchronization between the
PPDM worker nodes. At each time step synchronization toekepto allow for agent movement
and shadow agent updates between processors. We schedtiet pnovement and update at
fixed intervals on all nodes.

This was a proof-of-concept integration and a more detaitealysis and code changes would
need to be undertaken if the PPDM were to be effectively natiegl into the RePast codebase.
Such an integration could be advantageous to RePast, tted simculation community, as well as
Sandia and the PPDM project itself. The social simulatianmnity would benefit by being able
to run their existing and new RePast models in a distributgltide by using the PPDM. Sandia and
PPDM user’s would benefit by allowing use of RePast’s librdrggent based modeling utilities.
There would also be the benefit of a larger user base for firahagfixing bugs as well as a pool
of people willing to make continued improvements to the fearark. The 2nd World Congress
on Social Simulation afforded us contact with one of the d@eeclopers and project life planners
of RePast. The project is very welcoming of outside contrimg but would require the PPDM
to be open-sourced and be made available with one of theindies. The RePast project itself
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also has several side projects, not available at the timei®paper, working to make distributing
computing available to RePast modelers.
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Chapter 7

Improvements/Limitations

The following is a list of limitations of the PPDM as well asgggiestions for further improvement.

1. Load Balancing

The PPDM currently comes with no load balancing tools. Retdre evenly distributed
across the available processors. This may not be ideal els loaids may very greatly. Load
balancing was not in the scope of this LDRD but, to be effective PPDM should be able
to make use of load balancing tools or at least provide thewile ways of choosing their
own load balancing scheme. Seldon, which uses the PPDMthis&oltan library for load
balancing and provides an example of how other applicativeng do the same.

2. Parallel Discrete Event Processing Support (PDES)

All PPDM applications are currently time stepped. A givendiis reached, all of the patches
are processed, the patch processors synchronize, timgas@et and the process repeats.
This time stepping behavior is wasteful in cases where thi Waad varies in time and
space across the simulation domain. The PPDM could be madpatible with the PDES
paradigm so better support such simulations. In this pgradiach patch would be treated
as its own processing unit (logical process) and would oeldto synchronize with neigh-
boring patches if there were a time or data dependence betivem. This allows time to
advance at rates that match the actual model needs. Suckegration would take some
work but could greatly expand the powers of the PPDM.

3. Simulation Support Tools

Simulation frameworks such as RePast provide for the integraf a lot of different simu-
lation support tools for visualization and statistics. bacapability should also be available
to users of the PPDM. The actual implementation of theses twolld be out of the scope of
the project. However, it would be very beneficial to searchexisting libraries that would
be compatible with the PPDM and provide examples of how tdhese in conjunction with
the PPDM. This could greatly increase the functionality padularity of the PPDM.

4. Dynamic Language Support

Dynamic languages such as Python [36], Groovy [33], and RaBy have been growing
quickly in popularity due to the increase in programmer picityity that they can achieve.
Sophisticated support for these languages using Java’sJyton [18], JRuby [25]) also

43



continues to make progress. Support for these languagieinsithe PPDM may increase
the PPDM’s ease of use, user base, and even functionality.

. More data access patterns

Currently the PPDM provides only a few particle algorithmeggdor iterating through the
simulated population of agents. The algorithms mimic theeoker design pattern and give
the user access to the population one agent, cell, or patahtiate. After doing all of
their processing they can submit a collective operatiohdhews them to synchronize their
output data. Additional accessor algorithm types couldrbated to provide new and useful
access patterns. One such useful access pattern wouldeustapiReduce [10] algorithm.
This algorithm would provide access to the agent populatiom agent, cell, or patch at a
time. Butinstead of a final collective output the user wouldtémermediate outputs as they
process the population. When defining the algorithm the Usersaibmits a corresponding
gather algorithm that will be used to process all of the otgtghat they emit across all
processors. We would hope that as the PPDM gets further w#tional useful access
patterns would emerge that would eventually be folded baitkthe PPDM code base.

. Better support for multi core/processor machines

Being a Java multithreaded application, the PPDM is alreatively able to take some
advantage of multi core/processor machines. This is paatiy applicable in garbage col-
lecting operations that can run in the background. Howe@nputer architectures are in-
creasingly being pushed to multi-core systems. For theeatimplementation of the PPDM
to fully take advantage of the power of a core a separate J\&thmce must be launch for
each core. This creates a separate memory space, adda@raead, and the added com-
plication of parallel launch scripts. This overhead coudddiiminated if the PPDM were
refactored to run in a multithreaded manner for each patéis Would require duplicating
all processing requests across the patches and would ndibaslto properly handle the
collective operations between patches. The multiple covakl also be put to use in the syn-
chronization states of shadow data updates and agent mat&nseich implementations are
definitely warranted and would greatly improve performaifitke trend toward multi-core
architectures continues.
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Chapter 8

Conclusion

Agent-based modeling and discrete event simulation aneabig the standard tools for under-
standing and making predictions about complex systems.offegegree both ABM and DES
make the argument that, unlike statistical methods, sinaugs must be performed at scale. For
such social systems, there is agriori idea of a scaling law or average that would predict their
emergent behavior. Because the phenomena simulated alty datge and complex, and be-
cause they must be computed at scale, parallel high perfm@n@omputing is required to enable
successful simulations of social systems.

We hope that our work in developing the Parallel ParticleaDMbdel (PPDM) instigates the
development of a library of general purpose componentsafgelscale entity modeling. From a
software engineering point of view, separable componemt8aBM/DES will aid repeatability and
methodical experimentation. Beyond reusable softwarededpoftware development, the ability
to change out entity models and even the framework and schanepdating without changing
the parallelization scheme is an important contributiothef PPDM. Often when comparing two
different models that purport to achieve the same resudtptienomenological particulars of the
solutions differ in so many ways that comparisons are ditficBeparating out the parallel im-
plementation, as we have done in the PPDM, hopefully will eneamparison between different
models easier in the future.

45



46



References

[1] Brian Amedro, Vladimir Bodnartchouk, Denis Caromel, ChastDelbe, Fabrice Huet, and
Guillermo L. Taboada. Current state of java for hpc. httpd/ihria.fr/inria-00312039/en,
2008.

[2] Mark Baker and Bryan Carpenter. mpiJava. http://www.hgjaxg/mpiJava.html.

[3] C. Barrett, K. Bisset, R. Jacob, G. Konjevod, , and M.V. Magatfiransims: Transportation
analysis simulation systems. http://ndssl.vbi.vt.adm&ims.html.

[4] C. Barrett, S. Eubank, V.S. Anil Kumar, and M. Marathe. Tipédemiological simulation
system (episims). http://ndssl.vbi.vt.edu/episimslhtm

[5] David Beazley. Swig homepage. http://www.swig.org.

[6] Kent Beck and Erich Gamma. JUnit - a unit testing framewiarnkthe java programming
language. http://junit.sourceforge.net/.

[7] M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann. Ibisffiéent java-based grid
computing. http://projects.gforge.cs.vu.nl/ibis/.

[8] Denis Caromel. Proactive - parallel, distributed, mualtre solutions with java.
http://proactive.inria.fr/.

[9] Nick Collier. Repast agent simulation toolkit. http:fdeest.sourceforge.net/index.html.

[10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simptifa processing on large clus-
ters. INOSDI '04, pages 137-150, 2004.

[11] Karen Devine. Zoltan homepage. http://www.cs.samggi&/'Zoltan/.
[12] Joshua M. EpsteirGenerative Social Science. Princeton University Press, New Jersey, 2007.

[13] Apache Software Foundation. Ant - a software tool faioawating software build processes.
http://ant.apache.org/.

[14] Eclipse Foundation. Eclipse - an open developmentgiat http://www.eclipse.org/.

[15] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and®ley. Large-scale network
simulation: How big? How fast? In M. Calzarossa and E. Geleebi#ors, 11th IEEE
International Symposium on Modeling, Analysis and Smulation of Computer and Telecom-
muni cations Systems (MASCOTS 2003), volume 2965 of_ecture Notes in Computer Science,
pages 116-123. IEEE Computer Society, 2006.

47



[16] R. M. Fujimoto. Parallel and Distributed Smulation Systems. John Wiley and Sons, New
York, 2000.

[17] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynaaiifeatures of escape panidature,
407(6803):487-490, September 2000.

[18] Jim Hugunin. Jython - java implementation of the pythaterpreter. http://www.jython.org.

[19] M. Hybinette, E. Kraemer, X. Yinand G. Matthews, and hmed. Sassy: A design for
a scalable agent-based simulation system using a digdhdiscrete event infrastructure.
In B. Lawson, F. Perrone, J. Liu, and F. Wieland, editéisiceedings of the 2006 Winter
Smulation Conference, pages 926—-933. IEEE Computer Society, 2006.

[20] CollabNet Inc. Subversion - a version control systentp:hsubversion.tigris.org/.

[21] G Karypis, K Schloegel, and V  Kumar. Parmetis homepage.
http://glaros.dtc.umn.edu/gkhome/metis/parmetigioes..

[22] Sean Luke, Gabriel Catalin Balan, and Liviu Panait. Maddulti-agent simulator of neigh-
borhoods. http://cs.gmu.edu/ eclab/projects/mason/.

[23] Bryan Carpenter Mark Baker and Aamir Shafi. Mpj express quoj
http://acet.rdg.ac.uk/projects/mpj.

[24] Yukihiro Matsumoto. Ruby programming language. hitpww.ruby-lang.org/en/.

[25] Charles Nutter, Thomas Enebo, Ola Bini, , and Nick Siedauby - java implementation of
the ruby interpreter. http://jruby.codehaus.org/.

[26] Jon Parker. A flexible, large-scale, distributed adeagted epidemic model. M/SC '07:
Proceedings of the 39th conference on Winter simulation, pages 1543-1547, Piscataway, NJ,
USA, 2007. IEEE Press.

[27] Hazel R. Parry, Andrew J. Evans, and Alison J. Heppenstdlllions of agents: Parallel
simulations with the repast agent-based toolkitl riter national Symposium on Agent Based
Modeling and Simulation, 2006.

[28] K. S. Perumalla. A systems approach to scalable tratesjpmn network modeling. In B. Law-
son, F. Perrone, J. Liu, and F. Wieland, editétsyceedings of the 2006 Winter Smulation
Conference, pages 1500-1507. IEEE Computer Society, 2006.

[29] K. S. Perumalla. Scaling Time Warp-based discrete esgetution to 16 processors on a
Blue Gene supercomputer. In U. Banerjee, J. Moreira, M. Dulaoid P. Stenshim, editors,
Proceedings of the 4th Conference on Computing Frontiers, 2007, pages 69—-76. Association
for Computing Machinery, 2007.

[30] M. J. Quinn, R. A. Metoyer, and K. Hunter-Zaworski. P&hlmplementation of the so-
cial forces model. Proceedings of the Second International Conference in Pedestrian and
Evacuation Dynamics, 2003.

48



[31] C. Reynolds. Big fast crowds on ps3. $andbox (an ACM Video Games Symposium),
Boston, Massachusetts, 2006.

[32] splitbrain.org. Dokuwiki - standards compliant, siep to use wiki.
http://www.dokuwiki.org/dokuwiki.

[33] James Strachan. Groovy programming language. lgtpd¥y.codehaus.org/.

[34] G. L. Taboada, J. Touib, and R. Doallo. Efficient Java Communication Protocols on
High-speed Cluster Interconnects. Proc. 31st IEEE Conf. on Local Computer Networks
(LCN'06), pages 264-271, Tampa, FL, 2006.

[35] Tigris. Subclipse - subversion eclipse plug-in. hfgubclipse.tigris.org/.
[36] Guido van Rossum. Python programming language. hitywW.python.org/.

[37] Jason van Zyl. Maven - software tool for java project egement and build automation.
http://maven.apache.org/.

49



50



Appendix A

Publications

The following paper appeared in the proceedings of the 2008d/Congress on Social Simulation
at George Mason University in Farfax, VA in July 2008.
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Appendix B

Parallel Particle Data Model

Zachary J. Heath, Max S. Shneider, Jaideep Ray, Benjamin AnAll
Keith B. Vanderveen, Michael E. Goldsby and Robert C. Armstrong
{zheath, msshnei, jairay, baallan, kbvande, megolds, rob} @sandia.gov
Sandia National Laboratories

7011 East Avenue, MS 9915, Livermore CA, 94550-0969

Abstract

We present the design and performance of a parallel entitylation framework called the Paral-
lel Particle Data Model (PPDM). Based loosely on a Partiok&Ell algorithm, the PPDM orches-
trates and supports agent-based simulations on a pariglteplerformance platform. The PPDM
is targeted at social simulation applications and is desigio be portable to a variety of high-
performance platforms. In this paper we show that the PPDiNbpas well for two agent-based
simulations on a clustered platform. We hope that this walki@erm the cornerstone of a reusable
toolkit for modeling and simulation.
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B.1 Introduction

Enterprise modeling, social simulation, system-of-aystavar gaming, and related techniques
simulate complex environments and systems (hereaftenreeféo as Human Dynamical Systems
(HDS)) and compute observables which manifest themseliegply as emergent phenomena.
To increase fidelity of these HDS systems, increasinglyelargmputations are needed and are
accessible only through high-performance computing (HEGnputer-based simulation of HDS
has long been used within the military for war games, to cautytraining, assess new technolo-
gies, and evaluate tactics. Recently, the Department of Homd&ecurity (DHS) and other federal
agencies charged with disaster preparedness and res@ymeserhbraced simulation for modeling
a variety of complex phenomena including response to athgk/NVeapons of Mass Destruction
(WMD) and natural disasters. Sandia National Laboratorasdeveloped a number of simula-
tion applications to support different programs examiniiiglD countermeasures and concepts of
operation, defense applications, terrorist networks,esmhomic consequences from natural dis-
asters or terrorism affecting critical infrastructurebe$e simulation applications differ in several
respects, yet they share an underlying commonality: alteonthemselves with modeling com-
plex "systems of systems” where the system components sceetke (such as people, autonomous
land vehicles, or companies) and interact in highly complays with other system components.
Historically, modeling of HDS has not taken advantage offper processing hardware or tech-
nigues. There are at least two reasons for this:

1. The phenomena in question was not modeled at a fidelityntbald require the extra com-
plication of parallel computing.

2. The history of simulation of HDS has favored developeanrfdly environments, use of widely
available computing hardware and software, and incororadf sophisticated graphical
user interfaces (GUIs) over speed of execution. This emgbagapid deliverables portable
to a wide variety of platforms led to the use of virtual ma@irased languages such as Java,
Python, and Tcl over C and C++, because most programmers ate mmare productive in
these languages. Most programming for high performancallphprocessor systems has
taken place in languages like C, C++, and (historically) FORNR#ecause they give the
programmer fine-grained control over allocation of memanrg ather processor resources.

Increasingly, however, HDS must reproduce significant phena/effects at credible fidelity
while being fast enough to enable human-in-the-loop andljitatch-oriented analysis. Recently
developed requirements for the next generation of soawaligition applications have shown that
the current capability, based on conventional computiegitectures, falls short in both respects,
requiring extension to HPC platforms using parallel preges Also, improvements to Java and
other virtual machine-based languages have made them nti@aetige in the domain of high per-
formance computing.

We have developed components and tools for HDS simulatidhads in a parallel HPC set-
ting. In particular, we are addressing the challengesrmmedlabove by creating a portable, scalable,
and general engine for particle simulations as a facilitynioilti-use in agent-based simulations.
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B.2 Related Work

Many simulations have been created to study complex Humaramical Systems. Two excel-
lent examples originally developed at Los Alamos Natiorabdratories and now hosted by Vir-
ginia Tech’s Network Dynamics and Simulation Science Labmy include TRANSIMS[3] and
EpiSims[4]. TRANSIMS uses detailed urban travel data to rhivdasportation networks and can
model the effects that changes to those networks will haweadiic. EpiSims uses that same travel
data to model disease epidemics and can be used to test pahlib mitigation strategies. An-
other example of work in this arena is Generative Socialr®aewhich uses simulations to help
discover the underlying dynamics of complex social sysf&gjs In this work Epstein makes a
hypothesis of the sets of rules that govern a given dynanu@aksystem. An agent-based model
(ABM) implementation of those rules is then created and thelte are measured against historical
data. The closeness by which the generated data matcheastibrichl data gives credibility to the
hypothesised rules.

As the modeling of HDS has grown in popularity, a number osedle agent-based modeling
toolkits have emerged to simplify the work of the develogeePast[9] is arguably the most pop-
ular framework in the ABM community and provides developeithWwbraries for agent creation,
event scheduling, and data charting and visualization.oMj@2] provides similar functionality but
focuses more on light-weight models meant to be run manystifmeMonte Carlo-type studies.
While these toolkits can be run in a parallel batch mode onstetad environment, neither toolkit
lends itself for use developing models that run singularlparallel across a cluster of computers,
thus limiting the size and complexity of such models.

The PPDM in its present form operates in a time-steppeddasHDiscrete event simulation
(DES) provides a different time management paradigm foukition. Instead of advancing time
in globally synchronous fixed steps, DES advances the lacallation time to the exact time of
the next local event. DES scheduling delivers events ingtarap order at all nodes allowing it
to achieve performance gains if the simulated events aggularly spaced in time or space. The
greatest successes of DES to date have been in the areasvoflnsimulation and war gaming.
Several frameworks and systems have been created to stipigorThe High Level Architecture
(HLA) standard[16] specifies an API for distributed DES that seen wide use, particularly in
work done for the Department of Defense. An example of par8IES (PDES) used for social
simulation is the SCATTER traffic simulator[28]. PDES schedphas also provided time man-
agement for an agent-based simulation system[19]. Agpiesusing PDES have scaled to over
1500 nodes[15]. In an exceptional scaling exercise, Pdtaj28] ran a test program on 16384
nodes of a Blue Gene supercomputer. Though the PPDM in itemrésm makes no use of DES
concepts, we envision future DES extensions. To our knaydedo agent-based simulation sys-
tem in widespread use provides the distributed synchrtoizaeeded for true PDES scheduling.

In a work that highly influenced our design, a more traditlgmarticle-in-cell based, time
stepped model was used for simulating the evacuation & lengyvds in a building environment[30].
In this work, the Social Forces algorithm was implementezhgbhat the simulated geometry and
populations were divided up amongst a cluster of computer@1] a similar approach was used
for large crowd simulation but made novel use of the Play&teé8'’s high performance Cell archi-
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tecture.

B.3 Architecture

In our work modeling various HDS, we identified a great deafusictional commonality in our
simulation codes. We also observed that future simulaiiotise problem domain would be grow-
ing in population size and complexity. This led us to cre&ie Parallel Particle Data Model
(PPDM), a Java-based, reusable programming toolkit thada@is HDS simulations and can scale
to a large number of processors.

The HDS simulated by Sandia are generally composed of laygelations of agents (people,
vehicles, etc.) spread across a geography of segmenteieblmauch as cities, census tracts, or
even households and businesses. Each location containfaggents that are able to interact
with each other as well as with agents in neighboring locatioThe agents can move between
locations as time evolves. Various modules of the simutatieed to update or gather information
from the agent populations in different ways based on thengimena they model. Examples
include infection of people due to a biological hazard plwneetection that a car should trigger
a radiation sensor alarm.

We designed the PPDM to accommodate this method of intagaetith the simulated pop-
ulations while operating in a distributed environment. Ri@DM uses a particle-in-cell (PIC)
data structure which divides the simulated geography ialis that contain populations of agents.
The PPDM then distributes these cells across a number oégsocs. Agents directly affect other
agents residing in the same or neighboring cells. Non-f@ighg particles can interact through
special, less efficient mechanisms.

Even though Java is not renowned for its high performancepetimg capabilities we chose
it as the PPDM’s implementation language. The primary nesseere to support legacy code, to
utilize existing programmer skill sets and to provide edsteselopment. Evolving improvements
to the JVM’s performance and extensive open source codarids; including several new high
performance communication libraries, have also incredsedtractiveness. The end result is that
Java tools can provide a portable and easy to use framewohigio performance computing.

To make use of the PPDM, the user must first define the geométheqroblem domain.
Currently, we have implemented two types of geometry. A uaarspecify either an n-d lattice or
a graph of cell locations. Along with the geometrical stanet the user must define the number of
functional patches into which they would like the geometigken. A patch represents a grouping
of cell locations that are guaranteed to be collocated orséimee processor. Each processor is
allocated a number of patches to process. Modelers writedlgorithms and agent update code
to work on a patch-by-patch or cell-by-cell basis which deslithe PPDM to distribute the user’s
program across many processors.
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Figure B.1. Domain Model

B.3.1 Data and Particle Fields

After specifying the domain geometry, modelers define mpidtdata and particle fields across this
geometry. A data field holds a single unit of data (such as aorifloat) for each cell in the
domain, while a particle field allocates to each cell in thendm a list-like data structure called
a particle set. The particle set data structure allows theeheo to store and organize agents and
provides other useful utility functions. In creating a datgparticle field, the modeler specifies a
locality stencil for that field. This defines each cell’s Ibdata neighborhood within the overall
defined geometry. In the case of 2-d lattices, a modeler withmonly specify a 4 point stencil
in which a cell's neighbors include adjacent cells to thetmoeast, south, and west. In a graph
geometry, on the other hand, the graph structure directiraenes cell neighborhoods. The local
neighborhood defines a region of shadow data that each patshrmake available to the cells
it maintains. Shadow data is a read only copy of neighborglfisadata. After doing a shadow
update for a particle field, each patch will have the datalercells it maintains as well as a read-
only copy of data from its neighboring cells that are maimai by other patches. If a patch has
neighboring cells that are located on another processtar,adenmunication must take place. The
transfer of shadow data enables the simulation to updatetsigegate using data from their own
cell as well as neighboring cells. This method is similartattused in a parallel implementation
of the social forces model [30]. The shadow data construmpi®nal. If a particular domain does
not need to have neighbor cell interactions this featurébeatisabled. To summarize, a processors
will be allocated a number of patches. Each patch is composachumber of cells. Each cell
contains a number of particles or agents.

While processing the agents, modelers also have the abildgttedule the movement of agents
from cell to cell. This cell movement can span patches andgssors. The PPDM takes care of the
actual movement of the agents and transfer of shadow ddtee thodeler guarantees that particle
movement only occurs between neighboring cells, the PPDivhtake optimizations that reduce
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the amount of communications needed between processersbthallowing greater speedup. The
PPDM'’s capabilities hide a lot of parallel processing caewjil from the modeler.

To better enable parallel processing, the PPDM limits theletes’s interaction to the data
and particle fields by allowing only cell-by-cell or patcli-patch access to the data. A modeler’s
algorithms have full access to all agents owned by the p&teh process, as well as read access
to agents of neighboring cells of that patch. The PPDM’suieaset encourages modelers to build
their algorithms with locality in mind. This allows the alghms and data to be more easily and
efficiently distributed across multiple processors. Fram @xperience in prior simulations, this
restriction is acceptable. We also offer various convdnyehless efficient mechanisms to handle
global communication between processors.

Several patterns for interacting with the particle popale are available. The most common
method of particle access is to submit particle algorithmthe PPDM. Particle algorithms are
data structures that implement the visitor pattern. Whetigk@malgorithms are submitted to the
PPDM, the PPDM duplicates them across all processors aretislds them to be executed at
regular intervals. The algorithms visit each cell or patemed by the processors on which they
are located and perform their needed operations on theinedtagents. The particle algorithms
can optionally coordinate with their copies on other prsoes and send back aggregated data to
their parent modules or other subscribing particle alporg.

In our simulations, various modules work together in a dptsidimanner by submitting parti-
cle algorithms that enforce their desired behavior or afe@oncern on the agents. This deviates
from standard agent-based techniques, which initializeatients with a given behavior and state
and allow the agents to evolve their state. This differentses because the PPDM grew out of
our experience with prior simulations composed of separaidules that ran on their own Java
virtual machine. Each of these modules needed to interdbtthe population. Rather than mov-
ing the population data to each of the modules, we allowedrtbdules to move their code to
the population data. This is similar to how distributed eyss$ interact with a common database
through sql or stored procedure calls. One can duplicatetire traditional agent update behavior
in the PPDM through the use of a simple particle algorithm tadls an update method on all or
a selected number of the agents at scheduled intervals. gedrgsathemselves would contain all
of the logic needed to interact with neighboring data anchemand perform all necessary updates
and movement. Another alternative would be to have the wamoodules inject differing behavior
strategy objects into the agents upon initialization whicheventually be called during updates.
Dynamic languages like Ruby would provide an ideal enviromim@r this technique.

We are also looking into incorporating patch-based evertugs into the PPDM to allow
for algorithms or agents themselves to make use of the déseneent simulation programming
model[16]. To date, our simulation needs have not warrathteaddded synchronization and book-
keeping issues that DES will require.
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Figure B.2. Visitor Algorithms

B.3.2 Communication implementation

The PPDM uses the MPI model for parallel data communicat@mmmunication occurs between
copies of particle algorithms running on differing patchegsen agents move between cells owned
by different processors, and to update shadow data locateegighboring processors.

When necessary, the particle algorithms communicate andlic@be with each other across
patches using standard parallel processing messagingasuttte MPI broadcast and reduction
methods. We have provided modelers with simplified intes$aio these functions. We have also
implemented a messaging service to allow agents to commenweith other agents that are not
located on their patch. The PPDM organizes and sends me&sssigg a regularly occurring batch
update process. The messaging service is optional and whese it requires additional overhead
because it must track agent locations to enable routing.

The PPDM handles particle movement during a regularly sdeedbatch update where all
processors work together to redistribute agents to theecbtocations. We handle copying of
shadow cell data for neighboring cells in a similar mann&is Tequires the various processors to
remain synchronized in time.

Modelers can configure the PPDM to make use of mpiJava [2] o Ekpress [23] for the
MPI services. Both of these are object-oriented implemamntatof the MPI protocol using the
Java programming language. They differ in that mpiJavaigesva JNI wrapping over a native
MPI environment (such as MPICH or LAM), while MPJ Express isoanplete implementation
of the MPI protocol using only Java. We found MPJ Express téabenore portable and easier
to use since it removes the native MPI compilation and iratgn steps. In Java, serialization of
object data to byte data is a major cpu cost. We hope thatmoustoialization code will reduce
some of this cost and are looking into the serialization asrdraunication libraries from the Ibis
project[7].

B.4 Example Simulations

In this section we demonstrate the use of PPDM in two diffeexamples and conclude with
an illustration of its parallel capabilities. The probletresve been formulated in an agent-based
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fashion, but carry a PIC flavor in the sense that agentstestare collated into “bags”/cells with
in-cell (in-bag/near-field) behavior modeled at a far geeéitlelity than the far-field (out-of-bag)
behavior.

B.4.1 Spread of disease in a 2-species population

This example approximates the spread of a disease in twoatepspecies, humans and (non-
human) primates, with primates acting as a reservoir foptitbogen. The pathogen, modeled
loosely on Ebola, is communicable within each of the spearesis also capable of primate-to-
human jumps. This example models both humans and primatesligglual agents. A number
of primates and humans are collocated into settlementseaii@nans may come in contact with
primates and contract the disease. Both humans and primatgsnove between cells, though
primates’ movements are significantly more circumscriliehthumans.

B.4.1.1 Disease model

In this work we use a compartmental disease propagationimBdtn the humans and the primates
go through five compartments/states of health - Susceffipl&xposed (E), Mildly Symptomatic
(MS), Severely Symptomatic (SS), and Recovered/Dead (RA® r@sidence time in each of these
states of health is a random variable, which follows a digtion (usually log-normal). The process
of infection of humans is governed by their contact with otm@mans, cadavers and primates, i.e.
it depends on their closeness of contact and the probabilitpeeting an infected individual,
primate or cadaver. Transmission within the primate pdpras entirely by contact. We will
assume that both the Mildly Symptomatic and Severely Symatic stages are contagious, for
both humans and primates.

B.4.1.2 Movement model

We assume that there exigt human settlements, each containing a number of primatésr- In
actions between human and primate occur between thosenpiiasthe same settlement. The
human and primate populations in each settlement are drevmm the log-normal distribution
Z (Nmedian, S), WhereNmegian is the median an® the standard deviation. In each settlement we
use a median of 1000 and standard deviation of 500 for the hyropulation and a median of 50
and standard deviation of 12.5 for the monkey population.

For each settlement we define a mobility fadwih andMm for the human and monkey pop-
ulations. This mobility factor determines the percentafjeach population that will relocate on
a given movement step. The indexing of settlements reflestgrgphical proximity. Primates
travel to other human settlements primarily because ofipritx Once the connection routes are
determined, a settlement’s mobile population is distedidcross its connecting settlements using
the above probabilities as a weighting factor.
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The model can be configured with two modes of population m@&remn the first, agents are
assigned a fixed day-night routine. In the second mode, sagemte randomly several times a day
to connected settlements using the above probabilitiesvarghts, and at night they return to their
home settlement. Mildly symptomatic individuals move, severely symptomatic ones do not.

B.4.1.3 Disease Model Implementation and Scaling

The disease model initializes the PPDM with a 2-d latticengetny. The model represents each
settlement by a cell in the lattice where a cell is given an&alocation to determine its distance
from other cells. We initialize two separate particle fieioisthe human and monkey populations.
We submit four configurable particle algorithms to the PP@MYolve the disease agents. These
algorithms create the initial population distributionsitialize the agent movement patterns, per-
form agent movement at a set rate, and evolve the diseaseoétifie agents. The algorithms are
modular and can be replaced with different implementatafngarying complexity to study how
changes to the population or disease dynamics effect tlvemat of the epidemic. For this model,
two types of inter processor communication take place. muaigent movement some agents will
need to relocate to neighboring processors, and after esgasg update the master disease algo-
rithm coordinates with its neighbor algorithms to outpid tggregated disease statistics for that
time.

We performed experiments testing both the strong and weaklstity of this model on the
PPDM. In the strong scaling test, we initialized the popalatvith a fixed 2,048 settlements, each
containing an average population size of 1,000 for a totpufagion of 2 million agents. We then
varied the number of processors allocated to the PPDM antheasimulation for a simulated 2
months. Figure B.3 shows the results of the strong scalingTee results show near-ideal scaling
up to 16 processors, after which the particular problempsbtgins to scale poorly. This poor
scaling results because we keep the problem size fixed. Asamease the number of processors,
each processor has less to do and communication and syiEdtrons costs take over.

In the weak scaling test, we initialized the population vatfixed 2,048 settlements. We then
scaled the population size up linearly with the number otpssors allocated to the PPDM so
that each processor would maintain a fixed number of agenésraw/the model for a simulated
2 months. The Estimated Single-Node plot line represemteipected time that a single node
would take to perform the problem size if it had infinite megynand did not succumb to non-
linear effects. Under the weak scaling case where the prokiee grows with the number of
allocated processors, we achieve fairly good scaling with @4 node case within twenty-five
percent of the ideal result. We see this good scaling bedéwgseommunication load for each
processor is balanced by the increasing computational [baese results show that we can scale
up our modeled size by increasing the available number algssors. Figure B.6 shows a further
exploration of the scaling data space. For a given procedsmation we plot the timing response
for problems of increasing scale. The problem size reptesefinear scaling of the population
allocated to each cell while the number of cells remains fiXdissing data points exist when a
problem size is to large for the number of allocated proassso
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To further test the weak scaling of the PPDM, the disease lsooi®blem growth strategy
was modified. In this case as the number of processors wasasenl the population per cell was
kept constant but the number of total cells allocated warseased linearly. This led to a fixed
number of cells and people allocated per processor. Thelaiom run time was also increased
to 3 months to mask some additional initialization costgyuFé B.5 shows the resultant weak
scaling numbers. Figure B.8 shows additional plots of thEbaeded scaling of the disease model.
Surprisingly, the scaling results are quite a bit worse lig tase. Even though the scaling results
show that the problem complexity does scale linearly fovamgprocessor allocation, the run times
for a given problem size are much greater than ideal betwemepsor allocations. We have yet to
determine the cause for this deviation from the previouskvgealing case as the communication
loads between processors are similar. Despite the worskgehis level of scaling is still useful
because it allows one to run problem sizes much larger that @#n be run on a single processor.
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2 2 40|
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Figure B.3. Disease Strong Scaling Figure B.4. Disease Weak Scaling (Cell Size)
B.4.2 Seldon

Seldon is a software toolkit that combines technology anttepts from a variety of different
research areas, including psychology, social science agedt-based modeling and simulation.
It has been used to study urban gang recruitment and térnatiwork recruitment. This second
example demonstrates the utility of Seldon and the PPDM alyamg the effect of media on
populations.

Previous uses of Seldon involved rather few(1®)) agents, and serial implementations gen-
erally sufficed. However, large agent populations wereireduo study the effect of media, which
in turn required parallel computing. Further, the indivadlagent models were enhanced to include
a cognitive model (essentially a semantic graph of conaeptadions and edge weights), allowing
a realistic processing of media information. This led torarease in the computational intensity

62



Ebola Model
Ideal -------- |
Estimated Single-Node -

4000

3000 r

2000

Time(s)

1000 |

800
700

1 10
Number of Nodes

Figure B.5. Disease Weak Scaling (Num Cells)

of individual agents, further spurring the need for pateléion.

Seldon has two types of agents: individuals and abstracstratt agents represent social or
institutional concepts that can influence an individuad.(eschools and mosques). Since they
contain a set of individual agent members, they can be highihynected nodes in the overall
structure.

An interaction between two agents involves significant pssing. Sets of attributes are ex-
changed and modified according to linear attraction andasiament rules. Concept activation
vectors are also exchanged, causing nodes to fire in the sengasphs, and thereby changing
their cognitive states.

The simulation commences with an unconnected set of agdataophily is used as the basis
of attraction, and relationships form as interactions peatc Each agent has a maximum amount
of relationship energy, thus providing a flexible cap foherita large number of weak relationships
or a small number of strong relationships. Agents also havegmality factors, which affect their
interactions. For instance, an extroverted agent migbtact more than an introverted agent. As
relationships evolve, social networks form, ranging frazguwaintances to cliques. These, in turn,
drive subsequent interactions, so that agents are motg liknteract with close friends in cliques
than acquaintances.

Each timestep in the algorithm consists of a couple of st&pst, the individual agents de-
termine their membership with the abstract agents, andttieeimteractions occur between them.
Next, the individual agents identify other individual agewith which to interact. The interac-
tion procedure consists of three parssnd, receive, andrespond. Agent A sends a subset of its
information to Agent B, who thereceives the information, compares it to its own, aredponds
to Agent A. The procedure is transactional, so both agerdagd their emotional state, or both
stay the same. Interactions occur between agents throegbrélation of message objects, and
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large numbers of messages are routed and delivered contturr&incereceive messages can
createresponse messages, processing continues until there are no moreagaesssThis barrier
synchronization ensures that each step finishes complatédye the next step starts.

We parallelized Seldon by decomposing the problem acrasepsors in a load-balanced man-
ner. We also maximized the likelihood of intraprocessor camication by using Zoltan [11], a
load-balancing library, to invoke graph-partitioning @lghms in ParMETIS [21]. Zoltan uses
the social network structure (with relationship strengissedge weights) to calculate the opti-
mal agent-to-processor mapping. It also provides a digeibdirectory capability to track these
mappings for routing. The data migration is performed s&gdy and involves packing and un-
packing agents at the source and target processors, simitae process of message delivery.
When repartitioning, Zoltan exploits the current decomgmsito reduce data migration. An ad-
ditional difficulty involved multi-language integratiosince Zoltan is implemented in C/C++ and
Seldon is implemented in Java. We created a JNI wrapper drdatian using Swig [5], which
then provided access from Seldon.

To study scaling characteristics, we used a cognitive maatél agents for individuals and
media outlets to simulate the shift in public opinion in Anmmdordan, after the November, 2005,
bombings. The individual agents were provided with cogaiinformation automatically gener-
ated from Jordanian newspapers published before and atbenidne of the bombings. The weak
scaling runs held the number of individuals constant at 1@@®strong scaling runs used 1600
individuals, whereP is the number of processors . There were 40 media agentsrimall

In Figures B.10 and B.11 we plot results from strong and wealabiiy studies. It is clear
from the weak scalability analysis (Figure B.11) that therktile locality in the agent-interaction
pattern - cross-processor communication costs increadeegwocessors (and the total problem
size) are increased. The strong scalability run is somewltaie promising, following a quasi-
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ideal convergence till around 10 nodes; thereafter divergdrom ideal is abrupt, as the high
communication costs (observed in the weak scalabilityyammg)l overwhelm the steadily decreasing
computational costs. At a point (around 30 nodes), the commration costs dominate and a follow
the trend observed in the weak scalability study (Figure Bvtiere communication costs are
roughly proportional to the number of processors.

B.5 Integration

We integrated the PPDM with several existing frameworks orexperimental basis. We used
the PPDM as an extension of an HLA federate [16] to simulateogimg population in a large
metropolitan area. The PPDM ran on a cluster, the HLA fedmratain outside the cluster, and
the two communicated via remote method invocation (RMI). Yfeesated the components in this
way because of differing platform requirements. We alsalube PPDM as the underlying data
structure for one of the demo application models of ths RefRgenht-Based Modeling framework
[9]. A similar approach to adding parallelism to RePast cafobad in [27]. We had to make some
changes to the ReP&&thedul e class to maintain synchronization, allow for agent movetyem
shadow agent updates between processors. We schedulietepadvement and update at fixed
intervals on all nodes.
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B.6 Conclusion

Agent-based modeling and discrete event simulation aneabig the standard tools for under-
standing and making predictions about complex systems.oifeeslegree both ABM and DES
make the argument that, unlike statistical methods, sitiams must be performed at scale. For
such social systems, there is agriori idea of a scaling law or average that would predict their
emergent behavior. Because the phenomena simulated aréy atge and complex, and be-
cause they must be computed at scale, parallel high perfm@neomputing is required to enable
successful simulations of social systems.

We hope that our work in developing the Parallel ParticlealDMbdel (PPDM) instigates the
development of a library of general purpose componentsafgelscale entity modeling. From a
software engineering point of view, separable componemt&aBM/DES will aid repeatability and
methodical experimentation. Beyond reusable softwarededgoftware development, the ability
to change out entity models and even the framework and schemepdating without changing
the parallelization scheme is an important contributiothefPPDM. Often when comparing two
different models that purport to acheive the same resudtptienomenological particulars of the
solutions differ in so many ways that comparisons are difficBeparating out the parallel im-
plementation as we have done in the PPDM, hopefully will met@parison between different
models easier in the future.
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