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Abstract

An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equa-

tion and Maxwell’s equations, which is applicable to both L-mode turbulence with large

amplitude and H-mode turbulence in the presence of high E × B shear has been derived.

The phase-space action variational Lie perturbation method ensures the preservation of the

conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes

ρi ¿ ρθi ∼ LE ∼ Lp ¿ R (here ρi is the thermal ion Larmor radius and ρθi = B
Bθ

ρi), as

typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric

field and pressure gradient lengths. We take k⊥ρi ∼ 1 for generality, and keep the relative

fluctuation amplitudes eδφ/Ti ∼ δB/B up to the second order. Extending the electro-

static theory in the presence of high E×B shear [Hahm, Phys. Plasmas 3, 4658 (1996)],

contributions of electromagnetic fluctuations to the particle charge density and current are

explicitly evaluated via pull-back transformation from the gyrocenter distribution function

in the gyrokinetic Maxwell’s equation.

1 PACS numbers: 52.25.Gj, 52.35.Ra, 52.35.Qz, 52.65.+z
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I. INTRODUCTION

Understanding tokamak microturbulence is required for developing a predictive capability

of tokamak transport. The nonlinear gyrokinetic formulations1–7 have provided theoretical

foundations for recent advances in nonlinear gyrokinetic simulations of tokamak microtur-

bulence. Both formulations and simulations have traditionally focused on tokamak core

turbulence in which the fluctuation amplitude is relatively small, i.e., less than or compa-

rable to δn/n0 ∼ 10−2 and the gradients in macroscopic parameters such as pressure are

relatively mild.8

As experience in enhancing tokamak confinement9–13 accumulates, for instance by

H-mode operation, tokamak edge plasmas became hotter and less collisional. Therefore,

traditional edge turbulence simulations14–16 based on Braginskii-type fluid equations are

not strictly applicable in some of the leading tokamaks in the present and future. For more

accurate simulations of such collisionless edge plasmas, kinetic effects associated with long

mean free path and finite orbit sizes should be included properly. However, the following

obvious challenges must be faced when one tries to apply the existing nonlinear gyrokinetic

formalism derived mainly for core turbulence:

i) Fluctuation amplitudes in L-mode edge plasmas are typically on the order of

δn/n0 ∼ 10−1 inside the last closed flux surface (LCFS),17,18 and can be even higher in the

scrape off layer (SOL).19–22

ii) After an H-mode transition, Er well is formed just inside the LCFS. The pressure

gradient scale length and the radial electric field scale length in the edge Er well is on the

order of the ion poloidal gyroradius,23 ρθi ≡ vTiMic/(eBθ).

iii) Not only in H-mode plasmas, but also in some L-mode plasmas, we have

ρi/Lp > Lp/R0 at the edge. Since ρi is a typical unit for the radial scale of micro-

turbulence, and Lp is a length scale of a macroscopic quantity, we have an intriguing

situation where one of the primary smallness parameters ρi/Lp in the conventional non-

linear gyrokinetic formulation1 is greater than a ratio between two macroscopic scale lengths.
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In retrospect, many theoretically related issues have been addressed in the context of

nonlinear gyrokinetic equations for core transport barriers.24 That work, however, only con-

sidered the electrostatic fluctuations. The present work provides an extension of the electro-

static nonlinear gyrokinetic equations as presented in Ref. 24 to fully electromagnetic edge

turbulence in toroidal geometry, with an ordering applicable to both large fluctuation ampli-

tudes in L-mode and residual fluctuations in the presence of strong E×B in H-mode. It has

been shown that the edge turbulence is electromagnetic even for low local values of plasma

β.14,25 As emphasized in the context of both theory26–32 and experiments,10–13 E × B flow

shear rather than plasma mass flow shear of a particular species plays a more fundamental

role in reducing turbulence. It is also natural to deal with the electromagnetic fields, E and

B, rather than plasma flows, in formulating the nonlinear gyrokinetic equations which are

based on the equations of motion for a single charged particle’s gyrocenter.

The emphasis in Ref. 24 was on a systematic description of the collective phenomena (i.e.,

a self-consistent treatment of turbulence) in which the Vlasov equation and the Maxwell’s

equation are treated on an equal footing with various terms explicitly derived from the gen-

eral expressions, and with an explicit expression for the total energy invariant which can

be used as an indicator of accuracy in numerical simulations. This underlying philosophy

followed those of the early modern nonlinear gyrokinetic theories3–6 and a recent review.7

It’s noteworthy that the necessity of extending nonlinear gyrokinetic formulations to edge

turbulence in the presence of flow shear has been widely recognized. Recent publications

based on the Lie perturbation theory including Refs. 33–35 used the E × B flow, rather

than the ion mass flow, following the approach in Ref. 24. On the other hand, the emphasis

of Refs. 33−34 was mostly on a systematic manifestation of modern nonlinear gyrokinetic

theory in the context of the language of differential geometry. Utilizing noncanonical Hamil-

tonian theories of guiding center drifts, including that by Littlejonhn,36–38 more drift terms,

including the polarization drift associated with a time-dependent background radial electric

field, are kept in the gyrokinetic-Vlasov equation. Ref. 35 has shown that by adopting a

modified definition of the E×B flow, higher accuracy in the guiding center drift can be

achieved over the formulations in Ref. 33. However, in those recent publications,33–35 the

explicit form of the gyrokinetic Ampère’s law after the integrations over velocity space for
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the electrical current has not been derived. Furthermore, the total energy invariant extend-

ing that in Ref. 24 has not been derived to date for the electromagnetic case. The recent

progress in nonlinear gyrokinetic formulations with flows in tokamak geometry via the Lie

perturbation method is summarized in Table I.

In this paper, an energy-conserving and phase-space volume conserving set of the fully

electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell’s equation, which is

applicable to tokamak edge turbulence, is derived. These conservation properties become

more important as long term gyrokinetic simulations well beyond the nonlinear saturation

phase are being pursued with recent advances in computational power.39

The principal results of this paper are as follows:

i.) An energy-conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov

and Maxwell’s equations is derived for the first time in the presence of strong E ×B

flow shear. Symplectic derivation via phase-space Lagrangian Lie-perturbation theory

ensures the preservation of the conservation laws.

ii.) Expressions for the gyrokinetic Maxwell equations alongside corresponding energy in-

variants are presented for practically useful limiting cases, i.e., the long wavelength

limit and for a Maxwellian distribution in µ.

iii.) In particular, various contributions of both shear-Alfvénic (δA‖) and compressional

(δB‖) electromagnetic fluctuations to the gyrokinetic Poisson equation and the gy-

rokinetic Ampère’s law are explicitly evaluated in the presence of strong E×B flow

shear.

The remainder of this paper is organized as follows. In Sec. II, the guiding-center motion in

the presence of strong E×B shear is presented. The gyrophase-independent Euler–Lagrange

equation for the gyrocenter drift in the presence of the electromagnetic fluctuation is de-

rived in Sec. III. In Sec. IV, an energy conserving set of general gyrokinetic Vlasov-Maxwell

equations with strong E×B shear is derived. Their limiting forms for long wavelength

fluctuations and for a Maxwellian distribution in µ are also presented respectively. Major

emphasis is placed on the rigorous and transparent derivation of the most general result via

the phase-space Lagrangian Lie-perturbation theory, and the explicit evaluation of velocity
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moments involving the gyrocenter distribution function which appear in the Gyrokinetic

Maxwell equations.

II. GUIDING-CENTER DRIFT IN THE PRESENCE OF STRONG E×B FLOW

SHEAR

In this section, we present the guiding-center equations of motion in the presence of

strong radial electric field shear and steep pressure gradients as observed in most H-mode

edges. As emphasized in the previous work on the nonlinear gyrokinetic equations in core

transport barriers,24 a formulation in terms of the radial electric field rather than in terms

of mass flow is preferred. Since the single particle’s guiding center motion is determined

by the electromagnetic field rather than the mass flow, this choice is not only natural, but

also advantageous in separating the issue of determining the equilibrium ion distribution

function (which is also an important issue at the tokamak edge in its own right40,41) from the

formulation of the nonlinear gyrokinetic equation for turbulence. Neoclassical equilibrium,

i.e., the distribution function in the absence of the turbulence, in the steep pressure gradient

edge region, can be calculated numerically as an input for turbulence simulations.42–45 A

massively parallel Monte-Carlo guiding center simulation could tabulate the distribution

function in the 4D phase space. We focus only on the issues involving turbulence in this

paper without specifying the equilibrium mass flow. This approach is thus conceptually

simpler than previous nonlinear gyrokinetic formulations in terms of the relative velocity in

the frame moving with the mass flow.46–48

A major emphasis is placed on a rigorous and transparent derivation via the phase-space

Lagrangian Lie-perturbation theory. The standard nonlinear gyrokinetic ordering1 consists

of:

ω/Ω ∼ ρik‖ ∼ δB/B ∼ eδφ/Ti ∼ ε

and

k⊥ρi ∼ 1,

where ω and Ω are the characteristic fluctuation frequency and the ion cyclotron frequency,

respectively; k‖ and k⊥ are the components of the wave vector in the parallel and perpen-

dicular direction with respect to the magnetic field; ρi is the thermal ion gyroradius; δφ is
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the fluctuating electrostatic potential; δB is the fluctuating magnetic field; and ε ¿ 1 is a

small ordering parameter. A tokamak-specific ordering, Bθ/B ' rq/R ¿ 1, will be used in

this work to differentiate the poloidal gyroradius from the gyroradius. Here, r/R is the local

inverse aspect ratio, and q is the magnetic safety factor.

For a derivation of the unperturbed phase-space Lagrangian of a charged particle which is

relevant for edge plasma conditions including the H-mode state, it is useful to summarize the

following key experimental findings. A spontaneous H-mode transition9 starts with a rapid

increase in the negative radial electric field Er at the edge just inside the LCFS. Well after

the transition, a negative Er well is formed and the steep ion pressure gradient in the same

region becomes large. Quite often, it becomes the dominant contributor to Er in the radial

force balance relation for the main ion species23,49,50, i.e., Er ∼ 1
niei

∂Pi

∂r
. For these plasmas,

the gradient lengths of Er and Pi are of the same order as the ion poloidal gyroradius, i.e.,

LE ∼ Lp ∼ ρθi. These conditions correspond to u
(0)
E ≡ − cEr

B
∼ u∗i ≡ − c

nieiB
∂Pi

∂r
∼ ρi

Lp
vTi,

and eΦ(0)

Ti
∼ 1. While ρθi

Lp
∼ 1, we can still identify a small parameter for the unperturbed

particle orbit calculations in tokamak plasmas with large Er shear, except for low aspect

ratio experiments such as the National Spherical Torus eXperiment (NSTX),51

εE ≡ ρi

LE

∼ ρi

Lp

∼ Bθ

B
¿ 1. (1)

We note that εE is larger than the conventional small parameter δB for the unperturbed

particle orbit calculations in the absence of large Er shear,

δB ≡ ρi

LB

¿ 1, (2)

where L−1
B ≡ | ∂B

B∂r
| originates from the inhomogeneity in the equilibrium B field.

We will discuss the relation between εE and δB for our problem shortly. Starting from

the unperturbed phase-space Lagrangian of a charged particle, one can perform Lie pertur-

bation analysis as described in Refs. 6,7,24,38,48, to obtain the guiding-center phase-space

Lagrangian,

γ0 ≡ (
e

c
A + MuE + Mv‖b) · dR +

µB

Ω
dθ −H0dt. (3)

Here the notations follow mostly those used in Ref. 24. The noncanonical guiding-center

coordinates which simplify the phase-space Lagrangian are used. R ≡ x − ρ, µ is the
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guiding-center magnetic moment in the frame moving with uE ≡ cb×∇Φ/B,36 associated

with the equilibrium potential Φ. v‖ is the guiding center parallel velocity which includes

the Banos drift,52 and θ is the gyro-phase angle. More detailed discussions on the choice of

guiding center variables can be found in Ref. 6. On the right-hand side of Eq. (3), the O(δB)

term −µB
Ω

[∇e1 · e2 + 1
2
(b · ∇ × b)b] ·dR is ignored for simplicity. The term µ∇e1 · e2 which

depends on the choice of perpendicular unit vectors e1 and e2, is related to a gyrogauge

invariance.38 In Eq.(3), the guiding-center Hamiltonian up to the order ε2
E is

H0 = eΦ + µB + (M/2)(v2
‖ + u2

E) +
µB

2Ω
b · ∇ × uE, (4)

and µb · ∇ × uE ' (µ/B)∇2
⊥Φ describes the finite Larmor-orbit-average reduction of the

equilibrium potential.48 We note that unlike typical core profiles, the tokamak edge profiles

satisfy ρi

Lp
> Lp

R
. Therefore, we assume ε2

E > δB.

In passing, we remark that the trapped ion radial width modification due to Er shear53–56

is on the order of unity for our ordering based on typical tokamak H-mode edge plasma

parameters. This can be easily shown from the fact that in general toroidal geometry, the

banana orbit modification parameter57 is given by

S ≡ 1 +
mc2

e

(RBφ)
2

< B2 >

∂

∂ψ
(

Er

RBθ

).

On the other hand, the E×B shearing rate in general toroidal geometry29,31 is given by

ωE =
∆r0

∆l⊥

c(RBθ)
2

B

∂

∂ψ
(

Er

RBθ

).

Here, ψ is the poloidal flux representing the radial coordinate via dψ = RBθdr, ∆r0 =

∆ψ0/RBθ is the radial correlation length, and ∆l⊥ = RBθ∆φ/B is the correlation length

of the ambient turbulence in the direction perpendicular to the field line, but within the

flux surface. Therefore, for near isotropic ambient turbulence, ∆r0 ' ∆l⊥, they are related

through58

S ' 1 + (
B

Bθ

)2ωE

Ωi

.

Since ωE

Ωi
∼ ε2

E from Eq. (1), we have |S − 1| ∼ 1, and we have an order of unity banana

orbit width modification due to E × B shear. It is obvious that the appearance of the

particular combination Er

RBθ
in both the E × B shearing rate and the orbit modification



8

factor is a consequence of the axisymmetry in tokamak geometry. Based on our ordering,

the ion gyro-orbit is near circular in the frame moving with the equilibrium E×B velocity.

In general, the variation of the fundamental one-form, γ ≡ γµdzµ = γidzi − h dt, yields

the Euler–Lagrange equation37

(
∂γj

∂zi
− ∂γi

∂zj

)
dzj

dt
=

∂h

∂zi
+

∂γi

∂t
. (5)

For the unperturbed phase-space Lagrangian given by Eq. (3), the nontrivial components

of Eq. (5) are

−eB∗ × dR

dt
−Mb

dv‖
dt

= ∇[eΦ + µB + (M/2)(v2
‖ + u2

E) +
µB

2Ω
b · ∇ × uE].

Following the same decomposition procedure described in Ref. 4, one obtains the following

gyrocenter equations of motion:

dR

dt
= v‖

B∗

B∗
‖

+
b

eB∗
‖
× [e∇Φ + µ∇B +

µB

2Ω
∇(b · ∇ × uE) +

M

2
∇(u2

E)], (6)

and
dv‖
dt

= − B∗

MB∗
‖
· [e∇Φ + µ∇B +

µB

2Ω
∇(b · ∇ × uE) +

M

2
∇(u2

E)]. (7)

Here

B∗ ≡ B +
Mc

e
∇× (uE + v‖b),

and

B∗
‖ ≡ b ·B∗ = B{1 +

b

Ω
· ∇ × (uE + v‖b)}.

III. LIE-PERTURBATION ANALYSIS WITH FULLY ELECTROMAGNETIC

FLUCTUATIONS

In this section, we introduce the time-dependent electromagnetic fluctuations correspond-

ing to tokamak edge turbulence. It has been almost universally observed17,18,59 that the

relative density fluctuation amplitude δn
n0

increases from the core to the edge monotonically

in tokamak plasmas when there are no transport barriers. In the core, the level is often less
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than one percent,8,11,13 while towards the LCFS, it typically reaches ∼ 10−1. In the SOL, it

can be sometimes as high as 0.25 in the form of long-lived, spatially intermittent blobs.22,60

In this paper, we pursue the nonlinear gyrokinetic approach with full ion Larmor radius

effects k⊥ρi ∼ 1, and strong turbulence,

εφ ≡ δf

f0

∼ eδφ

Ti

∼ δB

B0

<< 1. (8)

While the relative magnetic fluctuation level for edge microturbulence, in the absence

of low-mode-number MHD activitiy, is measured to be much smaller than that of the elec-

trostatic fluctuations,20 we order them to be comparable for generality. We perform the

perturbation theory derivation up to the second order in the relative fluctuation amplitude,

i.e., in εφ. By taking the nonlinear mode coupling term comparable to the linear driving term

from the equilibrium pressure gradient, we get the mixing length type balance61,62, δf
f0
∼ 1

k⊥Lp

which is equivalent to taking εφ ∼ εE for k⊥ρi ∼ 1. Note that we maintain consistency in

ordering by keeping terms up to the second order both in εφ and in εE = ρi/LE.

While one could also pursue a drift-kinetic type ordering of eδφ
Ti
∼ 1 and k⊥ρi << 1, we

believe that it’s important to treat the relatively short wavelength fluctuations at k⊥ρi ∼ 1,

which nonlinearly interact with the longer wavelength fluctuations, accurately even though

their amplitudes at saturation are small63. The necessity of resolving edge turbulence down

to the scale k⊥ρi ∼ 1 has been demonstrated in Ref. 25. It is also encouraging to note that

there seems to be a growing recognition64 that the final form of the nonlinear gyrokinetic

equation is robust in the drift kinetic regime. A related explicit illustration exists65 for the

electromagnetic nonlinear gyrokinetic equations in a simple geometry5 in detail.

Fluctuations are introduced in the first order phase space Lagranrian in terms of the

four-potential (δφ, δA).

γ1 =
e

c
δA(R + ρ, t) · (dR + dρ)− eδφ(R + ρ, t)dt

=
e

c
(δA · dR + δA · ∂ρ

∂µ
dµ + δA · ∂ρ

∂θ
dθ)− eδφdt. (9)

Then, the Lie-perturbation analysis consists of finding near-identity transformations, or-

der by order, which eliminate the gyro-phase dependence in Eq. (9) introduced by the

fact that the fluctuating electromagnetic potentials are functions of the particle position
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x ≡ R + ρ, rather than functions of the guiding center position R.

Γ0 = γ0 + dS0, (10)

Γ1 = γ1 − L1γ0 + dS1. (11)

Here, γ0 is given by Eq. (3).

(L1γ)µ = gν
1

(
∂γµ

∂zν
− ∂γν

∂zµ

)
, (12)

where gν
1 is the generator of the Lie transformation. With dS0 = 0 and gt

1 = 0, Equation

(11) yields

Γ1 = dS1 +
e

c
(δA · dR + δA · ∂ρ

∂µ
dµ + δA · ∂ρ

∂θ
dθ)− eδφdt

+
Mc

e
gθ
1dµ− Mc

e
gµ
1 dθ + Mb·gR

1 dv‖ −Mg
v‖
1 b·dR +

e

c
gR

1 ×B∗·dR

+{Bgµ
1 + Mv‖g

v‖
1 + gR

1 · [e∇Φ + µ∇B +
M

2
∇(u2

E) +
µB

2Ω
∇(b · ∇ × uE)]}dt, (13)

where

gR
1 ≡ (gR1

1 , gR2
1 , gR3

1 ).

In Eq.(13), one can choose dS1 and gν
1 such that all of the Γ1ν vanish except for Γ1t. This

choice corresponds to the Hamiltonian approach (rather than the symplectic approach)

adopted in Ref. 5. Also, by requiring that there be no θ-dependent term in Γ1t, one ob-

tains

Γ1t ≡ −e〈δψ1〉 = −e[〈δφ〉 − 1

c
(v‖b + uE) · 〈δA〉 − 1

c
〈c⊥ · δA〉] (14)

Here, the contribution from vd is neglected, because δB ¿ εE. It’s important to note that

v‖ ' v‖ + e
mc

δA‖, which is close to the canonical momentum including the δA‖ contribution.

The bracket denotes the gyrophase average, i.e., 〈δψ1〉 ≡ (2π)−1
∮

dθδψ1(R + ρ, t), for in-

stance. dS1 = eΩ−1[δψ1 − 〈δψ1〉]dθ has been chosen according to the gyrokinetic ordering.4

The second-order perturbation analysis deals with the equation

Γ2 = γ2 − L1γ1 + (
1

2
L2

1 − L2)γ0 + dS2.

The resulting equations have not been utilized in most practical applications.66–71 However,

the resulting quadratic low-frequency ponderomotive like terms are required for energy con-

servation up to O(ε2
φ), in the formulation in terms of the total distribution function.3,4 The



11

importance of keeping those terms for theoretical completeness has been discussed in detail

in a recent review article.7 The main result of the second order perturbation analysis is the

nonlinear modification of the effective potential, which is described below. The derivation is

quite similar to that of Ref. 4 and is not repeated here.

Finally, the total phase-space Lagrangian is given by

Γ = (
e

c
A + MuE + Mv‖b) · dR +

µB

Ω
dθ − (H0 + e〈δψ〉)dt, (15)

where the effective potential is

〈δψ〉 ≡ 〈δψ1〉+
e

2Mc2
〈|δA|2〉 − e2

2McΩ

(
∂

∂µ
〈δψ̃2

1〉+
c

eΩ
〈∇δΨ̃1 × b · ∇δψ̃1〉

)
(16)

with δψ̃1 ≡ δψ1 − 〈δψ1〉, δΨ̃1 ≡
∫

dθδψ̃1, and the overbar is used for the gyro-center vari-

ables. Here, the second term from the last reduces to −Ti

2e
δu2

E/v2
Ti in the long wavelength

electrostatic limit.64,72 The corresponding Euler-Lagrange equation can be obtained by using

Eq. (3):

−e

c
B∗ × dR

dt
−Mb

dv‖
dt

= ∇(H0 + e〈δψ〉). (17)

Eq. (17) can be decomposed into the following gyrocenter equations of motion:

dR

dt
= v‖

B∗

B∗
‖

+
cb

eB∗
‖
× [e∇(Φ + 〈δψ〉) + µ∇B +

µB

2Ω
∇(b · ∇ × uE) +

M

2
∇(u2

E)], (18)

and

dv‖
dt

= − B∗

MB∗
‖
· [e∇(Φ + 〈δψ〉) + µ∇B +

µB

2Ω
∇(b · ∇ × uE) +

M

2
∇(u2

E)]. (19)

The cb
B∗‖
×∇〈δψ〉 term on the R.H.S. of Eq. (18) contains terms which are responsible for

turbulence-driven radial transport. These include:

i.) electrostatic E×B transport contained in cb
B
×∇〈δφ〉,

ii.) magnetic flutter transport which is proportional to − b
B0

v‖ ×∇〈δA‖〉 ' v‖
δB⊥
B

,

and finally,

iii.) a compressional magnetic fluctuation driven piece − b
B
×∇〈c⊥ · δA⊥〉 ' cµ

e
b×∇〈δB‖〉,

for k⊥ρi ¿ 1.
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It’s important to note that the electromagnetic character of the turbulence does not nec-

essarily imply that the magnetic transport mechanisms described by items ii) and iii) are

significant for self-consistent transport carried by collective fluctuations.75–77 Many details

and subtleties involved in the electrostatic E×B drift were exhaustively discussed in Ref. 78.

Although Eqs. (18) and (19) are mathematically concise, those can be written in the follow-

ing form which is closer to the result of previous work in terms of the mass flow.47,48

dR

dt
= uE + v‖b +

cb

eB∗
‖

×[e∇〈δψ〉+ µ∇B +
µB

2Ω
∇(b · ∇ × uE) + M(uE + v‖b) · ∇(uE + v‖b)], (20)

and

dv‖
dt

=

− B∗(0)

MB
∗(0)
‖

· [e∇(Φ1 + 〈δψ〉) + µ∇B +
µB

2Ω
∇(b · ∇ × u

(0)

E ) + M(u
(0)
E + v‖b) · ∇(u

(0)
E + v‖b)].(21)

Here, u
(0)
E ≡ cb×∇Φ(0)/B, B∗(0) ≡ B + Mc

e
∇× (u

(0)
E + v‖b), and B

∗(0)
‖ ≡ b ·B∗(0)

Although Eq. (20) is valid for an arbitrary form of Φ, Eq.(21) can be only obtained from

Eq. (19) via a perturbative analysis.48 The equilibrium electrostatic potential, in general,

consists of two parts Φ ≡ Φ0 + Φ1. In most cases, Φ can be approximated by a flux function

Φ0(ψ) satisfying b · ∇Φ0 = 0. The poloidal-angle-dependent Φ1(ψ, Θ) can be produced, for

instance, by the centrifugal-force-driven charge separation in strongly rotating plasmas.73

While the guiding center drift calculation in Sec. II is valid for uE ∼ vTi, Φ0 = O(ε−1) and

Φ1 = O(1), as shown in Ref. 24, we adopted an ordering which is optimal for describing

collective fluctuations in tokamak H-mode plasmas. This includes eΦ0

Ti
= O(1), eΦ1

Ti
∼ r/R =

O(εE), and uE/vTi = O(εE), which allows a strong toroidal rotation with a corresponding

Mach number on the order of unity, uφ ∼ vTi, since Bθ/B = O(εE). The theory of E × B

flow shear suppression of turbulence has been recently extended to include the poloidal-

angle-dependent Φ1(ψ, Θ).74
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IV. NONLINEAR GYROKINETIC VLASOV–MAXWELL SYSTEM

With Eqs. (18) and (19), one can write the gyrokinetic Vlasov equation for the gyrocenter

distribution function F (R, µ, v‖, t),

∂F

∂t
+

dR

dt
· ∇F +

dv‖
dt

∂F

∂v‖
= 0. (22)

Here, dµ/dt ≡ 0 and ∂F/∂θ ≡ 0 have been used. One can also write the gyrokinetic Vlasov

equation in the following continuity equation form:

∂(B∗
‖F )

∂t
+∇ ·

(
B∗
‖
dR

dt
F

)
+

∂

∂v‖

(
B∗
‖
dv‖
dt

F

)
= 0. (23)

This is possible because Eqs. (18) and (19) satisfy the following phase-space conservation

law:

∇ ·
(

B∗
‖
dR

dt

)
+

∂

∂v‖

(
B∗
‖
dv‖
dt

)
= 0.

The continuity equation form is sometimes more useful in applications which involve taking

velocity moments.79–81

We note that various extensions of the gyrokinetic Vlasov equation are conceptually

straightforward, once one decides on the generalized ordering. This is because a system-

atic phase-space Lagrangian derivation of guiding center drift is available, for instance, from

Refs. 36–38. On the other hand, expressing the particle charge density and current in terms

of the gyrocenter distribution function in the gyrokinetic Maxwell’s equations involves a

rather cumbersome pull-back transformation from the gyrocenter coordinate to the particle

coordinate. Indeed, in many cases, the gyrokinetic Maxwell’s equations were only presented

in their most general form representing the pull-back transformation, without an explicit

evaluation of the integrals. However, for many relevant applications including gyrokinetic

simulations, explicit evaluations of the particle charge density and current from the gyro-

center distribution function are necessary. This important aspect of explicit representation

in the gyrokinetic Poisson equation was recognized and carried out2 before the more rigor-

ous Hamiltonian method and the phase-space Lagrangian method were introduced in the

nonlinear gyrokinetic formalism.3,4 Consideration of energy conservation between particles

and fields, in particular, identifying the energy invariant in the gyrokinetic Vlasov-Maxwell

system also requires the same level of explicitness in the gyrokinetic Maxwell’s equations
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and the gyrokinetic Vlasov equation. Regarding this, the systematic derivation was first

achieved in Ref. 3 for electrostatic fluctuations in a straight magnetic field, and then extended

to toroidal geometry4 and to electromagnetic fluctuations,5,6 and finally to the presence of

strongly sheared E×B flows.24 It’s important to treat the gyrokinetic Vlasov equation,

the gyrokinetic Maxwell’s equations, and the energy invariant self-consistently on an equal

footing. These form three pillars7 of nonlinear gyrokinetic theory. We note that a field

theoretical variational derivation was also introduced.72,82

Now, we present the gyrokinetic Maxwell equations in which the ion particle charge den-

sity and current are expressed in terms of the gyrocenter distribution function F (R, µ, v‖, t):

∇2(Φ + δφ) = −4πe[

∫
d6Z

(
F + gµ

1

∂F

∂µ
+ gR

1 · ∇F

)
δ3(R− x + ρ)− ne(x, t)], (24)

∇2(A + δA) = −4πe

c
[

∫
d6Z ((v‖ − e

Mc
δA‖)b + uE + c⊥)

(
F + gµ

1

∂F

∂µ
+ gR

1 · ∇F

)

δ3(R− x + ρ)−
∫

d3vvfe(x,v, t)], (25)

where d6Z ≡ B∗‖
M

d3R dv‖ dθ dµ, gµ
1 = e

Mc
( e

c
δA · ∂ρ

∂θ
+ ∂S1

∂θ
), gR

1 = − 1
B∗‖

b× (δA + c
e
∇S1), v‖ '

v‖− e
c
δA‖ and S1 = eΩ−1

∫
dθ (δψ1 − 〈δψ1〉) . It’s important to note that in our Hamiltonian

formulation, Mv‖ is a canonical momentum including b∗ · δA. In this case, our formulation

is closer to the pz formulation in Ref. 5 than to the vz formulation in the same work. In

Eq. (24), the first three terms on the right-hand side are the ion particle density ni(x, t),

written in terms of the gyrocenter distribution function. The first term is the gyroaveraged

gyrocenter density contribution, while the second and third terms are the general expression

for the polarization density. The global gyrokinetic Vlasov-Maxwell energy is obtained by

the Noether method and integration over space, as described in Eq. (50) of Ref. 82, and Eq.

(199) of Ref. 7:

E =
1

8π

∫
d3x [|∇(Φ + δφ)|2 + |B0 + δB|2] +

∫
d6z fe(z)

1

2
mev

2

+

∫
d6ZFi{µB +

M

2
(u2

E + v2
‖) +

µB

2Ω
b · ∇ × uE − 1

c
(〈δA〉 · u∗ + 〈δA · c⊥〉)

+
e2

2Mc2
〈|δA|2〉+

e3

2McΩ

∂

∂µ
[〈δφ̃2〉 − 1

c2
〈(δÃ · u∗ + ˜δA · c⊥)2〉]

+
e2

2MΩ2
〈∇δΦ̃ · b×∇δφ̃− 1

c2
∇(α̃ · u∗ + β̃) · b×∇(δÃ · u∗ + ˜δA · c⊥)〉}, (26)
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where u∗ = v‖b + uE, α̃ =
∫

dθδÃ and β̃ =
∫

dθ ˜δA · c⊥.

Here, we don’t specify the electron dynamics, so as to write the electron kinetic

energy in a primitive form. However, depending on the problem considered, either a

drift kinetic equation83 or a bounce-averaged kinetic equation84,85 can be used when it’s

appropriate. Sometimes, nonlinearity associated with the magnetically trapped electrons is

important.86–89 In Eq. (26), the last term represents the sloshing energy.3 In the total F

formulation, the second-order nonlinear correction to the effective potential (which leads to

the ponderomotive force) should be kept alongside the sloshing energy in order to ensure

energy conservation. Here, E ≡ −∇(Φ + δφ) is the total electric field, and B = B0 + δB

is the total magnetic field. Eq. (26) is a generalization of the result of Ref. 24 to the fully

electromagnetic case. Now, we consider limiting cases.

A. Long Wavelength Expression for Arbitrary F:

In the long wavelength limit k⊥ρi ¿ 1, Equations (24) and (25) become

∇2(Φ + δφ) = −4πe{N i(x, t)− ne(x, t) +
δB‖
B

Ni

+
e

M
∇⊥ · [Ni

Ω2
i

∇⊥(δφ− 1

c
uE · δA)]− 1

Mc
∇⊥ · (

Ji‖
Ω2

i

∇⊥δA‖)}, (27)

∇2(A‖ + δA‖) = −4π

c
{J i‖(x, t)− je‖(x, t) +

δB‖
B

Ji‖

+
e

M
∇⊥ · [

Ji‖
Ω2

i

∇⊥(δφ− 1

c
uE · δA)]− e2

Mc
∇⊥ · (

Πi‖
Ω2

i

∇⊥δA‖)}, (28)

∇2(A⊥ + δA⊥) = −4π

c
{Ji⊥(x, t) + JiE(x, t)− je⊥(x, t)− jeE(x, t) +

δB‖
B

JiE

+
e2

M
∇⊥ · [Ni

Ω2
i

(∇⊥(δφ− 1

c
uE · δA))uE]− e

Mc
∇⊥ · (

Ji‖
Ω2

i

(∇⊥δA‖)uE)

+
eNic

B
b×∇⊥(δφ− 1

c
uE · δA)− Ji‖

B
b×∇⊥δA‖

+2cb×∇⊥(
P⊥δB‖

B2
)}. (29)

Noting an apparent symmetry, Eqs. (27) and (28) can be written using a two vector notation,

∇2(Aα + δAα) = −4π

c
{Jα

i (x, t)− jα
e (x, t) +

δB‖
B

Jα
i +

e

M
∇⊥ · [Π

′αβ
i

Ω2
i

∇⊥δA′
β]}. (30)
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Eq. (29) can also be written as:

∇2(A⊥ + δA⊥) = −4π

c
{Ji⊥(x, t) + JiE(x, t)− je⊥(x, t)− jeE(x, t) +

δB‖
B

JiE

+
e

Mc
∇⊥ · [J

α
i

Ω2
i

(∇⊥δA′
α)uE] +

Jα
i

B
b×∇⊥δA′

α + 2cb×∇⊥(
P⊥δB‖

B2
)},(31)

where Aα = (Φ, A‖), Jα = (ceN, J‖), δA′α = (δφ − 1
c
uE · δA, δA‖), and Π′αβ

i =
 ceNi Ji‖

Ji‖ eΠi‖/c


, the metric tensor gαβ =


 1 0

0 −1


.

In the same limit,

〈δψ〉 ' 〈δψ1〉+
e

2Mc2
δA2

‖ −
eρ2

i

2Ti

[∇⊥(δφ− 1

c
uE · δA)− 1

c
v‖∇⊥δA‖]

2

− 1

B
b× [∇⊥(δφ− 1

c
uE · δA)− 1

c
v‖∇⊥δA‖] · δA⊥.

' δφ− 1

c
(v‖b + uE) · δA +

1

e
µδB‖ +

e

2Mc2
δA2

‖ −
M

2e
|δuE + v‖

δB⊥
B

|2

−1

c
(δuE + v‖

δB⊥
B

) · δA⊥ − eρ2
i

2Ti

µB

Mc2
[2δA⊥∇2

⊥δA⊥ −∇⊥ · (δA‖∇⊥δA‖)], (32)

where δuE = c
B
b × ∇⊥(δφ − 1

c
uE · δA). This simpler expression should be used for Eqs.

(18)−(19), which appear in Gyrokinetic Vlasov equation, in this limit.

Equations (27) and (32) reduce to those of Ref. 24 in the electrostatic limit. They also

reduce to those of Ref. 7 in the absence of uE. Here, we note that a coefficient n/Ω2 ∝
n/B2 appears inside the divergence operator (∇⊥) in the last two terms of Eqs. (27)-

(28), and the 6th and 7th terms on the R.H.S. of Eq. (29). These expressions are more

general than those from Refs. 7 and 24 in toroidal geometry where the 1/B2 factor appears

outside the divergence operator (∇⊥). Since we assume that LB À Lp, LE here (and in

other references) the resulting modification is minor, quantitatively. However this general

expression is physically appealing, since v2
A ∝ B2/n and a close relation exists between the

polarization density and the vorticity which appears in reduced fluid equations.64 This could

serve as a useful guideline when one wants to extend the formulation to a more compact

confinement device such as NSTX.51 The 3rd term on the R.H.S. of Eq. (27),
δB‖k

B
Ni, can be

shown to originate from the E×B drift caused by an induction electric field perpendicular

to B0, i.e., δE⊥ind = −1
c

∂
∂t

δA⊥.

Now, we discuss the shielding properties of gyrokinetic plasma in the presence of the

equilibrium electric field. As widely recognized, representing the polarization drift as a
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shielding term in the gyrokinetic Poisson equation2 has provided one of the key computational

advantages of the gyrokinetic approach. However, there is an important qualitative difference

between the Debye shielding and the polarization shielding, in addition to their magnitudes.

In Eq. (27), the Debye shielding term on the left-hand side contains both the equilibrium

potential and the perturbed potential, while the polarization density involves δφ only. This

is because the polarization density is related to the polarization drift via the continuity

equation, and the polarization drift occurs only for the time-varying electric field. Here, it is

shown that if one uses a simplified definition of a gyrocenter density, a polarization-density-

like term associated with Φ appears24. The gyro-averaged gyrocenter density N i is defined

by

N i ≡
∫

B∗
‖

M
d3R dv‖ dθ dµFiδ

3(R− x + ρ), (33)

and this differs slightly from the gyrocenter density Ni, which is defined by

Ni ≡
∫

B∗
‖

M
d3R dv‖ dθ dµFiδ

3(R− x). (34)

In computation, it has been the usual practice to use a simplified gyrocenter density N
0

i with

an approximate Jacobian of a phase-space volume element B instead,

N
0

i ≡
∫

B

M
d3R dv‖ dθ dµFiδ

3(R− x + ρ).

Then, using the approximation, B∗
‖ ≡ B[1+ b

Ω
·∇× (uE + v‖b)] ' B + 1

Ω
∇2
⊥Φ, one can write

Eq. (33) as

N i ' N
0

i

(
1 +

eρ2
s

Te

∇2
⊥Φ

)
. (35)

Now, the last term looks like the polarization density associated with Φ. This identification

might be useful when one tries to perform a long-time simulation with a slowly time varying

Φ.90–94

In passing, we remark that it’s possible to formulate gyrokinetics in such a way that the

polarization drift appears in the gyrokinetic Vlasov equation95 rather than as a polarization

density in the gyrokinetic Poisson equation. In Ref. 33–35, the polarization drift associated

with a time-varying background appears in the gyrokinetic Vlasov equation, while the po-

larization density associated with shorter wavelength fluctuations appears in the gyrokinetic

Poisson equation as usual. If one tries to describe a transport barrier formation such as

an H-mode transition, a distinction between the time-varying background and large-scale
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fluctuations becomes rather subtle. In addition, a division between large scale fluctuations

and short scale fluctuations seems arbitrary, as noted in previous work.65 It’s our opinion

that treating polarization physics as a shielding term2 (i.e., polarization density) has been

found to be more efficient for a wide range of numerical applications.39 Other terms which

appear in Eqs. (27)-(29) are defined as:

Ji ≡ e

∫
B∗
‖

M
d3R dv‖ dθ dµFi(v‖b + uE + c⊥)δ3(R− x + ρ), (36a)

je ≡ e

∫
d3vfev(x,v, t), (36b)

Ji‖ ≡ e

∫
B∗
‖

M
d3R dv‖ dθ dµFiv‖δ

3(R− x), (36c)

Πi‖ ≡
∫

B∗
‖

M
d3R dv‖ dθ dµFiv‖

2δ3(R− x), (36d)

P⊥ ≡
∫

B∗
‖

M
d3R dv‖ dθ dµFiµBδ3(R− x). (36e)

Since mev‖ ' mev‖ + e
c
δA‖, the collisionless skin depth term (ωpe

c
)2δA‖ will appear explicitly

on the R.H.S. of Eq. (28), if the current density je‖ is defined by the moment of v‖. We

can see that the electrons contribute to the collisionless skin depth term dominantly, so it is

reasonable to neglect that of the ions in Eq. (25). Turbulence at the scale of the collisionless

skin depth was simulated96,97 and measured in experiments.98

The corresponding energy invariant in this long wavelength limit is

E =
1

8π

∫
d3x [|∇(Φ + δφ)|2 + |B0 + δB|2] +

∫
d6z fe(z)

1

2
mev

2

+

∫
d6ZFi{µB +

M

2
(u2

E + v2
‖) +

µB

2Ω
b · ∇ × uE − 1

c
(〈δA〉 · u∗ + 〈δA · c⊥〉)

+
e2

2Mc2
(δA‖)

2 +
e2ρ2

i

2Ti

[(∇⊥δφ)2 − 1

c2
(v‖∇⊥δA‖ +∇⊥(δA⊥ · uE))2

− µB

Mc2
(2δA⊥∇2

⊥δA⊥ −∇⊥ · (δA‖∇⊥δA‖)]

+
e

cB
b× (v‖∇⊥δA‖ +∇⊥(δA⊥ · uE)) · δA}. (37)

B. Arbitrary wavelength Expressions for Maxwellian F in µ:

Now, we consider arbitrary values of k⊥ρi, but assume that F is Maxwellian in µ (i.e.,

F ∝ exp(−µB/T )). Note that this approximation is a bit more general than a linearization
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with a Maxwellian equilibrium distribution function F0, but inclusive of the latter. In this

limit, after expanding in Fourier components, Equations (24) and (25) become

∇2(Φ + δφ) = −4πe{N i − ne −
∑

k

exp(ik · x)

[
1− Γ0

Ti

(eNi(δφk − 1

c
uE0 · δAk)− 1

c
Ji‖δA‖k) + (Γ1 − Γ0)

δB‖k
B

Ni

+
e

Ti

(Γ1 − Γ0)iρ
2
i k⊥ · (e(∇⊥Ni)(δφk − 1

c
uE0 · δAk)− 1

c
(∇⊥Ji‖)δA‖k)

+
1

B
(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))(b×∇⊥Ni) · δA⊥k]}, (38)

∇2(A‖ + δA‖) = −4π

c
{J i‖ − je‖ −

∑

k

exp(ik · x)

[
e

Ti

(1− Γ0)(Ji‖(δφk − 1

c
uE0 · δAk)− e

c
Πi‖δA‖k) + (Γ1 − Γ0)

δB‖k
B

Ji‖

+
e

Ti

(Γ1 − Γ0)iρ
2
i k⊥ · ((∇⊥Ji‖)(δφk − 1

c
uE0 · δAk)− e

c
(∇⊥Πi‖)δA‖k)

+
1

B
(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))(b×∇⊥Ji‖) · δA⊥k]}, (39)

∇2(A⊥ + δA⊥) = −4π

c
{Ji⊥ + JiE − je⊥ − jeE −

∑

k

exp(ik · x)

[
e

Ti

(1− Γ0)(eNi(δφk − 1

c
uE0 · δAk)− 1

c
Ji‖δA‖k)uE0 + (Γ1 − Γ0)

δB‖k
B

jE0

+
e

Ti

(Γ1 − Γ0)iρ
2
i k⊥ · (e(∇⊥Ni)(δφk − 1

c
uE0 · δAk)− 1

c
(∇⊥Ji‖)δA‖k)uE0

+
c

B
(Γ1 − Γ0)ib× k⊥(eNi(δφk − 1

c
uE0 · δAk − 1

c
Ji‖δA‖))

+
e2

Mc
Ni(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))δA⊥k +

2cTi

B2
(Γ1 − Γ0)δB‖kb×∇⊥Ni

+
c

B
(1− Γ0 + Γ1)b× (e(∇⊥Ni)(δφk − 1

c
uE0 · δAk)− 1

c
(∇⊥Ji‖)δA‖k)

−2c

B
(Γ1 + k2

⊥ρ2
i (Γ1 − Γ0))k̂⊥ · (e(∇⊥Ni)(δφk − 1

c
uE0 · δAk)− 1

c
(∇⊥Ji‖)δA‖k) ˆδA⊥

+
e

B
(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))(b×∇⊥Ni) · δA⊥kuE0

+
cTi

B2
k2
⊥ρ2

i (3Γ0 + Γ2 − 4Γ1)ik⊥ · (∇⊥Ni)δA⊥k]}. (40)
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Once again, Eqs. (38) and (39) can be combined in a covariant fashion with a two-vector

notation,

∇2(Aα + δAα) = −4π

c
{Jα

i − jα
e −

∑

k

exp(ik · x)[
e

Ti

(1− Γ0)Π
′αβ
i δA′

βk

+(Γ1 − Γ0)
δB‖k
B

Jα
i +

e

Ti

(Γ1 − Γ0)iρ
2
i k⊥ · (∇⊥Π′αβ

i )δA′
βk

+
1

B
(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))(b×∇⊥Jα

i ) · δA⊥k]}, (41)

Eq. (40) can also be written as:

∇2(A⊥ + δA⊥) = −4π

c
{Ji⊥ + JiE − je⊥ − jeE −

∑

k

exp(ik · x)[
e

cTi

((1− Γ0)J
α
i δA′

α

+(Γ1 − Γ0)
δB‖k
B

jE0 + (Γ1 − Γ0)iρ
2
i k⊥ · (∇⊥Jα

i )δA′
α)uE0

+
c

B
(Γ1 − Γ0)ib× k⊥Jα

i δA′
α

+
e2

Mc
Ni(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))δA⊥k +

2cTi

B2
(Γ1 − Γ0)δB‖kb×∇⊥Ni

+
c

B
(1− Γ0 + Γ1)b× (∇⊥Jα

i )δA′
α −

2c

B
(Γ1 + k2

⊥ρ2
i (Γ1 − Γ0))k̂⊥ · (∇⊥Jα

i )δA′
α

ˆδA⊥

+
e

B
(2Γ1 + k2

⊥ρ2
i (Γ0 + Γ2 − 2Γ1))(b×∇⊥Ni) · δA⊥kuE0

+
cTi

B2
k2
⊥ρ2

i (3Γ0 + Γ2 − 4Γ1)ik⊥ · (∇⊥Ni)δA⊥k]}. (42)

where k̂⊥ = k⊥/|k⊥|, ˆδA⊥ = δA⊥/|δA⊥|, Γn(b) = In(b)e−b, and In is the modified Bessel

function of order n, where b = k2
⊥ρ2

i . The corresponding energy invariant can be written as

E =
1

8π

∫
d3x [|∇(Φ + δφ)|2 + |B + δB|2] +

∫
d6z fe(z)

1

2
me(v‖b + c⊥ + uE)2

+

∫
d6ZFi[µB +

M

2
(u2

E + v2
‖) +

µB

2Ω
b · ∇ × uE − 1

c
(〈δA〉 · u∗ + 〈δA · c⊥〉)]

+
e

2Ti

∑

k

(1− Γ0)[en0|δφk|2 − 1

c2
(eπi0‖|δA‖k|2 + uE0 · δA−k(jE0 · δAk + 2ji0‖δA‖k))]

+
e2n0

2Mc2

∑

k

[|δA‖k|2 + (2Γ1 + k2
⊥ρ2

i (Γ0 + Γ2 − 2Γ1))
|δB‖k|2

k2
⊥

]

− 1

cB

∑

k

(Γ0 − Γ1)δB‖−k(jE0 · δAk + Ji‖δA‖k), (43)
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with

n0 ≡
∫

B∗
‖

M
dv‖ dθ dµFi0, (44a)

ji0‖ ≡ e

∫
B∗
‖

M
dv‖ dθ dµFi0v‖, (44b)

πi0‖ ≡
∫

B∗
‖

M
dv‖ dθ dµFi0v

2
‖. (44c)

Once again, Eqs. (41) and (43) are the fully electromagnetic generalization of the electro-

static results in Ref. 24. The symplectic derivation, which preserves Poincare invariance99

automatically ensures the various conservation laws.
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TABLE I: Progress in Nonlinear Gyrokinetic Formulations in a Torus with Flows via Lie Pertur-

bation Method

Brizard ’9548 Hahm ’9624 Qin, et al., Kawamura and This work

’0633, ’0734 Fukuyama ’0835

Characteristics of

Fluctuations appearing in electromagnetic electrostatic electromagnetic electromagnetic electromagnetic

Gyrokinetic Vlasov Equation

Explicit Evaluation* of for for for for

Gyrokinetic electrostatic electrostatic electrostatic electromagnetic

Poisson’s Equation fluctuations fluctuations fluctuations fluctuations

Explicit Evaluation* of for

Gyrokinetic electromagnetic

Parallel Ampère’s law fluctuations

Explicit Evaluation* of for

Gyrokinetic electromagnetic

Perpendicular Ampère’s law fluctuations

Expression

for total yes yes

energy invariant

Vacant slots indicate that the specific item has not been performed in that particular paper.

* Explicit evaluation here means performing the integration over velocity space following the pull

back transformation, for quantities such as polarization density and magnetization terms.
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