
Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Princeton Plasma Physics Laboratory

PPPL- 

Pamela Hampton
Text Box
PPPL-



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 

Trademark Disclaimer 

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  

 
 

PPPL Report Availability 
 

Princeton Plasma Physics Laboratory: 
 

 http://www.pppl.gov/techreports.cfm  
 
Office of Scientific and Technical Information (OSTI): 

http://www.osti.gov/bridge 

 

Related Links: 
 

U.S. Department of Energy 
 
Office of Scientific and Technical Information 
 
Fusion Links 



Existence of Weakly Damped Kinetic Alfvén Eigenmodes in

Reversed Shear Tokamak Plasmas

N. N. Gorelenkov

Princeton Plasma Physics Laboratory,

Princeton University, P.O.Box 451, 08543∗

Abstract

A kinetic theory of weakly damped Alfvén Eigenmode (AE) solutions strongly interacting with

the continuum is developed for tokamak plasmas with reversed magnetic shear. We show that

the ideal MHD model is not sufficient for the eigenmode solutions if the standard causality con-

dition bypass rule is applied. Finite Larmor radius effects are required, which introduce multiple

kinetic subeigenmodes and collisionless radiative damping. The theory explains the existence of

experimentally observed Alfvénic instabilities with frequencies sweeping down and reaching their

minimum (bottom).

∗Electronic address: ngorelen@pppl.gov
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Introduction. In recent years theoretical and experimental studies of a special class

of Alfvén plasma oscillations, known as Reversed Shear AEs (RSAEs) attracted a lot of

interest. We formulated the forth order differential eigenmode equation for these modes,

known as the Orr-Sommerfeld equation, which is used in studies of the hydrodynamic flow

stability [1] and localization of the Bernstein waves [2]. Similar equation was analyzed in

Refs. [3–6].

Unstable RSAEs have been observed on many tokamak devices [7–9] and are capable

of inducing fast ion losses. Understanding RSAEs helps in studying the physics of MHD

oscillations such as Alfvén and acoustic branches [10–12]. In addition, observations of RSAEs

often serve as a useful diagnostic of such things as safety factor profile of the plasma, q (r).

Most often RSAEs are observed with sweeping up frequency as minimum q (r) value,

qmin, decreases. Its frequency is changing from a minimum stationary value to the TAE

frequency [7]. Theoretically and numerically, it was found that sweeping up RSAEs exist in

ideal MHD [13, 14]. RSAE instabilities with the frequency sweeping down, are also observed

prior to reaching the minimum (see for example [14]). Such relatively rare events present a

challenge to theory and may indicate stronger damping or nonexistence of eigenmodes.

Up until now there was no theory that predicts the existence condition of MHD scale

RSAEs in the cases of frequency sweeping down or at the bottom of the frequency sweep. In

this paper we call these two cases down sweep RSAEs and sweep bottom RSAEs, respectively.

Numerically, down sweep RSAEs were modeled with NOVA [15], where ideal MHD RSAEs

were found for the down sweep and sweep bottom cases. Theoretical work, Ref. [16],

does not predict eigenmode solutions, but finds the propagating solution of the ideal MHD

Alfvén eigenmode equation in terms of the “quasi” mode with radiative boundary conditions.

Another work, Ref.[6], finds strongly localized KRSAEs with the radial scale on the order

of ρi, which are potentially stronger damped then solutions found in our work.

In this paper we present an analytical theory for the down sweep and sweep bottom

RSAEs. Consistent with previous studies [1, 3] our results indicate that because of strong

interaction with the Alfvén continuum the ideal MHD eigenmode equation does not allow

for the physical eigenmode solution. The FLR effects are required to remove the singularity

at the resonance with the continuum [3–5]. This allows to construct the continuous solution

(with continuous derivative) in which the fast varying part of the solution is due to a con-

version to the kinetic Alfvén wave (KAW) [17]. Nevertheless, as we demonstrate, properly
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constructed ideal MHD eigenfrequency and slow varying part of the solution are consis-

tent with their kinetic real counterparts with the accuracy determined by the collisionless

damping.

In contrast to previous studies of KTAEs [4] and KRSAEs [6] our RSAE solutions main-

tain global structure even in the limit of small FLR, which may have a profound effect on

the fast ion and thermal plasma transport. Both KTAEs and (K)RSAEs can be weakly

damped in this limit.

The existence of singular eigenmodes in ideal MHD approximation is consistent with the

results of Ref. [15]. We call these singular solutions eigenmodes (hence, RSAEs) because

their dispersion relations can be understood in terms of the quantization condition between

two points of a resonance with the continuum.

Formulation of the eigenmode equation. We start from the eigenmode equation for

the low frequency Alfvén oscillations [12, 18], which includes finite plasma pressure effects,

L̂4φ0 + L̂φ0 + 2m2Q̂φ0 = 0, (1)

where

Q̂ = α
2ω̄2∆′ − αk2

00

1 − 4k2
00q

2
+

αε

2

q2 − 1

q4

+ ω̄2 ε (ε + 2∆′) − δm∂ (−4∆′ + ε + α) (3ε − α)

1 − 4k2
00q

2
, (2)

α ≡ −R0q
2
minβ ′, R0 is the major radius of the plasma center, β is the ratio of the plasma

pressure to the pressure of the magnetic field, prime denotes radial derivative, and δm∂ = 1

if ∂2
r ≫ m2 and δm∂ = 0 if ∂2

r ≪ m2, L̂ = ∂r

[

(ω̄ + iη)2 − k2
0

]

∂r − m2
(

(ω̄ + iη)2 − k2
0

)

, ∂r =

rd/dr. The frequency in Eq.(1) is generalized to include the upshift due to Geodesic Acoustic

Mode (GAM) effect ω̄ ≡ R0

√

ω2 − ω2
G/vA [10], ωG is GAM frequency, vA is local Alfvén

velocity, k0 = m/q (r)− n = mι- − n, m and n are the poloidal and toroidal mode numbers,

k00 = k0 (r0), q (r0) = qmin, ε = r/R0, ∆′ is the radial derivative of the Shafranov shift, φ0 is

the electric potential of the dominant poloidal harmonic. In this paper we are looking for the

solutions at ω ≥ k00 ≥ ωG. Here we introduced intrinsic net drive term η < 0 (neglecting its

radial variation), which include excitation and damping (following works [19, 20]). FLR term

L̂4 accounts for coupling to small scale kinetic Alfvén wave (KAW) at the resonance with the

continuum [17, 20] L̂4 = ∂rλ̂
−2∂3

r , where λ̂−2 = [3ω̄2/4 + k2
0 (1 − iδ (ω̄/k0))Te/Ti] ρ

2
i /r

2
0 ≪ 1.
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In the sweep bottom case, k00 ≃ 0, second term in the RHS of Eq.(2) is responsible for the

existence of RSAEs and is due to the averaged curvature [12, 18].

Eq.(1) is derived for high-n in the vicinity of r0 (see Refs. [12, 18] for details), so that the

radial dependencies of different terms in this equation including ωG (r) are neglected, except

for the k0 (r), which determines the Alfvénic continuum if density variation is neglected.

We will study unstable modes near the instability threshold, 0 < γ ≡ ℑω̄ ≪ |η|, i.e.,

when modes become observable. Our theory relies on the assumption that net intrinsic mode

drive is smaller than the shift of the mode frequency from the continuum |η| ≪ |ℜω̄ + k00|.
This is important because it is the Alfvén continuum that determines the localization and

the space scale of the slow varying part of the eigenmode structure. Thus the continuum

has to be resolved, which implies that η should be small. The opposite case |η| > |ℜω̄ + k00|
corresponds to strongly driven modes such as resonant modes.

Without loss of generality we will use a special form of the safety factor profile [18]

q(r) = ι- (r)
−1 = qmin/

(

1 − (r − r0)
2 /w2

)

, (3)

where one can express the q-profile width parameter as w2 = 2qmin/ q(ii)
∣

∣

∣

r=r0

. For further

analysis it is convenient to rewrite Eq.(1) in a reduced form

L4φ0 + Lφ0 ≡ ∂zλ
−2∂3

zφ0 + {∂zD∂z − SD + Q}φ0 = 0, (4)

where all terms are evaluated at r0 and we drop min subscript,

z2 = x2/S ≡ x2
(√

A2 + 4B + A
)

/2, (5)

x = (r − r0)m/r0, µ =
(√

A2 + 4B − A
)

S/2 = (ω̄ + k00) / (ω̄ − k00), D =

(1 − z2) (1 + µz2), Q = 2SQ̂/ (ω̄2 − k2
00) = 2mqw2Q̂/r2

0 (ω̄ − k00),

A =
−k002r

2
0

mqw2

1

ω̄2 − k2
00

= −2k00

√

B

ω̄2 − k2
00

, (6)

B =
r4
0

m2q2w4

1

ω̄2 − k2
00

> 0, (7)

S =
√

µ/B = mqw2

r2

0

(ω̄ + k00) and λ−2 = Λ−2 ω̄2

(ω̄+iη+k00)2(ω̄+iη−k00)
, Λ−2 =

n (ρ2
i /w

2) [3/4 + (k2
0/ω̄

2) (Te/Ti) (1 − iδ (ω̄/k0))].

In a case of down sweep activity we have µ ≪ 1 and q > m/n, k00 < 0, and A > 0,

whereas at the sweep bottom k00 = A = 0, q = m/n, S = 1/
√

B = ω̄mqw2/r2
0, µ = 1, and

Qbott ≃
nw2

ω̄r2
0

αε
q2 − 1

q2
. (8)
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Figure 1: Ideal MHD solution for RSAE as given by Eq.(17) with l = 2 and c0 = −1 (a.u.).

Nonexistence of ideal MHD down sweep RSAE solution. The ideal MHD limit

of Eq.(4), i.e., Lφ0 = 0, can be analyzed analytically for the down sweep case, µ ≪ 1, at

the near threshold condition, ω̄ ≃ −k00. We rewrite the eigenmode equation at the point of

expected mode peak, z = 0:

∂

∂z

(

1 − z2
) ∂

∂z
φ0 + (Q − S) φ0 = 0. (9)

Eq.(9) is symmetric in z and we are looking for ideal MHD localized RSAE solution with

zero boundary conditions at the infinity (n ≫ 1). Real symmetric solutions within 0 <

|z| < ∞ satisfying zero boundary conditions at the infinity are Legendre functions [21]

φ0 = c0Ql−1 (z), where l =
[√

1 + 4 (Q − S) + 1
]

/2, which implies the dispersion relation

Q − S = l (l − 1) with l positive integer. For complex frequency, applying the standard

procedure with the causality condition, η = 0 and ℜω̄ ≫ ℑω̄ > 0 we integrate Lφ0 = 0

through the singular points from ± (1 + ε) to ± (1 − ε) (0 < ε ≪ 1) with the rule 2Ql (z) ≃
Pl (z) ln (±z − 1) → Pl (z) ln (1 ∓ z) − iπPl (z). Because of opposite parities of Ql and Pl,

complex ideal solution approaches the origin, z = 0, with discontinuities:

φ0 = c0φ0M ≡ c0

[

ℜQl−1 (z) +
iπH (1 − |z|) sign (z)

2
ℜPl−1 (z)

]

. (10)

This solution has a discontinuity in φ0 (odd l) or in φ′
0 (even l) near origin, which means

that the eigenmode does not exist. If l is not integer the discontinuity is in both φ0 and φ′
0.

This can be seen from the figure 1. A similar line of arguments was used earlier to show the

nonexistence of stable ideal MHD eigenmodes in a plasma with the nonuniform density [1].

As we will show the FLR term can make φ′
0 continuous at z = 0 (even l), but not φ0
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(odd l). Hence, the ideal MHD solution and dispersion should be used to describe the slow

varying part of the eigenmode solution. To improve the ideal MHD dispersion (to account for

S term) we employ the quadratic form minimization. It is obtained by multiplying equation

Lφ0 = 0 (see Eq.(4)) by φ∗
0 and integrating it over z. The resulting form is minimized with

regard to the mode amplitude for even modes (even l ≡ 2l′, l′ = 1, 2, ...) to yield

Q − il′S = 2l′(2l′ − 1), (11)

where for the lowest radial mode numbers il′ = 0.401, 0.489, 0.496, .... In the case of sweep

bottom, µ = 1, because of weak z-variation of the coefficient D = 1 − z4 following simple

WKB dispersion provides good approximation for the RSAE frequency

Q − S = π2(2l′ − 1)2/4, (12)

where by analogy with the down sweep case we left only even radial solutions. Direct

application of the numerical shooting technique to equation Lφ0 = 0 shows good agreement

with the dispersions Eq.(11,12) over the range of plasma parameters [22].

Conversion to KAW. We will make use of the method developed for the analysis of

the Bernstein waves [2] to solve the following equation

λ2∂zλ
−2∂3

zφ0 + λ2 {∂zD∂z − SD + Q}φ0 = 0. (13)

We define three regions for z: outer region I |ℜz| > 1+ε, nonideal region II |ℜz − 1| < ε, and

inner region III |ℜz| < 1 − ε, ε = O
(

λ−2/3
)

. We are looking for the solution of the weakly

unstable modes with 0 < ℑω̄ ≪ |η| ≪ ω̄ + k00. In this case ℜλ > 0, ℜλ ≫ −ℑλ > 0. In the

outer region I the slow varying part of the solution, φ0M , is well described by MHD, such as

down sweep solution, Eq.(17). It is the nonideal region that determines the coupling of the

slow and fast varying components of the eigenmode or, in other words, MHD conversion to

KAW. To analyze region II we define the new variable y = 1 − z. In the vicinity of z = 1

we can rewrite the eigenmode equation

∂4
yφ0 + pλ2

{

y∂2
y + ∂y + Q/p

}

φ0 = 0, (14)

where p is 2 for down sweep mode or 4 for sweep bottom cases. Since ℑy < 0 (η < 0) it

can be shown that the solution just outside of region II can be described by a combination

of four independent functions [23]. Only one combination of these functions has required
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logarithmic behavior in the outer region: B3 + A1 + Cb0 (notations are from Ref.[23]). In

contrast to Ref.[2], due to our choice of y, function B3 alone lies in sectors S2 and S1 as

defined in Ref.[23] and has the same asymptotics as ideal MHD solution. Hence it has the

same problem of matching at the origin as in the MHD case described above. On the other

hand the combination B3+A1+Cb0 implies following the transition rule through the turning

point (details will be published [22])

Pl ln (z − 1) → Pl ln (1 − z) + iπPl +

√
π

p1/4
√

λy3/4
e−3iπ/4−2iλ

√
py3/2/3. (15)

The first two terms match to φ0M in regions I and III. The fast varying part, φ0f , propagates

into region III and allows for matching the imaginary part of the solution at z = 0. To find

φ0f we utilize the WKB method described in Ref. [2] and apply the anzats φ0f = ei
∫

k(z)dz,

where k = O (λ). Substituting it into Eq.(13) and keeping terms up to O (λ3) we find

the following solution k (z) = ± ∫ λ
√

Ddz + 3i∂z [ln (λ2D)] /4. Then matching it to RHS

asymptotic in Eq.(15) we find

φ0f =

√
πpλ1

2λ3/2D3/4
e−3iπ/4−i

∫

1

z
λ
√

Ddz, (16)

where subscript 1 means that the value is taken at the resonance point. Note that the fast

solution has direction of the k propagation from z = 0 toward the turning points and can be

directly measured via diagnostic of the phase of density perturbation to inferr the conversion

to KAW. Then it follows that the solution is

φ0 = c0 [φ∗
0M − φ0f ] . (17)

With φ0f it is possible to match left and right solutions at the origin, but only for

even modes (even l). In the down sweep case the first derivative matching condi-

tion is
[

iπcM/2 − φ′
0f (0 − ε)

]

|ε→0 =
[

−iπcM/2 − φ′
0f (0 + ε)

]

|ε→0, where cM = P ′
2l′−1 =

(−1)l′+1 (l′ − 1/2)!/ (l′ − 1)! (1/2)!. Since Eq.(15) is also valid for the sweep bottom case it

is easy to show that φ0M has the same singularity as in the down sweep case. The matching

condition is essentially the same for the sweep bottom case as we verified numerically for

low l′ values. The real part of the matching condition then implies

ℜ
∫ 1

0
λ
√

Ddz = 2π

(

j +
l′

2
− 3

8

)

, (18)
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where j ≫ 1 is an integer. Matching the imaginary part introduces the dissipation

ℑ
∫ 1

0
λ
√

Ddz = ln

√
λ0π

λ1
√

p
. (19)

The latter equation gives a radiative collisionless damping rate, which is γrad = γ + η < 0:

γrad =
2

πℜΛ0

√
pω̄ ln

(√
λ0π/λ1

√
p
)

√

p
2

+
(

1 − 1
p

)

[

4 − p +
B( 1

4
, 3
2
)

π
(p − 2)

] , (20)

where B
(

1
4
, 3

2

)

is the beta function. The collisionless damping is negligible in the MHD

limit, in which KAW conversion is necessary for proper matching at the origin. As follows

total RSAE growth rate is γ = γrad − η.

Eq.(18) predicts small kinetic splitting of the eigenfrequency due to a change in j and

large eikonal (LHS of the equation), i.e., due to the introduction of the small scale length.

Given the internal drive |η| ≫ γ one can find the frequency range over which slow varying

MHD solution is valid. Such frequency range determines the number of subeigenmodes.

We demonstrate this for the case of a down sweep solution at l′ = 1. Its imaginary part

becomes −iπz at 0 < z < 1 − η/ (ω̄ + k00). Thus the range of ν in which linear in z

solution exists determines the required frequency range. Based on results of Ref.[21] one

can show that the linear in z solution can be constructed as Pν − (ν − 1)Qν . It is linear

in z within 0 < z < 1 − η/ (ω̄ + k00) if the logarithmic contribution from Qν is smaller

than Pν (1) ≃ 1. To be more definite we require the contribution from Qν to be as small

as 1/3: |(ν − 1) ln [η/ (ω̄ + k00)]| = 1/3 ≪ 1, which implies that the range of ν is ∆ν =

−1/3 ln [η/ (ω̄ + k00)]. Thus the ideal MHD solution is satisfied within

∆ω̄M

ω̄ + k00
≃ −1/

(

0.4S + Q
ω̄ + k00

ω̄ − k00

)

ln
(

η

ω̄ + k00

)

. (21)

We expect that ∆ω̄M to be on the same order for the sweep bottom RSAEs. With Eq.(18) we

find that the MHD frequency validity range is wide enough to allow for multiple eigenmodes.

The number of modes is

NkRSAE =
(ω̄ + k00)

(

4 − p +
B( 1

4
, 3
2
)

π
(p − 2)

)

ℜΛ0

(

0.4S + Q ω̄+k00

ω̄−k00

) ∣

∣

∣ln
(

η
ω̄+k00

)∣

∣

∣ 4p
√

pω̄
. (22)

In realistic plasma conditions with finite FLR it has finite value.

Summary and discussion. One important implication of our theory is the exis-

tence criterion for the down sweep RSAEs, which follows from the requirement that the
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eigenfrequency is above the continuum, ω̄ > −k00. For the modes at the existence

threshold ω̄ = −k00, S = 0 and ℜQ = 2 is exact criterion. It can be rewritten as

ω̄thr = −k00 = nw2

r2

0

ǫα
4

q2−1
q2 if the frequency is small. One can see from Eqs.(5,8) that for

the sweep bottom RSAE, k00 = 0, there is no such threshold. This is consistent with the

experimental data [8]. It can be seen that this value is directly connected to the character-

istic flatness of the safety factor profile, w. The observations of ω̄thr can serve as a useful

diagnostic tool.

We observe that the smallest characteristic scale length coming from φ0f is near z = 0,

so that

k2
rρ

2
i =

ω̄2 − k2
00

ω̄2

1

3/4 + (Te/Ti) k2
00/ω̄

2
. (23)

It contains a small factor, which is the proximity of the eigenfrequency to the continuum

minimum point, which justifies the truncation of Eq.(1) beyond the forth derivative terms.

In cases when k2
rρ

2
i is of an order unity, higher order corrections may be required.

We have shown that the kinetic effects are necessary to allow the RSAE modes to exist

with the down sweep and sweep bottom frequencies. Eigenfrequencies can be found approx-

imately within the ideal MHD dispersion relation, which are also derived. We demonstrated

that the slow varying part of the mode structure is described by the ideal MHD, such as

shown in Fig. 1. The theory provides collisionless radiative damping, which becomes small in

the ideal MHD limit. In the case of weakly unstable persistent instabilities γ ≪ |η| = |γrad|
the frequency range of unstable modes may provide the information about the internal net

drive and the collisionless radiative damping. Because of weak radiative damping of multiple

RSAEs and their close frequencies the transport of fast ions and background plasma can be

significantly affected, which has to be further investigated.

Motivating discussions with Drs. L.E. Zakharov and R. Nazikian are appreciated.
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