
SANDIA REPORT
SAND2008-5874
Unlimited Release
Printed September 2008

Hardware Demonstration of High-Speed
Networks for Satellite Applications

Jonathon W. Donaldson and David S. Lee

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2008-5874
Unlimited Release

Printed September 2008

Hardware Demonstration of High-Speed
Networks for Satellite Applications

Version 1.02
Last update: September 1, 2008

Jonathon W. Donaldson and David S. Lee
Wireless and Event Sensing Applications, 2664

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-0986

ABSTRACT

This report documents the implementation results of a hardware demonstration utilizing the
Serial RapidIO™ and SpaceWire protocols that was funded by Sandia National Laboratories’
(SNL’s) Laboratory Directed Research and Development (LDRD) office. This demonstration
was one of the activities in the Modeling and Design of High-Speed Networks for Satellite
Applications LDRD. This effort has demonstrated the transport of application layer packets
across both RapidIO and SpaceWire networks to a common downlink destination using small
topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and
NEX-SRIO debug and verification tools were instrumental in the successful implementation of
the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully
demonstrated the transfer and routing of application data packets between multiple nodes and
also was able reprogram remote nodes using configuration bitfiles transmitted over the network,
a key feature proposed in node-based architectures (NBAs). Although a much larger network (at
least 18 to 27 nodes) would be required to fully verify the design for use in a real-world
application, this demonstration has shown that both RapidIO and SpaceWire are capable of
routing application packets across a network to a common downlink node, illustrating their
potential use in real-world NBAs.

3

4

TABLE OF CONTENTS
EXECUTIVE SUMMARY ...11

1. INTRODUCTION ...13

2. HARDWARE DEMONSTRATION OVERVIEW...15
2.1 Demonstration Components ...16
2.2 Hardware Implementation..17
2.3 Additional Topics: Remote Reconfiguration ...18

3. RapidIO DEMONSTRATION ..19
3.1 RapidIO Test Network Topology...19

3.1.1 Node Types...20
3.1.2 Traffic Flow Overview...22

3.2 Source Node Design...25
3.2.1 User Interface ...25
3.2.2 Software API ..28
3.2.3 Hardware Interface ...29
3.2.4 CCSDS Packet Encapsulation Pipeline..32
3.2.5 Maintenance Frame Generation Pipeline ...36
3.2.6 Transaction ID Block RAM (tid_bram.v) ..37
3.2.7 Scratch-Pad Memory Module (target_user.v) ..37
3.2.8 Initiator Response Handler (iresp_handler.vhd) ..38
3.2.9 RapidIO Design Environment (rio_wrapper.v)..38

3.3 Destination Node Design..39
3.3.1 RapidIO Dword Breaker Module (srio_dwrd_brkr.vhd)40
3.3.2 CCSDS Downlink Framer Flow Controller (ccsds_dlf_flow_ctrl.vhd)...............41
3.3.3 CCSDS Downlink Framer Module ..41

3.4 CCSDS Over SRIO Self-Verifying Test Bench...42
3.4.1 Test Bench Top-Level (cos_to_clink_tb.v)..42
3.4.2 Test Bench Task Functions ..43
3.4.3 Signal Monitors and Signal Spys (signal_<mons/spys>.v)..................................46

3.5 Image Generation Module..46
3.5.1 Theory of Operation ...46
3.5.2 Fetching the Original Image Data (bmpParse.c, Gen_LCD_Image.java)............47
3.5.3 Image Generation Hardware (image_gen_bram.vhd) ..47

3.6 Debug and Analysis with RapidFET™..47
3.7 Debug and Analysis with the NEX-SRIO..49
3.8 Debug and Analysis Setup with STx SRDP...53
3.9 Future Work with RapidIO...54

4. SPACEWIRE DEMONSTRATION ...57
4.1 SpaceWire IP and Hardware Selection ..58
4.2 SpaceWire Implementation ..60
4.3 Remote Configuration over SpaceWire ...64

5. HARDWARE DEMONSTRATION CONCLUSIONS..69

6. REFERENCES ..71

5

LIST OF FIGURES

Figure 1. Basic block diagram of hardware demonstration. .. 15
Figure 2. Detailed block diagram of hardware demonstration. ... 17
Figure 3. Progression of image data as each color source node is added to the network. 18
Figure 4. Test network topology.. 19
Figure 5. Block diagram of source node design. ... 25
Figure 6. Textual user interface. .. 26
Figure 7. Example software-level debug output. ... 26
Figure 8. Software/hardware architecture.. 27
Figure 9. Software layers ... 28
Figure 10. Block diagram of Serial RapidIO Core design... 34
Figure 11. User design internal components.. 35
Figure 12. RapidIO Design Environment. ... 39
Figure 13. Destination node architecture. .. 39
Figure 14. Example flow for incoming RapidIO frames. .. 40
Figure 15. Statistics output from GEN_CCSDS_SEQ_STAT function...................................... 45
Figure 16. Statistics output from GEN_MAINT_SEQ_STAT function. 46
Figure 17. CX4-AMC Adapter Card ... 48
Figure 18. RapidFET Professional and Probe in large RapidIO network.................................... 49
Figure 19. RapidFET Utilization Graphs... 50
Figure 20. Nexus SRIO Protocol Analyzer connection topology.. 51
Figure 21. CX4-SMA adapter board.. 51
Figure 22. NEX-SRIO packet disassembly software... 52
Figure 23. Debug and analysis system setup. .. 53
Figure 24. GSFC SpaceWire router IP core block diagram... 59
Figure 25. Two independent node instantiations on one ML325 board. 61
Figure 26. SpaceWire hardware demonstration layout.. 64
Figure 27. Configuration host (ML523) block diagram. ... 66
Figure 28. Configuration target (SEAKR) block diagram... 67
Figure 29. System block diagram for reconfiguration demonstration. .. 67
Figure 30. Remote configuration over SpaceWire control interface. .. 68

6

LIST OF TABLES

Table 1. Device Utilization Statistics for Serial RapidIO Source Node Design

on Virtex-II Pro 70.. 21
Table 2. Device Utilization Statistics for Serial RapidIO Destination Node Design

on Virtex-II Pro 70.3 ... 21
Table 3. Device Utilization Estimates for Serial RapidIO Source Node Design

on Virtex-5 FX130T. .. 22
Table 4. Device Utilization Estimates for Serial RapidIO Destination Node Design

on Virtex-5 FX130T.4 ... 22
Table 5. Serial RapidIO 4x/1x Latency Numbers Under No Congestion.................................... 24
Table 6. Device Utilization Statistics for SpaceWire Single Node Sensor Interface

(source node) Design on Virtex-II Pro 70... 63
Table 7. Device Utilization Statistics for SpaceWire Single Node Downlink

(destination node) Design on Virtex-II Pro 70. .. 63
Table 8. Device Utilization Statistics for SpaceWire Single Node Design

on Virtex-5 LX110T. .. 65
Table 9. Device Utilization Statistics for SpaceWire Single Node Design

on Virtex-5 FX130T. .. 65

7

8

ACRONYMS

API Application Programming Interface

BRAM Block RAM
BMP bitmap

CAR Capability Register
CCC Command and Control
CCSDS Consultative Committee for Space Data Systems
CF CompactFlash
COE coefficient
COTS commercial off-the-shelf
CRC cyclic redundancy check
CRF Critical Request Flow
CSR Command and Status Register
CTS CCSDS to SRIO
CTSS CCSDS to SRIO Solution

DAR Device Access Routine
DCM Digital Clock Manager
DLF Downlink Framer

EDK Embedded Development Kit

FF Flip-Flop
FIFO first in, first out
FPA Focal Plane Array
FPGA Field Programmable Gate Array

GSFC Goddard Space Flight Center
GCLK global clocking
HAL Hardware Abstraction Layer
HDL Hardware Description Language

IP Intellectual Property
IRESP Initiator Response
IREQ Initiator Request
ISA Instruction Set Architecture
ISF internal switching fabric
ISO International Standards Organization

LDRD Laboratory Directed Research and Development
LFSR linear feedback shift reporter
LUT Lookup Table
LVDS low-voltage differential signaling

9

MGT multi-gigabit transceiver

NBA Node-Based Architecture

OPB On-chip Peripheral Bus

PCB printed circuit board
PCI peripheral component interconnect
PLB Processor Local Bus
PPC PowerPC

QoS Quality of Service

RAM random access memory
RCO Receive Command Opcode
RCD Receive Command Data
RCPM Route Configuration and Port Monitoring
ROM read-only memory
RREG response register

SAR Segmentation and Reassembly
SNL Sandia National Laboratories
SRIO Serial RapidIO

TID Transaction ID
TREQ Target Request
TUI Textual User Interface

UART Universal Asynchronous Receiver/Transmitter

10

EXECUTIVE SUMMARY

This report documents the implementation results of a hardware demonstration utilizing the
Serial RapidIO™ and SpaceWire protocols that was funded by Sandia National Laboratories’
(SNL’s) Laboratory Directed Research and Development (LDRD) office. This demonstration
was one of the activities in the Modeling and Design of High-Speed Networks for Satellite
Applications LDRD [1].

The purpose of the research and development presented in this document was to demonstrate
transport of application-layer packets across a network to a common downlink destination. In
this demonstration the RapidIO and SpaceWire protocols were used as a conveyance for
Consultative Committee for Space Data Systems (CCSDS) packets across a small network
topology. The Serial RapidIO™ and SpaceWire protocols were chosen as possible candidates
for network communications in node-based architectures (NBAs) for satellite systems in the
Survey of Communication Protocols for Satellite Payloads [2]. The CCSDS protocol was chosen
because SNL has a working history with the protocol, there was a previously written Hardware
Description Language-based packet generator to leverage from, and it is a likely candidate for
the application protocol used in future satellite architectures.

RapidIO is a commercial protocol that follows the standard Open Systems Interconnect
networking model. The specification for RapidIO defines strict implementation directives for
components spanning from the physical layer to the transport layer. A standard Application
Programming Interface and function definitions are also provided for application layer designs
interfacing to RapidIO hardware. RapidIO was chosen because its protocol specification allows
for network scalability, guaranteed delivery, and ultra-high bandwidth. RapidIO is available in
both serial and parallel physical layer implementations. The serial version of the physical
RapidIO connectivity specification was chosen for this study because it requires the fewest
connecting wires between nodes, consumes less power, allows for higher data rates, and results
in less clock skew than its parallel counterpart.

SpaceWire is a bi-directional, full-duplex serial protocol developed primarily by the European
Space Agency. SpaceWire is currently in use in a number of flight systems to provide a high-
speed data infrastructure between sensors, processing elements, memory units, telemetry
subsystems, and other space instruments [3]. As SpaceWire is already utilized in many space
projects today, its feasibility for flight systems has already been established, making it a
promising candidate for integration into networks for NBAs.

To adequately model real-world scenarios, the hardware demonstration assembled a
representative model of real flight hardware using commercial-off-the-shelf development
hardware. In typical flight systems, sensors would act as data generators and downlink modules
as data sinks. The custom designs created for the hardware demonstration include a traffic
generator node and a traffic sink node. The traffic generator nodes are responsible for
encapsulating CCSDS packets in RapidIO frames or SpaceWire packets before transmitting them
across the network. The traffic sink design consumes the RapidIO-encapsulated or SpaceWire
CCSDS packets and reconstructs them for transfer to a CCSDS downlink framer. Integrating

11

these elements into the demonstration platform resulted in a successful demonstration of
communication between nodes in a multi-node routed network.

One key desire in an NBA is the ability to dynamically reprogram endpoint logic in flight to
provide different node functions within the network. This provides a number of advantages,
including a failover capability to mitigate in-flight failures by reprogramming spare nodes to
replace failed functionality. This node-based hardware demonstration was expanded to
demonstrate the capability of reading a configuration bitfile from flash, transmit the bitfile over
the network, and successfully reprogram remote nodes.

Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the
design for use in a real-world application, this demonstration has shown that both RapidIO and
SpaceWire are capable of routing application packets across a network to a common downlink
node, illustrating their potential use in real-world NBAs.

12

1. INTRODUCTION

The purpose of this study was to create a hardware design that demonstrated the ability to
transfer application-layer packets from multiple source nodes across both RapidIO and
SpaceWire network infrastructure to a common downlink destination node. The test network
used in the demonstration was designed to use a small number of nodes based on commercial-
off-the-shelf (COTS) development hardware as a proof-of-concept for a larger network topology.

From previous studies performed for this Laboratory Directed Research and Development
(LDRD) [2], both Serial RapidIO™ and SpaceWire protocols emerged as potential candidates for
use in NBAs. Since both protocols performed well in software simulation [4], the next step was
to implement both Serial RapidIO and SpaceWire into hardware. To achieve this goal, a
hardware demonstration built a representative model of the data flow that would be present in a
real-world flight system. An additional goal of this demonstration was to characterize and
validate the assessments performed in [2] of key protocol features. These observations and
results are discussed throughout this document and cover features that include but are not limited
to:

 Supported Bandwidths
 Overhead
 Latency
 Quality of Service (QoS)
 Fault Detection
 Reliability
 Error Correction
 Scalability

13

14

2. HARDWARE DEMONSTRATION OVERVIEW

Data flow in current architectures typically begins at sensor interface hardware. This hardware is
responsible for collection of data from attached sensors that may generate large amounts of data.
This data is shipped to data processor hardware, which may provide some level of in-flight data
pre-processing and reduction. Finally, the processed data is sent to downlink channels for
transmission to ground systems. Figure 1 portrays a high-level diagram of this concept.

To properly demonstrate the concept of a NBA, the components mentioned above were
subdivided into distinct functions and separated into different node types. The approach to this
demonstration was to provide enough hardware and development resources to demonstrate many
functions of a real-world model.

Sensor Interface Node

Sensor Interface Node

Sensor Interface Node

Sensor Interface Node
Sensor

Interface

Downlink Interface NodeGround
Processor

Transport P
rotocol N

etw
ork

Figure 1. Basic block diagram of hardware demonstration.

15

2.1 Demonstration Components

The representative components in this hardware demonstration include a sensor interface node, a
downlink or spacecraft communication node, a spacecraft interface, and a ground station. The
sensor interface node is responsible for the generation of application data packets and transmits
these data packets to the downlink node. The downlink node packages the data packets from all
sensor node sources into frames and transmits these frames to the ground station, which can then
analyze, display, or post-process the data.

Next, these representative flight component functions were mapped onto available COTS
hardware. Where possible, COTS software or readily available Intellectual Property (IP) cores
were used in place of any custom development efforts.

Development of sensor interface nodes includes three primary components. An application data
component provides the source data to act as incoming sensor data. A data encapsulation
component then packages the data into Consultative Committee for Space Data Systems
(CCSDS) packets. The protocol interface component utilizes the appropriate network protocol
(Serial RapidIO or SpaceWire) to transmit the information onto the network. The hardware
utilized for these node types was typically a Xilinx ML325 prototype board [5].

The downlink node is also comprised of three components, also typically implemented on a
Xilinx ML325 prototype board. The network protocol component receives network packets
from the network. Data reconstruction strips off any network protocol specific information to
isolate the source CCSDS packet. The downlink framer component takes these CCSDS packets
and injects them into fixed-length CCSDS frames. These frames are then sent to the ground
station. The CCSDS framer is a necessary component to communicate properly with the ground
station, providing frame synchronization information and encapsulated packet information.

The final piece of the hardware demonstration is the ground station, which is provided by a PC
equipped with a commercially available PCI-X CameraLink interface card. In order to get very
high-speed data transfer (5.44 Gbps) of CCSDS frames into the PC, a custom interface board
(hereafter referred to as the “FIB” test board) was leveraged from another SNL program. This
FIB test board, developed by Ray Byrne and Joe Lyle at SNL, is able to receive four high-speed
serial channels. The data received from these channels is bonded together to form one logical
high-speed data channel. The FIB test board takes the logically bonded channel data and outputs
this data via CameraLink. It should be noted that CameraLink requires a fixed-length data field
and that can be accommodated by CCSDS frames fixed in size at 2044 bytes, whereas CCSDS
packets in this demonstration were variable length. The entire architecture flow is shown in
Figure 2.

16

Source Node

Source Node

Source Node

Source Node Architecture

Protocol
(RapidIO/Spacewire)

Encapsulation

Protocol
Interface

Application
Data

Sensor
Interface

Destination Node Architecture

CCSDS
Downlink
Framer

Spacecraft
Application

Data
Reconstruction

Ground
Processor

FIB Test
BoardPC

Xilinx ML325
(Virtex-II Pro)

Xilinx ML325
(Virtex-II Pro)

Protocol
Interface

Figure 2. Detailed block diagram of hardware demonstration.

2.2 Hardware Implementation

The hardware demonstration incorporated a total of four nodes: three sensor interface nodes and
one downlink node, which was connected to the ground station.

To introduce a visual component to the hardware implementation, a color image was taken and
divided into its three constituent colors (red, green, and blue). Each sensor node was configured
with one of the colors to serve as its sensor or “application data.” The goal was to have each
sensor node transmit its color component information through the downlink node to the ground
station, where the image can be reassembled into a full-color image. If one of the nodes should

17

fail or if data transfer is interrupted for any reason, part or all of one color component will be
missing and the image will be visually distorted. See Figure 3 for an example.

Figure 3. Progression of image data as each color source node is added to the network.

2.3 Additional Topics: Remote Reconfiguration

In addition to the demonstration of data exchange between nodes, another goal is to illustrate
t

e

some of the other advanced features of NBAs. The ability to reprogram endpoint logic in fligh
to perform different node functions provides a number of advantages. Most notably, the ability
to reprogram spare nodes with the functionality of failed nodes provides a failover mechanism
that dramatically increases the reliability of the system. Thus, another objective of this hardwar
implementation is to demonstrate the ability to program nodes over the network.

18

3. RapidIO DEMONSTRATION

The discussion of the RapidIO demonstration begins with an overview of the test topology and is
then broken down into two main sections: the source node design and the destination node
design. The source nodes are responsible for generating the application layer packets while the
destination node consumes them. The following sections provide a detailed overview of each
component, both COTS and custom, which was utilized to implement the final solution. In
addition, some useful design verification and debug tools are discussed that will aid in creating
larger and more complex demonstrations in the future.

3.1 RapidIO Test Network Topology

The test network setup is shown in Figure 4. The system consists of four RapidIO endpoints
connected via SMA cables to a centralized Tundra Tsi578 RapidIO switch. This topology was
chosen not only because it simplifies the testing and debug process, but also because the
flexibility of the RapidIO protocol allowed for verification of most traffic scenarios with a single
switch. This flexibility is very advantageous because it allows for the development of a RapidIO
system without requiring the development of switching IP that would be integrated into each
individual node. In this case, the single switch was implemented using a COTS development
board.

Figure 4. Test network topology.1

1 The current revision of our design supports up to four source nodes; however, only three are shown here to

simplify the diagram.

19

Unlike the SpaceWire demonstration (discussed in Section 4), there is presently no commercially
available RapidIO switch IP that can be integrated into each source/destination node without
developing a custom printed circuit board. Therefore, this demonstration was limited to the use
of a fixed-Application-Specific Integrated Circuit switch development board that contained a
Tsi578 Serial RapidIO switch from Tundra Semiconductor. This demonstrates a centralized
switching topology rather than a distributed switching topology as discussed in Section 4. In
order to scale a centralized switch topology, any Tsi578 switch can be directly attached to the
port of another Tsi578 switch in order to increase the port count. The switches can be chained
together indefinitely so long as the final endpoint node count does not exceed the RapidIO
maximum network size set forth by the “Transport Type” field of each interacting node. The
transport type field identifies whether a given endpoint supports either 8-bit or 16-bit device IDs.

The three nodes on the left are traffic sources and the node on the right is a traffic sink. Each
node is attached to a different switch port using a 1x3.125 Gbps link. Factoring in the required
8B/10B data encoding used by RapidIO, this link speed allows for a theoretical maximum
throughput of 2.5 Gbps. The RapidIO Version 1.3 physical layer specification allows links up to
4x3.125 Gbps for a total maximum throughput of 10 Gbps. It is also worth noting that the
RapidIO switch will automatically detect the link rate (i.e., 1x/4x) of any node that is attached to
it and synchronize the physical layers without any manual user intervention.

The Xilinx physical layer IP core does support the maximum allowable link rate; however, the
purpose of this study was not to test the bandwidth capabilities of RapidIO. Therefore, a 1x link
was chosen to simplify the design, reduce Field Programmable Gate Array (FPGA) resource
usage, reduce implementation time, and reduce the number of physical cables needed in the
system.

Though the RapidIO protocol does not specify a standard connection interface, the two cable
types used in this system were CX4 (Infiniband) and coaxial with SMA connectors. Maximum
cable lengths depend on the devices themselves and the data rate. Some devices have pre-
emphasis on transmitters and equalization on receivers that extend their transmission lengths
well beyond RapidIO specs of 22-inch backplanes. Moreover, the slower the data rate the longer
the cable allowed. Certain vendors have demonstrated 4x 3.125 Gbps throughput across 10
meters of CX4 cable; however, typical applications implement CX4 lengths up to one meter and
SMA coax lengths up to 28 inches.

3.1.1 Node Types

Each of the endpoints (A, B, C, D) utilize version 4.4 of the Xilinx Serial RapidIO Physical
Layer Interface Core (part number: DO-DI-RIO-PHY) and the Xilinx RapidIO Logical and
Transport Layer Interface core (part number: DO-DI-RIO-LOG)2. These two Xilinx cores are
currently compliant with Version 1.3 of the official RapidIO specification.

The Xilinx RapidIO IP cores themselves are merely used as a conduit to interface and
communicate with the physical Serial RapidIO network and by no means constitute the entire
design on any of the endpoints, which would consist of application-specific activities. The

2 At the time of this writing, neither of the Xilinx RapidIO IP cores is RIOLAB [6] certified.

20

remaining design will be discussed in later sections. The source and destination nodes were
developed on a Xilinx ML325 development board fitted with a Virtex-II Pro XC2VP70.

At present, a single source endpoint (including the operating system and software interface)
consumes approximately 15% of the V2Pro’s internal logic resources, 20% of internal
BlockRAM (BRAM),3 and one of the two internal PowerPC 405 cores. The hard PowerPC core
in the Xilinx was used in this design; however, a soft-core processor is another option. A
processor is the preferred method of initializing and executing the mandatory RapidIO
Application Programming Interface (API) functions discussed in Section 3.2.2 when the board is
powered on. The processor is also used for the custom user interface discussed in Section 3.2.1.

The destination node consumes only 11% of the FPGA’s logic resources and only 14% of the
Block RAM space. The device utilization summaries from the Xilinx Place and Route tool are
shown in Tables 1 and 2 for the source and destination nodes, respectively.

Table 1. Device Utilization Statistics for Serial RapidIO
Source Node Design on Virtex-II Pro 70.4

Digital Clock Managers 2 out of 8 25%
Gigabit Transceivers 1 out of 20 5%
PPC405s 1 out of 2 50%
Block RAMs 67 out of 328 20%
Flip-Flops 9426 out of 66176 14%
4-input LUTs 11132 out of 66176 16%

Table 2. Device Utilization Statistics for Serial RapidIO

Destination Node Design on Virtex-II Pro 70.4

Digital Clock Managers 1 out of 8 12%
Gigabit Transceivers 5 out of 20 25%
Block RAMs 48 out of 328 14%
Flip-Flops 7128 out of 66176 10%
4-input LUTs 8472 out of 66176 12%

3 RAM – random access memory.
4 These statistics reference the node implemented with the optional target scratch-pad memory (see Section 3.2.7).

21

Since the target device in the current processing architecture development is a Xilinx Virtex-5
FX130T, we can speculate as to the resource usage on a Virtex-5 FX130T for both the source
and destination nodes from the Virtex-II Pro utilization reports. These estimations are shown in
Tables 3 and 4, respectively. Furthermore, if the Xilinx physical layer Serial RapidIO (SRIO)
core were re-generated to use 4x RapidIO links (instead of the present 1x configuration) it would
consume approximately 4% more Lookup Tables (LUTs) and Flip-Flops (FFs) on either the
V2Pro or the Virtex-5 architectures. A 4x configuration would also require an additional three
sets of gigabit transceiver ports.

Table 3. Device Utilization Estimates for Serial RapidIO
Source Node Design on Virtex-5 FX130T.5

DCMs 2 out of 12 16%
Gigabit Transceivers 1 out of 20 5%
PPC405s 1 out of 2 50%
Block RAMs 67 out of 596 11%
Flip-Flops 9426 out of 81920 12%
6-input LUTs 11132 out of 81920 13%

Table 4. Device Utilization Estimates for Serial RapidIO

Destination Node Design on Virtex-5 FX130T.5

DCMs 1 out of 12 8%
Gigabit Transceivers 5 out of 20 25%
Block RAMs 48 out of 596 14%
Flip-Flops 7128 out of 81920 9%
6-input LUTs 8472 out of 81920 10%

The Tundra Tsi578 Serial RapidIO switch is built on to a development board from Silicon
Turnkey Express [7]. The switch can be configured for a total of sixteen 1x link rate ports or
eight 4x link rate ports. The board provides SMA, Infiniband, AMC, and various other High
Speed Serial Interface (HSSI) connections for attaching to the Tundra switch ports. The switch
development board requires a 20-pin ATX power supply; however, the board itself is not ATX
form factor, which means that the board and power supply cannot be mounted inside a standard
ATX chassis.

3.1.2 Traffic Flow Overview

Disregarding minor RapidIO handshaking frames, we can view nodes A, B, and C as the primary
traffic sources and node D as the traffic sink. The three source nodes generate CCSDS packets

5 These device utilizations are only estimates and are based solely upon the additional hardware resources

available as per the Virtex-5 FX130T datasheet.

22

and RapidIO maintenance request/response frames when requested to do so by the user. While
RapidIO maintenance transactions may occur between any two nodes, CCSDS packets are only
sent to node D.

The RapidIO maintenance frames are needed to configure the endpoint and switch nodes
subsequent to power on. Moreover, if any real-time changes need to be made to the switch’s
LUTs, or any interrupt/error status flags within any of the nodes need to be cleared, maintenance
frames will be required. The power-on configuration steps include setting the endpoint/switch
device IDs, setting the endpoint host lock ID, determining endpoint/switch state-of-health,
configuring the switch LUTs, and initializing the switch’s physical layer ports.

The CCSDS packets are first encapsulated into SRIO frames using the Message class (FType 11)
before being dispatched from the source node. The Message class was chosen because it utilizes
sequence ID numbers for each RapidIO frame sent. This allows RapidIO frames to be received
in any order on the destination node while still allowing the full CCSDS packet to be properly
reconstructed. This process is referred to as Segmentation and Reassembly (SAR).

The Message class also allows response frames to be sent back to the originating source node,
thus creating an application-layer packet flow control mechanism. Aside from the built-in flow
control of the RapidIO protocol, an additional CCSDS packet handshaking function was
implemented that allows no more than one CCSDS packet to be in transit between all
source/destination pairs at any time (see Section 3.3.1 for more information).

Each CCSDS packet is variable length with a maximum of 8188 bytes and constitutes one or
more RapidIO frames. Each RapidIO frame has a maximum payload size of 256 bytes.
Moreover, each RapidIO Message class frame requires an additional 8 bytes of protocol
overhead. These 8 bytes consist of information specific to the physical, logical, and transport
layers of the frame, which includes a 16-bit cyclic redundancy check (CRC) for error checking
purposes (see Reference 8 for more information regarding these fields). This additional
information results in a ~3% overhead for every CCSDS packet sent.6

In addition to overhead, packet transmission is also susceptible to the inherent latency within the
switch. Tundra defines latency “as the time interval between the first bit of the Start-of-Packet
arriving at the ingress of the Tsi578 and that same bit leaving the device” [9]. The cross-switch
latency for each possible serial RapidIO link-rate is shown in Table 5.

6 Note that this overhead calculation does not account for the necessary application-layer handshaking mechanism

between the source/destination pair.

23

Table 5. Serial RapidIO 4x/1x Latency Numbers Under No Congestion (courtesy of [9]).

Upon receipt of a CCSDS packet, the destination node will forward the packet on to the CCSDS
Downlink Framer (DLF) module. The DLF encapsulates one or more CCSDS packets into a
CCSDS Frame, which can store 2024 bytes worth of CCSDS packets. The final CCSDS frame
data is then reformatted and sent off-chip to another board, which transfers the data over a
CameraLink interface to a desktop computer. The frame data and statistics can then be viewed
by the user via custom software.

The Tsi578’s internal switching fabric (ISF) is non-blocking to all traffic provided the total
ingress data flow to any single egress port does not exceed the egress port’s outbound bandwidth.
Clearly, in the topology shown in Figure 4, there is a bottleneck for traffic approaching the
destination node D if any more than one of the source nodes is enabled and the sum of their
traffic exceeds 2.5 Gbps. If this occurs, the switch will send “Packet Retry” control symbols
back to the physical layer core of the source nodes. Any source node that receives one of these
symbols will continue to retransmit the packet from its physical layer output packet buffer until
the switch replies with a “Packet Accepted” control symbol.

Note that the Tsi578 also has full support for RapidIO priority-based quality of service (QoS)
frame scheduling; however, all RapidIO frames sent by the source and destination nodes in the
current version of this demonstration have their priority field set to zero. This was done only to
simplify the design and debug process. Please see Section 3.9 for more information on this
topic.

In part, this study was used to test RapidIO’s “guaranteed delivery” mechanism to ensure that all
packets sent across the network would reliably reach the intended destination. The only way to
truly test this capability was to design a bottleneck into the network that would cause the switch
to block packets. Not only does the bottleneck exercise the RapidIO protocol itself, but it also

24

aids in verifying proper switch and endpoint functionality when subjected to high levels of
switch port congestion.

3.2 Source Node Design

The source node consists of both software and hardware components with the responsibility of
encapsulating CCSDS packets in the RapidIO frame format for subsequent transmission across
the switched RapidIO network. The following section discusses each component within the
design, along with its specific purpose, in a top-down hierarchical fashion. A high-level block
diagram of the source node design is shown in Figure 5. Also shown in this figure are the
different clock domains that were required to execute this demonstration.

Source Node

RapidIO Dword
Builder

(srio_dwrd_bldr.
vhd)

RapidIO
Dword
FIFO

CCSDS Packet
Generator

(ccsds_pkt_gen.vhd)

CCSDS
Packet
FIFO

Maintenance Packet
Generator
Interface

CTS
Command &

Control
Microcontroller
(cts_cmd_and_

ctrl.vhd)

User
Interface

and
Software
Drivers

Response Register

Serial
RapidIO

Core

78.125 MHz 39.0625 MHz 156.25 MHz100 MHz

Figure 5. Block diagram of source node design.

3.2.1 User Interface

At the highest level of the design the user can interface to the Serial RapidIO hardware through a
menu-driven textual user interface (TUI) over an RS-232 serial port. Presently, the menu options
allow the user to send any number or size of CCSDS packets to the DLF node, read/write
maintenance registers on any node, monitor switch state of health (e.g., congestion and interrupt
registers), or populate the switch LUTs for the fixed topology described above. An example of
the TUI is shown in Figure 6.

This small operating system is written in ANSI C and boots from internal Block RAM memory
within the FPGA on power-up. The boot sequence is executed by the PowerPC, which initializes
the hardware and creates a software-based instance of the device in main memory. The instance
itself is a structure that contains information regarding the state of the hardware (e.g., base
memory address, state of health, library initialization flags, etc.). After the boot sequence has
completed, the RapidIO API library is then ready for input from the user.

Various debug options and output verbosity level parameters are also available. This debug
information is very useful in diagnosing issues at the software/hardware layer interface. An
example of this debug output is shown in Figure 7.

25

Figure 6. Textual user interface.

Figure 7. Example software-level debug output.

Each of the source nodes may contain up to two endpoints inside the single Virtex-II Pro FPGA
on the ML325 development board. If two endpoints exist they are both physically and logically
separate from one another – no “inter-node” communication is performed. The sole limitation
when running two endpoints simultaneously on the ML325 board is that there is only a single
Universal Asynchronous Receiver/Transmitter (UART) interface. To work around this problem,
a UART multiplexer module was written that switches between the two endpoint
STDIN/STDOUT interfaces depending on the state of an on-board Dual In-line Package switch.

26

An overview of the architecture used to interconnect the software and hardware components of a
single endpoint is shown in Figure 8. All communications to and from the PowerPC are
performed via the Processor Local Bus (PLB). The instruction and data memory are stored in
the same Block RAM space with a single bus attachment because the PPC405 only has a five-
stage pipeline and does not support out-of-order execution. The UART module is significantly
slower than any other component in the system; therefore it is attached to the low-speed On-Chip
Peripheral Bus (OPB) in order to simplify bus arbitration and reduce the number of wait states.

The CCSDS to SRIO Solution (CTSS) IP core that was designed for this study is directly
attached to the high-speed PLB. This core, which includes all software and hardware
components for the entire source node design, has been packaged into a complete Xilinx
Embedded Development Kit (EDK) IP core that can be installed on any desktop PC and be
viewed from the EDK IP Catalog library. The IP is packaged with Tcl [10] scripts that will
automatically generate the required C-source code files that allow the core to be accessed in any
custom design. This was done to make the core portable and easy to use by future designers.
The interface to the core is discussed in detail in the following sections.

Figure 8. Software/hardware architecture.

27

3.2.2 Software API

When the user selects from one of the provided menu interface options, a series of API function
calls are executed by the PowerPC in the background to generate the type of CCSDS packet or
RapidIO Maintenance frame requested. The API used for the generation of RapidIO
Maintenance frames is standard and is specified in “Annex 1: Software/System Bring Up
Specification” of the official RapidIO specification. The API used for the generation of CCSDS
packets is non-standard and was designed specifically for this study; however, it follows a
similar function layout as the standard RapidIO API library structure.

In general, the API device drivers follow a layered architecture as shown in Figure 9. The
“RTOS Adapter” functions are callable directly by the user whereas the “Device Driver”
functions are meant to be accessed through the adapter functions only. The “Direct Hardware
Interface” layer is accessed through the use of the IBM CoreConnect PLB and a Xilinx IP
Interface module that allows for software accessible read/write registers within the FPGA’s user-
programmable logic space.

The RapidIO Maintenance frame generation API drivers consist of four distinct function sets:
Hardware Abstraction Layer (HAL), Standard Bring Up, Routing-Table Manipulation, and
Device Access Routine (DAR) Interface functions. The HAL functions can be considered Layer
1 functions while the other function sets are part of Layer 2.

Figure 9. Software layers (courtesy Xilinx, Inc.).

There are only two substantial functions within the HAL set – one performs a maintenance read
and the other performs a maintenance write. The other three function sets build on top of these
two low-level driver functions and allow the user to configure endpoints/switches, monitor state
of health, and configure the network topology by populating switch LUTs. At the time of this
writing all function sets except for the DAR functions have been fully implemented.

28

The CCSDS Packet Generation API drivers control the hardware-based CCSDS packet generator
module and allow the user to generate fixed or random size CCSDS packets, infinite/finite
packet streams, and anything in between. The API functions include error checking, which will
ensure that the user only generates CCSDS packets that are within the bounds of the official
CCSDS specification.

In a real flight system, the CCSDS API functions would likely not be required, as a hardware
interface to a sensor would be used to feed data directly into the CCSDS packet generator
module. This would also eliminate the need for the UART and the TUI; however, the PowerPC
(or equivalent soft-core processor) would still be required in order to run the aforementioned
RapidIO maintenance configuration transactions (please see Section 3.2.5.2 for more information
regarding processor requirements).

3.2.3 Hardware Interface

Immediately hanging off of the PLB are four software-accessible, 32-bit hardware registers.
These registers allow the software to interface to a custom microcontroller that accepts opcodes
and parameters. Opcodes sent from the software tell the microcontroller whether it should
upload configuration data to the CCSDS packet generator module or the Maintenance frame
generator module.

3.2.3.1 Send Command Opcode/Data Registers

Opcodes received from the microcontroller by the software inform the user if there is a RapidIO
Maintenance response frame waiting to be read. The block diagram shown in Figure 8 refers to
this module as the CCSDS to SRIO (CTS) Command and Control (CCC) microcontroller. The
microcontroller’s Instruction Set Architecture (ISA) presently consists of eight opcodes:

3.2.3.1.1 Opcodes for CCSDS Packet Generator

o C_CGEN_LOAD_HDR – This opcode is used to tell the microcontroller to latch the
value in the “Send Command Data” register and set certain option flags and parameters
within the CCSDS packet generator. These flags determine the packet generator’s use of
automatic coarse/fine time generation, the random/fixed packet size, the RapidIO frame
priority to use, the RapidIO destination ID, and the RapidIO hop count to the specified
destination. Note that the RapidIO parameters are stored in the CCSDS packet’s
Application Process Identifier field and used by another hardware module later in the
packet pipeline.

o C_CGEN_LOAD_PKTS – This opcode is used to tell the microcontroller to latch the

value in the “Send Command Data” register and upload it to the CCSDS packet
generator’s internal packet count register.

o C_CGEN_LOAD_WRDS – This opcode is used to tell the microcontroller to latch the

value in the “Send Command Data” register and upload it to the CCSDS packet
generator’s internal packet size register.

29

o C_CGEN_GO – This opcode is used to tell the CCSDS packet generator to commence
packet generation with the current input configuration. Note that the CCSDS packet
generator module must have a valid configuration loaded at least once after power-up
before any CCSDS packets can be generated.

3.2.3.1.2 Opcodes for RapidIO Maintenance Frame Generator

o C_MGEN_LOAD_HDR – This opcode is used to tell the microcontroller to latch the
value in the “Send Command Data” register and set certain option flags and parameters
within the Maintenance frame generator. These flags determine if the maintenance
request is local/remote, the priority level, transaction type, destination ID, and hop count.

o C_MGEN_LOAD_ADDR – This opcode is used to tell the microcontroller to latch the

value in the “Send Command Data” register and upload it to the Maintenance frame
generator’s internal offset register. The offset determines which RapidIO Capability
Register (CAR) or Command and Status Register (CSR) will be read/written.

o C_MGEN_LOAD_DATA – This opcode is used to tell the microcontroller to latch the

value in the “Send Command Data” register and upload it to the Maintenance frame
generator’s internal data register. This instruction needs to be executed only if the user is
performing a maintenance write.

o C_MGEN_GO – This opcode is used to tell the maintenance frame generator to

commence frame generation with the current input configuration. Note that the generator
module must have a valid configuration loaded at least once after power-up before any
frames can be generated.

3.2.3.2 Receive Command Opcode/Data Registers

When performing maintenance reads/writes the CCC module will also provide the maintenance
response frame back to the software layer. Each time a maintenance request is generated by the
user the software will poll the CCC module until the Receive Command Opcode (RCO) register
contains the “Response Register Valid” instruction. If the response register (RREG) is valid,
then the endpoint has received the corresponding maintenance response frame.

If the original request was a maintenance write, then the user need only read the “Receive
Command Data” (RCD) register once to determine the status of the transaction (e.g., “Done” or
“Error”). However, if the original request was a maintenance read, the user must first determine
the status of the transaction and then read the RCD register a second time to fetch the
maintenance response data.

30

In addition to informing the software layer of the receipt of a maintenance response frame, the
RCO register also has instructions that inform the software of errors within various blocks along
the packet/frame generation pipeline. The error opcodes are as follows:

o C_CCC_ERR – A recoverable error has occurred within the CCC module itself. This
could be caused by an invalid instruction being sent to the CCC module by the user or
due to an error in communication with the packet/frame generator modules.

o C_CGEN_ERR_0 – An invalid packet sequence configuration has been uploaded to the

CCSDS Packet Generator module. The user can recover from this error by uploading a
valid configuration.

o C_CGEN_ERR_1 – The CCSDS packet storage first in, first out (FIFO) has overflowed

and data has been lost. This is an unrecoverable error for debugging purposes.7

o C_MGEN_ERR – An invalid frame configuration has been uploaded to the RapidIO
Maintenance frame generation module. The user can recover from this error by
uploading a valid configuration.

o C_SRIO_BLDR_ERR_0 – The CCSDS packet storage FIFO has under-flowed and data

has been lost. This is an unrecoverable error for debugging purposes.7

o C_SRIO_BLDR_ERR_1 – The RapidIO Dword Builder module has received a CCSDS

packet with an invalid format. This is an unrecoverable error for debugging purposes but
will never be encountered by a standard user since the CCSDS packet generator module
only allows the user to generate valid packets.

o C_SRIO_BLDR_ERR_2 – The RapidIO Dword storage FIFO has overflowed and data

has been lost. This is an unrecoverable error for debugging purposes.8

o C_IGEN_ERR_0 – The RapidIO Dword storage FIFO has under-flowed and data has
been lost. This is an unrecoverable error for debugging purposes.9

o C_IGEN_ERR_1 – The Logical Layer RapidIO frame storage FIFO has overflowed and

data has been lost. This is an unrecoverable error for debugging purposes.10

o C_IGEN_MUX_ERR_0 – The maximum number of outstanding transactions (i.e.,
number of RapidIO response frames yet to be received) has been exceeded by the
Initiator Request (IREQ) Multiplexer module. This is an unrecoverable error for
debugging purposes and may be alleviated by increasing the maximum allowed number
of outstanding transactions.11

7 This error will never occur provided the source node IP created for this demonstration is used.
8 Ibid.
9 Ibid.
10 Ibid.
11 Ibid.

31

o C_IGEN_MUX_ERR_1 – A sent RapidIO frame never received its required response.

This is an unrecoverable error for debugging purposes.12 The problem is likely with the
original destination node of the original RapidIO request frame.

o C_IHAND_ERR – The Initiator Response (IRESP) Handler module has experienced an

unrecoverable error. This error will occur if the IRESP Handler receives an unexpected
response frame or an unexpected response frame format type. This error is only for
debugging purposes.13

The RCO register also contains bits which can be used by the software to determine the
empty/non-empty state of the TX and RX FIFOs in the packet/frame generation pipeline or the
Xilinx core initialization status. The bit values are as follows:

o C_RX_FIFO_STAT – A value of 1 means the RapidIO Frame Receive FIFO is
empty. A value of 0 means the RX FIFO is non-empty.

o C_CGEN_FIFO_STAT – Similar to C_RX_FIFO_STAT except for the CCSDS

Packet Storage FIFO.

o C_SRIO_FIFO_STAT – Status of the RapidIO Dword storage FIFO.

o C_LOGIO_FIFO_STAT – Status of the RapidIO logical layer frame storage FIFO.

o C_TX_FIFO_STAT – Status of the transmit buffer FIFO, which sits between the
Xilinx Logical and Physical Layer Serial RapidIO cores.

o C_SRIO_CORE_STAT – Status of the Xilinx Physical and Logical Layer cores

(4 bits):

 [3] – High if the physical layer has experienced no port errors. Low otherwise.
 [2] – High if the physical layer has been properly initialized. Low otherwise.
 [1] – High if the physical layer receive module is ready to accept data.
 [0] – High if the physical layer transmit module is ready to accept data.

3.2.4 CCSDS Packet Encapsulation Pipeline

The CCSDS packet encapsulation pipeline consists of all VHSIC/Verilog Hardware Description
Language (HDL) modules extending from the generation of the original CCSDS packet through
to the emission of the actual SRIO frame from the Xilinx physical layer core.

12 Ibid.
13 Ibid.

32

3.2.4.1 CCSDS Packet Generator Module (ccsds_pkt_gen.vhd)

The CCSDS packet generator module can be configured by the user (through the CTS Command
and Control module) to generate any number of CCSDS packets of any size. The configuration
state machine within the module will also check to ensure that the user is only loading
configurations that will produce valid CCSDS packet formats. If an invalid configuration is
loaded, the module will assert an error back to the software layer to notify the user.

The module also has a built-in pseudo-random number generator that can be used to create
packets of random size. The random numbers are created using a standard linear feedback shift
register (LFSR). The user can choose whether or not to use random-sized packets by sending the
C_CGEN_LOAD_HDR opcode to the CTS Command and Control module.

The coarse/fine time generation can also be adjusted to either insert coarse/fine time values from
an external data port or to automatically generate a simple incrementing count which will reset at
beginning of each new packet sequence. The automated time generation is very useful in
debugging the packet transfer pipeline and for debugging received packets on the destination
node.

Additionally, the user data within each CCSDS packet can be pulled in from an external data
port (see Section 3.5 for an example) or can be automatically generated with a simple
incrementing 16-bit count value. When using the automatic user data generation feature the
count value will be reset for each new packet. The automated user data feature is very useful in
debugging packet flows on both the source and destination nodes.

The CCSDS packet generator module also has a custom 32-bit RapidIO maintenance register
(read-only) that can be accessed by the user through RapidIO maintenance read requests from
any endpoint in the system. This register allows the user to ascertain the status of the packet
generator module by providing information regarding the current state of all internal state
machines, the number of user data words yet to be generated for the current CCSDS packet, and
the number of packets yet to be sent for the current CCSDS packet sequence. This register is
very useful in debugging the packet generator module.

3.2.4.2 RapidIO Dword Builder Module (srio_dwrd_bldr.vhd)

The RapidIO Dword Builder module converts 16-bit CCSDS packet words into 64-bit RapidIO
dwords. The module pulls 16-bit CCSDS words from the CCSDS packet storage FIFO, packs
them into 64-bit RapidIO dwords, and finally writes the dwords to the RapidIO dword storage
FIFO. Any CCSDS packet that is not a multiple of 64-bits will have the unused 16-bit chunks
within each dword “zeroed out” before being written to the dword storage FIFO.

The RapidIO Dword Builder module also has a custom 32-bit RapidIO maintenance register
(read-only) that can be accessed by the user through RapidIO maintenance read requests from
any endpoint in the system. The register allows the user to ascertain the status of the Dword
Builder module by providing information regarding the current state of all internal state
machines and the number of user data words yet to be converted for the CCSDS packet currently
being processed.

33

The frame data from the Dword Builder module is stored in a FIFO, where it is eventually read
out by lower level blocks in the Serial RapidIO Core design. A high-level block diagram of this
core is shown in Figure 10. The components in this core are discussed in the following sections.

Figure 10. Block diagram of Serial RapidIO Core design.

3.2.4.3 CCSDS Initiator Request Generator Module (ccsds_ireq_gen.vhd)

The CCSDS Initiator Request (IREQ) generator is embedded inside the Initiator User Design
block shown in Figure 10. A lower-level block diagram of the components within this module
and the interconnections to the Xilinx Logical Layer core are shown in Figure 11. The CCSDS
IREQ generator consumes the RapidIO dwords stored in the RapidIO Dword FIFO, encapsulates
them into RapidIO Message class frames (i.e., FType 11), and finally forwards each frame onto
the logical layer interface frame storage FIFO. Each RapidIO frame, except for (possibly) the
very last frame, is the maximum allowed frame size of 256 bytes or 32 64-bit dwords.

RapidIO frame parameters such as the Critical Request Flow (CRF) bit, the frame priority, the
destination ID, and hopcount are pulled from the CCSDS packet’s API field during frame
generation. Additionally, the RapidIO message length (msg_len) and message segment
(msg_seg) identifier fields are automatically generated by an internal state machine.

It is important to note that the RapidIO Message class has a flow/sequence size limit of 4096
bytes due to the 4-bit msg_seg/msg_len fields. SNL’s implemented CCSDS specification allows
for packets up to 8188 bytes in size (including PHDR, SHDR, and CRC). This size difference
poses a problem since it is not possible to encapsulate any CCSDS packet over 4096 bytes in size
within a single RapidIO Message flow. In order to resolve this issue, an optional 2-bit field,
referred to as the Mailbox bits, within the RapidIO Message frame type were used to add two
more bits of resolution to each Message flow, thus allowing a maximum CCSDS packet size of
16384 bytes.

34

Figure 11. User design internal components.

Similar to the previous modules, the CCSDS IREQ generator module contains a custom 32-bit
RapidIO maintenance register (read-only) that can be accessed by the user through RapidIO
maintenance read requests from any endpoint in the system. The register allows the user to
ascertain the status of the IREQ generator by providing information regarding the current state of
all internal state machines, the number of RapidIO dwords yet to be sent to the LOGIO FIFO for
the current CCSDS packet being processed, and the number of dwords yet to be sent to the
LOGIO FIFO for the current RapidIO frame being processed.

35

3.2.4.4 Initiator Request Multiplexer Module (ireq_gen_mux.vhd)

The IREQ Multiplexer component (also shown in Figure 11) accepts requests from the CCSDS
IREQ Generator module and the Maintenance Frame Generator for access to the LOGIO FIFO.
Access to the LOGIO FIFO is based on a multi-channel “Request”/“Grant” handshaking
mechanism. This module is necessary because there is only one IREQ port on the Xilinx Logical
Layer core but two modules required access to the logical layer in order to send frames over the
network. Therefore, it was necessary to design a module that would arbitrate access between the
two transmitters.

In addition to controlling IREQ port access, the IREQ Multiplexer module also updates the
transaction ID field for each RapidIO maintenance frame that is sent. Note that the Transaction
ID (TID) is not incremented when sending RapidIO frames for CCSDS packets since the
RapidIO Message class uses the “msg_seg” field for identification purposes.

For any sent RapidIO frames requiring a response, this module is also responsible for validating
those frames inside the TID Block RAM. This module will also flag an error if the TID Block
RAM module exceeds the maximum allowed number of outstanding frames. Additionally, this
module ensures that all required responses are received for any frames sent. If either of these
errors occurs they are reported back to the software layer.

3.2.5 Maintenance Frame Generation Pipeline

The RapidIO maintenance frame generator pipeline consists of all VHSIC/Verilog HDL modules
extending from the generation of the original RapidIO maintenance frame through to the
emission of the actual SRIO frame from the Xilinx physical layer core. A block diagram of the
components in the pipeline and its interface to the CTS Command & Control Microcontroller is
shown in Figure 11.

3.2.5.1 Maintenance Initiator Request Generator (maint_ireq_gen.vhd)

The Maintenance IREQ Generator component shown in Figure 11 generates RapidIO
maintenance class (i.e., FType 8) read/write requests to offsets specified by the user through
software layer functions. This module’s configuration interface is almost identical to that of the
CCSDS IREQ Generator module. The user may read/write any 32-bit maintenance register on
any node attached to the network. Double-word (i.e., 64-bit) transactions or transactions less
than 32-bit are not supported.

Since it is impossible for RapidIO to send anything less than 64-bit data chunks within a single
frame, the IREQ Generator Multiplexer module will store the original offset address used for the
maintenance request inside the TID Block RAM. This offset can then later be used when a
corresponding read response is received to determine which half of the double-word quantity
was requested by the user.

The Xilinx RapidIO cores support 34-bit addressing; however, the current version of the
maintenance frame generator only supports 32-bit addresses. The upper two bits represent the

36

Extended Address Most Significant Bits field, which is noted in the official RapidIO
specification.

3.2.5.2 Maintenance Request Generation Without Processor

A processor is the preferred method of generating maintenance transactions; however, if no
processor option is available it would be possible to generate a finite set of maintenance
commands to various nodes upon startup using an HDL-only implementation. This could be
accomplished by storing a pre-defined list of configuration opcodes inside a read-only memory
(ROM) that would be read by the CTS microcontroller (see Section 3.2.3) upon boot and sent to
the maintenance frame generator module.

An implementation such as this works fairly well for static systems where the topology is fixed
and known before power-on; however, it is very limited and can become extremely complex
when considering real-time generation of dynamically configured maintenance frames. For
example, RapidIO endpoints and switch cores contain numerous status registers, some of which
are interrupt/error flags. Some of these flags must be cleared (using maintenance transactions)
whenever they are set for continued proper operation of the node.14

3.2.6 Transaction ID Block RAM (tid_bram.v)

The TID Block RAM module shown in Figure 11 stores a valid/invalid history of all RapidIO
frames sent from the source node that are expected to receive a corresponding RapidIO response
frame. The only two frame types the source node sends that require a response are Message
class frames (for CCSDS packets) and Maintenance class frames.

The Block RAM is logically separated into two distinct but equal memory spaces. One half of
the memory is used for Message class frames and the other half is used for Maintenance frames.
This is necessary since the Message and Maintenance classes use different fields for frame
identifiers (i.e., the msg_seg field or the TID field).

On power-up this module will also invalidate (i.e., clear) all TID Block RAM locations before
allowing any RapidIO frames to be sent. This prevents possible corruption of the TID memory
space.

3.2.7 Scratch-Pad Memory Module (target_user.v)

The source node can be synthesized to either ignore or accept Target Requests (TREQs) from
another device on the network. If the source is implemented to accept TREQ frames then frame
types 2 (NREAD), 5 (NWRITE), or 6 (SWRITE) may be used to target the source node to test
memory reads/writes across the RapidIO network. This module was provided by Xilinx in the
reference design included with the core when it was purchased. The scratch-pad memory area is
4 Kbytes in size and is stored in the FPGA’s Block RAM.

14 An HDL-only implementation for maintenance transactions was not considered for this demonstration and is

beyond the scope of this document.

37

It is important to note that if the source node is implemented to ignore TREQs then it will appear
as if it is unresponsive, since no RapidIO response frames will be sent. The location and
interface to the Target User Design module is shown in Figure 11.

3.2.8 Initiator Response Handler (iresp_handler.vhd)

The IRESP handler module accepts response frames to previously sent message or maintenance
class request frames and invalidates the entry for that frame within the transaction ID Block
RAM module. Please reference Figure 11 for a block diagram of this module, which includes its
interconnections to the Xilinx core and its interface back to the software layer.

When all message class frames for a CCSDS packet have been received, the IRESP handler will
report the event to the CCSDS IREQ Generator core, which will allow it to transmit another
CCSDS packet.

For maintenance response frames the IRESP handler will extract the appropriate information
from the frame and place it in the Response Register so that it may be read by the software layer
through the CTS Command & Control module.

3.2.9 RapidIO Design Environment (rio_wrapper.v)

The RapidIO Design Environment shown in Figure 12 is a Verilog wrapper originally provided
by Xilinx when the core is purchased. The wrapper encapsulates both the LOG and PHY layers
and also incorporates a store and forward frame buffer design. Xilinx does not require the use of
its frame buffer in order to properly operate the Xilinx cores; however, if a custom frame buffer
is used it must be of the “store-and-forward” type, as the Xilinx Logical Layer core does not
support source side stalls from the PHY.

All of the components within the RapidIO Design Environment are included with the physical
and logical layers cores when they are purchased from Xilinx. A few minor modifications to the
frame buffer reference design and patch for the physical layer netlist (both available from Xilinx,
Inc. [11]) are required for proper operation of the Xilinx RapidIO endpoint in a switch
environment. If these patches are not applied to the design the frame transmission pipeline to the
PHY layer will “freeze” if too many “Packet Retry” symbols are received from the switch. SNL
was instrumental in finding and researching this design flaw that allowed Xilinx to create the
final patch. The physical layer patch is now incorporated in the Xilinx cores beginning with
Version 4.4.

38

Figure 12. RapidIO Design Environment.

3.3 Destination Node Design

Unlike the source node design, the destination node has no software component or external user
interface. All CCSDS packet and SRIO frame processing is performed strictly in hardware. The
destination node consumes CCSDS packets and RapidIO Maintenance frames and generates the
appropriate response frames. A high-level block diagram of the destination node architecture is
shown in Figure 13. Also shown in this figure are the different clock domains that were required
to execute this demonstration.

Figure 13. Destination node architecture.

39

3.3.1 RapidIO Dword Breaker Module (srio_dwrd_brkr.vhd)

The RapidIO Dword Breaker reassembles CCSDS packets that have been broken up into one or
more RapidIO message class frames. The current version of this module can reassemble CCSDS
packets from up to four CCSDS packet sources simultaneously. This version also only supports
up to one outstanding CCSDS packet from any source node at a time. The message class frames
that make up each CCSDS packet may be received in any order and may be intermixed with
message frames from other source nodes.

As an example, assume in Figure 14 below that “S” refers to a “Source” and “A/B” refers to
RapidIO message frames from source nodes A or B. The number following each source
identifier is the message segment identifier. A value of ‘0’ refers to the first message frame of
the CCSDS packet, a value of ‘1’ refers to the second message frame of the packet, and so on.
The figure shows how one possible sequence of message frames could be received from sources
A and B if each source was simultaneously sending a CCSDS packet consisting of three RapidIO
message class frames to the destination node.

Figure 14. Example flow for incoming RapidIO frames.

The message frame data from each source node is stored in its own re-ordering RAM module
(i.e., each of the four RAM is used for a single CCSDS packet from each of the four source
nodes) that is indexed using the message frames “msg_seg” field. The RAM block used is based
on the source node’s device ID field stored in each frame. This means that the maximum
allowed number of source nodes in the network is equal to the number of re-ordering RAM
modules in the destination design (see Section 3.9 for suggestions on bypassing this limitation).

As each message frame for a given CCSDS packet is received by the module, a corresponding
response packet is sent back to the original source of the frame. This response will free the
corresponding storage location in the source node’s TID Block RAM module. When all message
frames for a CCSDS packet have been received, the source node’s CCSDS IREQ Generator will
be informed that it can send another CCSDS packet.

Any CCSDS packets not aligned on a 64-bit boundary will have the proper number of 16-bit
chunks of each RapidIO double-word ignored before being written to the CCSDS packet RX
data FIFO. This must be done as the Downlink Framer will not accept any trailing/unused data
and will assert an error if it sees any within a packet.

The breaker module also has error checking to ensure that it does not receive duplicate message
segments for any CCSDS packet. This error checking is made possible by setting a valid/invalid
flag within the re-ordering RAM block as each frame is received. In the current implementation

40

an error of this nature is unrecoverable and will cause the internal state machine to permanently
enter an error state for debugging purposes.15

This module also contains a custom 32-bit RapidIO maintenance register (read-only) that can be
accessed by the user through RapidIO maintenance read requests from any endpoint in the
system. The register allows the user to ascertain the status of the module by providing
information regarding the current state of all internal state machines and the number of RapidIO
dwords yet to be received for the current CCSDS packet being processed for two out of the four
possible sources.

3.3.2 CCSDS Downlink Framer Flow Controller (ccsds_dlf_flow_ctrl.vhd)

The flow controller is necessary to prevent the DLF module from reading partially written
packets out of the CCSDS Packet RX Data FIFO. Without this module the DLF might run out of
CCSDS packet data before reaching the end of the packet and the packet will be discarded
because the DLF cannot support source side stalls.

In order to prevent any CCSDS packets from being discarded by the DLF, the flow controller
increments/decrements a counter that represents the number of complete packets stored in the
CCSDS Packet RX Data FIFO. The counter is incremented when a complete packet is written to
the FIFO and decremented when a complete packet is read out of the FIFO by the DLF.

One critical design attribute that must be taken into consideration when using this IP in any other
designs is to ensure that the CCSDS Packet RX Data FIFO is at least as large as the largest
CCSDS packet that will be sent by the source node. If this rule is not strictly followed, the
source and destination node endpoints may reach a deadlock state.16 The current code revision
includes VHDL “assert” statements that ensure that this requirement is met before
simulation/implementation.

This module contains a custom 32-bit RapidIO maintenance register (read-only) that can be
accessed by the user through RapidIO maintenance read requests from any endpoint in the
system. The register allows the user to ascertain the status of the module by providing
information regarding the current state of all internal state machines and the number of complete
CCSDS packets currently available in the Packet RX FIFO.

3.3.3 CCSDS Downlink Framer Module

The CCSDS DLF module was not designed specifically for this study and has been used before
this design. However, it is worth noting in this document as it is part of the destination node’s
CCSDS packet reception pipeline.

The DLF was used in this study to consume CCSDS packets from the CCSDS RX Data FIFO
and then encapsulate them in fixed-length CCSDS frames. The fixed-length frames were
required in order to convert the CCSDS data into an acceptable format for later processing by the

15 This error will never occur provided the source node IP created for this demonstration is used.
16 Note that this deadlock has nothing to do with the RapidIO or CCSDS protocols themselves; it is merely a design

rule that would need to be followed in any packet transfer architecture.

41

CameraLink device. If there are any errors within any of the CCSDS packets that the module
processes, the DLF will assert appropriate errors (e.g., start-of-packet error, end-of-packet error,
etc.).

Completed CCSDS frames are subsequently reformatted and sent off chip to another
development board, which transmits the CCSDS frames to a desktop computer using the
CameraLink protocol. The CCSDS frames provide a synchronization word that is subsequently
used to align the data on the ground station. The CameraLink protocol simply provides a
mechanism to transport CCSDS frames and packets into the PC using legacy hardware where the
user can view CCSDS data and calculate various throughput and data statistics.

3.4 CCSDS Over SRIO Self-Verifying Test Bench

The design and implementation of a complex protocol system such as this requires a well-
defined, self-verifying test bench in order to produce good results in a reasonable timeframe.
The test bench created for this system verifies proper operation of every hardware component in
the system from the first stage in the transmit pipeline on the source node to the last stage in the
receive pipeline on the destination node. The test bench was written in Verilog because it was
decided that it is more “test bench friendly” than VHDL and would greatly shorten the required
implementation time.

The current version of the test bench is limited to verification of transactions on a point-to-point
connection between a single source node and a single destination node since Tundra does not
provide any structural simulation models for their switches. Consequently, it also cannot verify
proper communication between the Tundra switch and any nodes. The test bench must also be
run within the ModelSim simulation environment as ModelSim-proprietary library functions are
used.

3.4.1 Test Bench Top-Level (cos_to_clink_tb.v)

The top-level module of the test bench provides a framework for the user to make various task
calls which can be used to generate traffic, verify traffic flows, and provide end-to-end traffic
statistics. Additionally, the top level also initializes all variables at the start of simulation, resets
both endpoints, and waits for both endpoints to achieve physical layer synchronization before
allowing any traffic to be generated.

In the post-synchronization stage, the test bench will automatically initialize and configure
certain maintenance registers within each endpoint to ready them for frame transmission and
reception. Only after this final setup stage is complete can the user begin traffic generation.

The user is also allowed to alter various parameters (i.e., using `defines) before beginning the
simulation which change the behavior of the test bench at run-time. A few of these parameters
are listed below:

o Debug Level – Changes the debug output verbosity of the test bench during run-time.
Allowed values are 0–3.

42

o CCSDS Timeout – Length of time the test bench should wait for all CCSDS packets to
be processed by both the source and destination nodes.

o Maintenance Timeout – Length of time the test bench should wait for all Maintenance

response packets to be received by the originating node.

o CRC Storage Memory Size – Maximum memory size for the CRC verification memory

matrix.

o Source/Destination Device ID – The node IDs that should be used for the initial
endpoint configurations.

o Enable Maintenance Request Emulator – If the user does not wish to generate any

RapidIO maintenance frames (or instantiate the maintenance frame generator module),
but they still wish to verify the functionality of the IREQ Generator Multiplexer, they can
use a built-in emulator that will pseudo-randomly toggle the “Request” input to the IGEN
Mux component to simulate the transmission of Maintenance frames without actually
sending any.

While the simulation is running, the test bench will also run a CCSDS packet CRC checker task
in the background to ensure that all CRCs for each CCSDS packet are sent and received
properly. The CRC checker uses memory on the local host to store CRC values as they are
transmitted and then validate them as they are received by the destination node. The amount of
memory space allocated to this function is directly related to the number of “small” CCSDS
packets that the user wishes to send. If the user wished to send many (e.g., thousands) of small
CCSDS packets then the default memory size will likely need to be increased. The reason for
this is because many thousands of small packets may be buffered up on the source node before
the first packet is ever received by the destination node, thus causing the CRC memory to
overflow because the CRC checker can not clear any validated CRCs. This feature should not be
disabled.

3.4.2 Test Bench Task Functions

The current version of the test bench has function libraries available for both the CCSDS packet
and maintenance frame generator modules. The user need only include these function libraries
(with `include directive) to gain access. The test bench also includes some useful named
constants (`defines) for commonly used values that can be used for some function parameters.
The tasks are split into two distinct libraries: CCSDS packet generator tasks and maintenance
frame generator tasks. The functions in each of these libraries are described below.

43

3.4.2.1 CCSDS Packet Generator Functions (tasks_ccsds.v)

o CCSDS_SEQ_GEN(…) – This task allows the user to generate CCSDS packet
sequences using the CCSDS Packet Generator module. If the user starts an infinite
packet sequence the infinite sequence can be stopped by calling this task again and
loading a finite sequence configuration into the generator module. The user can also set
various parameters for configuring the packet generator. These options are described
below:

 Auto Time Generation On/Off – If asserted, enables automatic time generation
(sequential 48-bit count). Otherwise, coarse/fine time taken from external data
ports.

 Auto User Data On/Off – If asserted, enables automatic user data generation
(sequential 16-bit count). Otherwise, user data taken from external data port.

 Random Size Payload – If asserted, each packet generated is pseudo-randomly
sized. Otherwise, value from “Number of User Words” parameter is used.

 RapidIO Header Options – Consists of the RapidIO frame header options to be
used. These options include the CRF flag, the priority level, the device ID of the
target, and the hopcount to the target.

 Number of Packets – Number of packets to send. If all ones (1s) the generator
will send infinite packets.

 Number of User Words – Number of user words to place in payload (must be
within specification). If “Random Size Payload” parameter is enabled this value
is ignored.

o WAIT_CCSDS_SEQ_COMP(…) – If called, this task will wait for the current CCSDS

packet sequence to complete before allowing any more packet generation task calls. If
the CCSDS packet sequence does not complete within the user-defined timeout period,
the task will assert an error condition. The function parameters are described below:

 Timeout – How long the task should wait for any remaining sequences to finish.

o GEN_CCSDS_SEQ_STAT – If called, this task will generate statistics for all CCSDS
sequences that have been sent so far. It will check for any errors and verify that all
packet CRCs have been validated by the CRC checker. If any anomalous events
occurred during packet transmission or reception the user is informed of what went
wrong. This function has no input parameters. An example of the generated statistics
output is shown in Figure 15.

44

Figure 15. Statistics output from GEN_CCSDS_SEQ_STAT function.

3.4.2.2 Maintenance Frame Generator Functions (tasks_maint.v)

o MAINT_SEQ_GEN(…) – This task allows the user to generate CCSDS packet
sequences using the CCSDS packet generator module. If the user starts an infinite packet
sequence, the infinite sequence can be stopped by calling this task again and loading a
finite sequence configuration into the generator module. The user can also set various
parameters for configuring the packet generator. These options are described below:

 Local Access – If asserted, the maintenance request will be sent to the local
endpoint and never be sent across the network.

 CRF Flag – If asserted, the maintenance frame should be sent as a critical request
flow.

 Priority – Priority level of the maintenance frame. Valid values are (0-2).
 TType – The transaction type of the maintenance frame (e.g., 0 = Read Request, 1

= Write Request).
 Data – 32-bit value to be written to the offset register in the case that a write

request is being generated.
 Address – Offset of maintenance register within the endpoint’s memory space.
 Destination ID – Device ID of the endpoint being targeted for the transaction.
 Hopcount – Hopcount to the endpoint being targeted for the transaction. Ignored

if the “Local Access” flag is asserted.

o WAIT_MAINT_SEQ_COMP(…) – If called, this task will wait for the current
maintenance frame sequence to complete before allowing any more frame generation task
calls. If the maintenance sequence does not complete within the user-defined timeout
period, the task will assert an error condition. The function parameters are described
below:

 Timeout – How long the task should wait for any remaining sequences to finish.

45

o GEN_MAINT_SEQ_STAT – If called, this task will generate statistics for all
maintenance frames that have been sent so far. It will check for any errors, and if any
anomalous events occurred during packet transmission or reception the user is informed
of what went wrong. This function has no input parameters. An example of the
generated statistics output is shown in Figure 16.

Figure 16. Statistics output from GEN_MAINT_SEQ_STAT function.

3.4.3 Signal Monitors and Signal Spys (signal_<mons/spys>.v)

The signal monitor and spy libraries are what allow the test bench to drive, interface with, and
verify the entire hardware design. The monitor library contains most of the process blocks that
perform the auto-verification functions. The process blocks in the monitor library should not be
altered. The spy library calls on proprietary ModelSim functions that allow the test bench to
interface to the hardware and monitor various internal signals without any modifications to the
design itself. The spy library was designed in such a way as to allow easy modifications to the
library should the user wish to monitor any additional signals.

3.5 Image Generation Module

As part of this research, it was deemed necessary to create a demonstration that would exercise
the results of the study and simultaneously display a real-time, visual representation of traffic
flow through the test network. To meet this goal it was decided that the transportation of image
data across the network would be a realistic application of this design. For example, a Focal
Plane Array (FPA) might transmit image data across the RapidIO network, using CCSDS
packets, for transmission to a ground station where it could later be analyzed.

3.5.1 Theory of Operation

To represent this process, three source nodes were used to imitate three FPA modules
transmitting image data to a DLF. Each FPA module was responsible for transmitting the red,
green, or blue color component of every pixel within a complete image. As the image data is
received by the DLF module, it is transmitted to a desktop computer using the CameraLink
protocol. As the image data is received by the computer, a custom application is used to
reconstruct each pixel from the separate red/green/blue components and then display it to the
screen.

46

Because each source node is responsible for one of the three [R,G,B] color components of every
pixel in the image, if any one of the source nodes stops transmitting its portion of the image the
color of the final image will be distorted as any missing colors will be filled in with zero (0)
values. Figure 3 shows the progression of the received image data as each color source node is
enabled using the following sequence: red source, green source, blue source.

3.5.2 Fetching the Original Image Data (bmpParse.c, Gen_LCD_Image.java)

Because our design has no digital FPA/camera source from which to capture image data, it was
decided that the next best (and simplest) method was to read data directly out of the FPGA’s
Block RAM. The only issue in this case was how to place image data inside the Block RAM so
that it could be used by the hardware.

To accomplish this task, a simple ANSI C bitmap (BMP) file parser was created that generates
Xilinx Block RAM Coefficient (COE) files for each red, green, and blue component of each
pixel in any input image. The COE files can then be read directly by Xilinx’s CoreGen tool to
generate a Block RAM instance and initialize all appropriate data values within that memory
space. In this experiment, three Block RAM netlist files were created for each color component
of the image. Three identical source nodes were then implemented with each node receiving a
different color Block RAM.

Before testing the image data in hardware, and to ensure that the COE data files generated by the
BMP parser application were valid, another application was written using Java to read in all three
COE files and then display the image that should ultimately be received by the destination. This
application relies on the Java Swing and AWT libraries to create the image.

3.5.3 Image Generation Hardware (image_gen_bram.vhd)

With the image data stored in the Block RAM it can be read out using a simple finite state
machine. The Image Generator module reads image data out of the Block RAM and sends it to
the CCSDS packet generator’s external user data input ports as necessary. A handshaking
mechanism between the two modules ensures that no data is lost. As the image data is received
by the packet generator it is inserted into the payload portion of each CCSDS packet being sent.

The image generator must be given the image’s original height and width dimensions (in pixels)
before being synthesized. If the dimensions are incorrect the image may appear skewed or
otherwise distorted when it is recomposed at the final destination.

3.6 Debug and Analysis with RapidFET™

For solving high-level, topological connectivity and traffic-flow issues, a low-level logic
analyzer may not be the best or fastest solution for debugging the system. In these instances, a
tool created by Fabric Embedded Tools Corporation (FETcorp) [12] called RapidFET
Professional was utilized to analyze the network.

RapidFET combines a desktop application user interface with a hardware-based probing device.
The RapidFET Probe is attached to the client PC via a 10-Mbit Ethernet interface and is inserted

47

into the test topology as another endpoint in the system. The probe physically connects to the
system using an Infiniband (a.k.a. CX4) cable. In our design, the STx SRDP [7] only had a
single CX4 connection available, which we needed to be available for topology studies. To work
around this limitation an adapter card was purchased that converts one of the four available
AMC ports on the SRDP board into CX4 ports. The CX4-AMC adapter card is available from
FETcorp and is shown in Figure 17.

Figure 17. CX4-AMC Adapter Card (courtesy Fabric Embedded Tools Corporation [12]).

The client software communicates with the probe and allows the user to perform various analysis
and monitoring tasks including: active/passive topological discovery, link state-of-health
monitoring, maintenance register reads/writes on any connected node, routing-table
manipulation, and traffic generation. A screenshot of RapidFET being used within a large
RapidIO network is shown in Figure 18.

In addition to the aforementioned tasks, the user can also view internal switch state-of-health
statistics in the form of real-time, automated graphs on the client-side PC. These graphs are
generated by utilization statistics registers and counters available in most RapidIO switch
platforms. These registers can be configured with simple maintenance transactions to count
specific frame types, packet retries, and multicast events. The user can also choose whether to
count inbound, outbound, or bi-directional flows. A screenshot of these utilization graphs is
shown in Figure 19.

Aside from the RapidFET Probe device, FETcorp also includes the server source code and
libraries that run on the probe with their RapidFET Professional product. This allows the server
to be ported to any custom embedded application using the RapidIO protocol. FETcorp has
created application notes and instructions on how to port the server code to some designs along
with information on creating the necessary “shim” interface to any custom IP.

48

Figure 18. RapidFET Professional and Probe in large RapidIO network.

3.7 Debug and Analysis with the NEX-SRIO

While the RapidFET tool is useful in diagnosing higher-level traffic flow issues, it does not
provide the hardware-layer protocol-level view that is required to debug certain design flaws.
For these issues, a different tool, created by Nexus Technology, Inc. called the NEX-SRIO
Protocol Analyzer, was used. The probe used by this device sits physically inline with the traffic
flow between two nodes. The probe is then attached to a back-end pre-processor box which, in
turn, attaches to a TLA Tektronix Logic Analyzer [13]. A block diagram of this topology is
shown in Figure 20.

The paths defined in Figure 20 are defined below (directly adapted from Nexus website):

o Path A - Connection between the system-under-test and the probe. This can be a NEX-
MIDBUS probe or two to eight NEX-SERIALPROBE probes (two for a single direction
x1 link and up to eight for a bi-directional x4 link). The midbus probe was used in this
design as it is much easier to work with than the serial probes. The serial probes require
precise soldering while the midbus probe utilizes a simple screw-down mechanism. The
CX4-SMA adapter board required to use the Nexus midbus probe is shown in Figure 21.

49

Figure 19. RapidFET Utilization Graphs.

o Path B – The probe(s) are connected to the pre-processor on a channel-by-channel basis.

o Path C – The pre-processor uses four or six P6860 probes to send the de-serialized data
to the logic analyzer.

o Path D – The P6860 probes connect to two modules on the logic analyzer. The logic

analyzer then triggers, stores and disassembles, and displays the data for the user.

o Path E – The USB connection is used to transfer setup information to and from the pre-
processor using proprietary software included with the analyzer hardware.

50

Figure 20. Nexus SRIO Protocol Analyzer connection topology (adapted from [14]).

Figure 21. CX4-SMA adapter board (courtesy Fabric Embedded Tools Corporation [12]).

51

The proprietary software that must be installed on the logic analyzer allows the user to set up the
pre-processor box for viewing bi-directional SRIO packet flow across the adapter card up to the
maximum allowable RapidIO link rate of 4x3.125 Gbps. A screenshot of the software’s SRIO
frame disassembly view is shown in Figure 22. This view breaks each SRIO frame into
hierarchical layers from packet and control symbols down to the bit level. It can also group
SRIO request frames with their associated response frames, which allows the user to easily
navigate through the captured traffic.

It is important to note that the Tektronix logic analyzer must be equipped with a minimum
450-MHz state speed acquisition module (TLA7xx2/3/4) with two to three P6860 probes for a
single SRIO datapath. These requirements must be doubled for two SRIO data paths [14].

Figure 22. NEX-SRIO packet disassembly software.

52

3.8 Debug and Analysis Setup with STx SRDP

In this design, both the RapidFET Professional tool and the NEX-SRIO module were utilized for
debug and analysis. A high-level block diagram of this setup is shown in Figure 23. The system
shown requires (at minimum) a single CX4-to-SMA adapter and a single CX4-to-AMC adapter
from FETcorp [12]. If another SMA interface is desired, for possibly attaching more endpoints,
an SMA-to-AMC adapter card can also be purchased from STx [7].

Silicon Turnkey Express Tsi578 SRDP Board

CX4
To

AMC

(adapter from
FETcorp)

SMA
To

AMC

(adapter from STx)

Onboard SMAs Onboard SMAs

Onboard
CX4

Connector

CX4 to SMA
(adapter from

FETcorp)

CX4 Cable

Xilinx ML325 Board
with SMA Connectors

(SRIO Traffic
Source 0)

SMA Cables

Nexus Midbus
Probe Cable

NEX-SRIO
Module

Tektronix
Logic

Analyzer

Tektronix
P6860 Cables

RapidFET
Probe

CX4 Cable

Ethernet
Cable

Xilinx ML325 Board
with SMA Connectors

(SRIO Traffic
Source 1)

SMA Cables

Xilinx ML325 Board
with SMA Connectors

(SRIO Traffic Sink)

SMA Cables

Tsi578
Switch

Xilinx ML325 Board
with SMA Connectors

(SRIO Traffic
Source 2)

SMA Cables

Figure 23. Debug and analysis system setup.

53

3.9 Future Work with RapidIO

Many improvements will be made to the source and destination node designs in future revisions.
As the design and system topology becomes increasingly complex, many of the current
limitations will need to be overcome. This section discusses a few of those limitations and how
solutions for them might be implemented.

o Maximum Allowable Source Nodes – A maximum of four source nodes is allowed in
the current design. This is by far the most notable limitation in the design. To correct
this issue the destination node design would need to be modified to treat each of the four
(or more) re-ordering RAM components as “the number of available CCSDS packet
buffers” rather than assigning each RAM to a specific source node. This upgrade will
require some form of handshaking protocol in which the source node first checks if there
are any free buffers available before beginning transmission of a CCSDS packet. This
handshaking mechanism will add support for an unlimited number of source nodes.

o Multiple Source Packets Per Receive Buffer – The current implementation of the

destination node only allows a single CCSDS packet to be stored in each re-ordering
RAM buffer regardless of its size. An upgrade would allow multiple CCSDS packets to
be stored in a single RAM block. This design change would require an additional context
memory space to hold a linked list of the beginning and end of each packet with the
RAM space, however, it would remove the requirement of having multiple RAM blocks
in the destination node. This would also require a slightly more complex handshaking
mechanism in order to allow a source node to check for available buffer space at the
destination node before transmitting a CCSDS packet. Similar to the previous bullet, this
upgrade would also allow for an unlimited number of source nodes in the network.

o Automated Discovery – The LUT population in the Tundra switch is manually

performed in software via the available RapidIO API functions. The software can be
upgraded to automatically discover endpoints using the same API functions by
integrating those functions into the RapidIO standard discovery algorithm. Annex 1 of
the RapidIO specification Version 1.3 includes pseudocode for the algorithm [8].

o Interrupted Driven Interface – The CTSS IP core is currently polled for maintenance

response frames and error events using the tight-loop polling method. Future revisions of
the core will be interrupt-driven. This can be achieved by simply adding an interrupt
controller to the design and attaching it to the PowerPC’s bus architecture.

o Quality of Service – The QoS feature of RapidIO was not utilized in this demonstration;

however, it would not be difficult to add this functionality in future designs. The most
logical way to set the priority flags would be to assign a priority to a particular CCSDS
packet and thus keep that priority constant across all RapidIO frames for that CCSDS
packet. Subsequently, on the destination node, the priority of each CCSDS packet could
be used to store the packet in a particular packet FIFO. This would allow for the creation
of a hardware-based packet scheduler that could choose packets of certain priority for
forwarding on to the DLF.

54

o 4x Links – The current testing topology only utilizes single-channel RapidIO links. By

regenerating the Xilinx physical layer core, a 4x rate could be achieved with a few minor
design changes and four times as many SMA cables.

o PowerPC 440 – If the current design was transition to a Xilinx Virtex-5 FPGA, the

software-level implementation of the source node design could take advantage of the new
PowerPC 440 processor. The 440 boasts a seven-stage pipeline (405 has only five-stage)
and out-of-order execution. These two enhanced features would significantly increase
software speed and performance as the instruction and data memories could then be
placed in separate Block RAMs on two different PLBs.

o MicroBlaze – The current software layer drivers could be easily ported to a soft-core

processor (e.g., Xilinx MicroBlaze) rather than the hard-core PowerPC. The choice of
soft-core processor would be based on [15].

55

56

4. SPACEWIRE DEMONSTRATION

The SpaceWire protocol is a serial data protocol developed primarily by the European Space
Agency. SpaceWire is a bi-directional, full-duplex serial protocol for use in point-to-point
applications. SpaceWire is currently in use in a number of flight systems to provide a high-speed
data infrastructure between sensors, processing elements, memory units, telemetry subsystems,
and other space instruments [3]. As SpaceWire is already utilized in many space projects today,
its feasibility for flight systems has already been proven, making it a promising candidate for
integration into a node-based system.

SpaceWire has a relatively comprehensive protocol specification, specifying requirements from
cables and connectors through character transmission up to network packet transmission and
error handling [3]. The important characteristics of the SpaceWire protocol will be outlined;
however, it is recommended to refer to the specification for complete details as necessary.

The physical layer of SpaceWire provides requirements for the physical medium upon which
SpaceWire signals are transmitted. SpaceWire was specifically developed to meet the
electromagnetic characteristic requirements of typical spacecraft. SpaceWire cables are four-pair
twisted-pair cables with individually shielded pairs, plus an overall shield, terminated with 9-pin
micro-miniature D-type connectors. Cable length is specified up to 10 meters at the maximum
SpaceWire data rate of 400 Mbps, and cable weight must be kept below 80 grams per meter.
SpaceWire also may be transmitted on printed circuit board (PCB) traces with 100-Ω differential
impedance [3].

SpaceWire signaling utilizes low-voltage differential signaling (LVDS) as specified by ANSI
TIA/EIA-644. The use of differential signaling provides a level of noise immunity and the
current-driven nature of LVDS ensures a low and consistent power consumption. The
specification dictates that SpaceWire run between 2 Mbps and 400 Mbps, although some
commercial hardware claims to run SpaceWire at speeds up to 625 Mbps. It should be noted that
the maximum speed of SpaceWire may limit the capabilities of future systems requiring higher
bandwidths. These higher bandwidth systems may wish to consider Serial RapidIO™ as a more
appropriate option for their applications [2]. Data is encoded using data-strobe encoding, which
requires two LVDS pairs of wires per direction; thus, a complete SpaceWire link between two
nodes requires a total of four differential pairs (eight wires or traces).

SpaceWire utilizes ten bits of information to transmit eight bits of data; however, unlike other
protocols, the data is not encoded (such as with 8B10B encoding used by many other protocols).
Rather, two bits are prepended onto each data byte to provide parity and an end-of-packet flag
for each data byte. The parity bit provides for single error detection and the availability of an
end-of-packet flag on every data byte allows for an arbitrary packet length.

In a routed SpaceWire network, data packets are transmitted through the network by providing a
short header to the router indicating the data’s intended destination, followed immediately by the
data payload. The header information is one or more bytes used to identify the destination or
destination path for the data payload. In a logical addressing mode, a single byte with the logical

57

ID of the destination node is provided. As this packet traverses the network, routing tables are
used to identify and transmit the packet out the appropriate port to the next hop. For example, a
packet [40 <DATA>] would transmit the [<DATA>] payload to node with logical ID 40. In a
direct addressing mode, the output port numbers to reach the destination are explicitly specified.
For example, the packet [04 02 03 <DATA>] would first be transmitted through port 4 of the
first router, then port 2 of the second router, then port 3 of the third router. A third addressing
scheme, regional addressing, is not in widespread use and will not be discussed here.

Regarding node addressing, addresses 1 through 31 are dedicated to physical ports on the local
SpaceWire router. Thus, when using direct addressing, port numbers must stay below 32.
Addresses 32 through 254 are logical addresses and are typically assigned to routers or
endpoints. Address 255, although available for use as a logical address, is typically reserved for
future expansion. There is no theoretical limit on the number of devices that may be present in a
SpaceWire network; an addressing technique known as regional addressing may be used to
expand the size of a SpaceWire network to any size.

One important characteristic to understand about SpaceWire networks is their use of wormhole
switching technology. Wormhole-switched networks operate by reading the data packet header
immediately upon receipt of the first data byte of the packet. Based on this first header byte, the
packet is immediately forwarded out the appropriate output port as the remainder of the packet is
received. However, in the event that the output port is busy, the partially received packet will
stall until the output port is free. In addition to the current router being affected by the stall, any
routers behind the stalled router currently switching the stalled packet will also stall, causing a
temporary pause in the affected ports of the routers switching that packet until the output port
frees. This is typically not a problem, unless there are multiple stalls that result in a circular wait
in the network. This condition is referred to as “deadlock” and must be carefully avoided as
much as possible [16].

4.1 SpaceWire IP and Hardware Selection

A SpaceWire IP core from NASA’s Goddard Space Flight Center (GSFC) was utilized for the
SpaceWire implementation. The GSFC IP core provided models for both SpaceWire point-to-
point link and network router models implemented in the VHDL language. These cores have
been used in the past by other organizations within SNL for SpaceWire implementations and
even by outside commercial companies for production of SpaceWire networking components.
Thus, these cores have been readily used in real-word environments and have proven their ability
to function and adhere to the SpaceWire standard. The discussion here forward will focus on
the GSFC router IP core.

58

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire Port 1

SpaceWire Port 2

SpaceWire Port n Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port m

Time-Code
Interface Signals

Configuration Port

Routing Tables

Configuration Memory

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire Port 1

SpaceWire Port 2

SpaceWire Port n Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port m

Time-Code
Interface Signals

Configuration Port

Routing Tables

Configuration Memory

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire Port 1

SpaceWire Port 2

SpaceWire Port n Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port m

Time-Code
Interface Signals

Configuration Port

Routing Tables

Configuration Memory

Configuration Port

Routing Tables

Configuration Memory

Figure 24. GSFC SpaceWire router IP core block diagram.

The SpaceWire router core, shown in Figure 24, is a configurable router core that provides a
non-blocking network switch with a configurable number of ports. The ports in a SpaceWire
switch may interface to one of two functions: an external SpaceWire point-to-point link, or a
local link for connection to an endpoint (referred to as a “local” link or port in this document).
The only restriction is that the number of external SpaceWire ports plus the number of local ports
may not exceed 31. Both SpaceWire and local ports are connected to a non-blocking switch,
which allows for communication between any combinations of port pairs simultaneously,
provided no two sources are attempting to use the same output port. Latency through the switch
from port to port is affected by a number of factors, but typically is approximately 30 clock
cycles. This includes delays for routing lookups, port arbitration, and other switch functions.

The router core is equipped with several attractive features. Remember that SpaceWire utilizes
wormhole switching, which makes it particularly susceptible to deadlock. To maintain traffic
flow through the network, the routing switch has the ability to terminate transmission of any
packet stalled for some configurable length of time. This ensures that deadlocked packets will
not stall the network indefinitely. Furthermore, the router has the ability to automatically fail
any hardware link that demonstrates the inability to maintain a reliable link. This prevents use of
a faulty or intermittent link for communications. The router incorporates a packet duplication
feature, which transmits a network packet out two different (configurable) ports simultaneously,
or permits configuration of a secondary port to utilize if the primary port is busy. This permits
networks to utilize escape paths (see [16] for details) to maintain a high level of reliability and
maximize usable bandwidth in the network. Lastly, the router incorporates a bandwidth
throttling capability to reduce the speed on links when they are not actively utilized in order to

59

save power by reducing dynamic switching in the router logic. Note that not all of these features
are incorporated into this hardware demonstration; however, these features are available for use
in future SpaceWire implementations.

The router is configurable via packets written to the router configuration port. Configuration
packets may originate from local ports or may be received from any external SpaceWire link.
These configuration packets allow reading and writing to registers within the configuration
memory. These registers hold the routing table information, packet and error counters, port
speed and configuration, time code configuration, and a variety of other option configurations
and status words.

The IP provided by GSFC was implemented on a number of platforms. Using the Virtex-II Pro
based platforms, the GSFC router IP has been tested at speeds up to 170 MHz and could
probably run at approximately 200 MHz without significant effort. The SpaceWire core logic
runs at one-fourth the line rate, thus the router logic would run at 50 MHz. Running faster than
200 MHz would likely require some development effort to improve portions of the core that
impede higher speed operations.

Primary development for the SpaceWire hardware demonstration was performed on a Xilinx
ML325 development board as described by the hardware demonstration overview. The ML325
is a prototyping platform built with a Xilinx Virtex-II Pro FPGA (XC2VP70). Other platforms
used to evaluate the SpaceWire IP included a Xilinx ML523 development board (populated with
a Xilinx Virtex-5 LX110T) and a board created by SEAKR Engineering comprised of two
Virtex-II Pro and one Virtex-4 LX FPGAs.

Other hardware utilized by this segment of the project includes two SpaceWire peripheral
component interconnect (PCI) cards (to provide SpaceWire connectivity to a PC) and the custom
FIB transceiver board described earlier in the hardware demonstration overview. The PCI cards
enabled communications between a PC and the SpaceWire network, and were used primarily to
verify routing, read or write configurations, or to inject data into the network for testing
purposes. The FIB board was equipped with a Virtex-II (XC2V3000) FPGA, four high-speed
serial SERDES made by Texas Instruments (TI TLK2501), and three ChannelLink SERDES
(National Instruments DS90CR287). The FIB board accepts four high-speed serial data inputs
received via coaxial SMA cables, each running at 1.7 Gbps with 8B10B encoding. This provides
data at an effective rate of 1.36 Gbps per channel. The data from these four channels is logically
bonded and retransmitted using a protocol called CameraLink. CameraLink is a high-speed data
protocol implemented with National Instruments ChannelLink SERDES on the FIB board. The
ground station PC would receive this CameraLink data via a CameraLink PCI-X interface card at
an effective rate of 5.44 Gbps.

4.2 SpaceWire Implementation

Each SpaceWire router instantiation was configured with four external SpaceWire ports and
three local ports for communication to endpoints. To save prototype hardware, two independent
nodes were instantiated within one FPGA. Although these two nodes are physically located on
the same chip, they are completely independent and must be cabled together to communicate,
just as if they were on separate boards. This is shown in Figure 25.

60

Xilinx ML325 Prototype Board

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
Sw

itc
hSpaceWire

Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

LVDS
Transceiver

MGT
Transceiver

MGT
Transceiver

User-Defined Node
Endpoint Logic

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire
Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

LVDS
Transceiver

MGT
Transceiver

MGT
Transceiver

User-Defined Node
Endpoint Logic

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

Coaxial Cables

Coaxial Cables

Coaxial Cables

Coaxial Cables

Xilinx ML325 Prototype Board

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
Sw

itc
hSpaceWire

Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
Sw

itc
hSpaceWire

Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

LVDS
Transceiver

MGT
Transceiver

MGT
Transceiver

User-Defined Node
Endpoint Logic

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire
Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire
Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

LVDS
Transceiver

MGT
Transceiver

MGT
Transceiver

User-Defined Node
Endpoint Logic

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

Coaxial Cables

Coaxial Cables

Coaxial Cables

Coaxial Cables

Figure 25. Two independent node instantiations on one ML325 board.

Each external SpaceWire port is attached to one of two HDL modules: an LVDS transceiver or a
multi-gigabit transceiver (MGT) transceiver. The LVDS transceiver takes the data and strobe
values generated by the GSFC SpaceWire IP core and instantiates the proper OBUFDS
differential drivers to drive these signals differentially off-chip. Additionally, IBUFDS
differential receivers are instantiated to translate received differential data and strobe values into
discreet signals provided to the SpaceWire input for that port in the GSFC router IP.

Due to the lack of differential pin availability on our ML325 demo boards, as well as the lack of
proper SpaceWire harnesses and cabling, a second scheme to transmit SpaceWire signals
between boards using MGTs was developed. This allowed us to use highly available standard
coaxial cabling with SMA connectors as the physical medium for transmission of our SpaceWire
signals. Also, this had the added benefit of incorporating the same physical medium as the Serial
RapidIO™ demonstration, essentially creating a common physical layer for both protocols.

To properly transmit SpaceWire signals over an MGT, the bit clock feeding the SpaceWire IP
core is also used to drive the MGT. This allows us to sample the data and strobe outputs of the
SpaceWire IP core at the same frequency as the bit clock (eliminating the need to sample at the
Nyquist frequency). These data and strobe values are encapsulated into a data word and

61

appended to a synchronization byte. On the receiver side, the recovered data clock is used to
drive the received data and strobe values into the SpaceWire IP core. By making these signals
synchronous with the recovered data clock from the MGT data stream, this eliminates any need
for clock correction that may arise from slight oscillator variations between boards.

As mentioned earlier, there are three local ports instantiated per SpaceWire router. One local
port is provided for communications to and from endpoint logic. The second local port provides
router configuration and port monitoring capabilities. The third local port is connected to
reconfiguration logic, which may be used to reconfigure FPGAs (further described in
Section 4.3).

The first local port provides network access to endpoint logic. This endpoint logic will be the
reprogrammable portion of the node. This will involve study of the partial reconfiguration
capabilities of Xilinx FPGAs, which has been tasked through a follow-on LDRD beginning in
FY 2009. Until then, the logic and the node endpoint capabilities will remain in a single joint
design that remains static while powered until the entire node (both endpoint and router) is
reprogrammed.

The second local port provides rudimentary router configuration and port monitoring (RCPM)
capabilities. The responsibilities of the logic connected to this port are twofold. First, this
endpoint module is responsible for sending the proper configuration packets to the router logic to
properly configure the SpaceWire ports upon power-up or reset. This includes the proper setup
of static routes to utilize logical addressing for communications between nodes. Second, this
module monitors network state in its direct vicinity. It will monitor the link status of the
SpaceWire router and notify a remote host (usually a command node) in the event of a link
failure or when a link is reestablished.

Previous versions of this RCPM endpoint would also perform network discovery functions and
automatic routing table generation. This was performed by querying the remote end of each
SpaceWire link to see if another router was present. As remote routers were discovered, the
local endpoint would generate routes to these neighbors. It would then periodically share a copy
of the entire local routing table with its neighbors. As RCPM endpoints received copies of their
neighbor’s routing tables, they were able to expand their own routing tables and derive routes to
other nodes that were not directly adjacent to them. This scheme would continue until the entire
network was discovered and routes were generated to all known nodes. This functionality,
however, was temporarily removed as the implementation of the network discovery feature
uncovered a bug in the GSFC router IP logic that would cause the router to stop responding.
Efforts to modify the core to fix this bug were recently successful; however, the network
discovery feature has not yet been reinstated.

62

The utilization results for a single-node SpaceWire router and endpoints are shown in Table 6
and Table 7. Note that these numbers are for single-node designs only, not the dual-router
implementation shown in Figure 25. As shown in the tables, logic utilization is comparable to
the RapidIO node designs for source and destination nodes, with the exception of global clocking
(GCLK) resources. This is due to the fact that each SpaceWire port requires a global clock net to
propagate the recovered clock for that SpaceWire link. Furthermore, each SpaceWire MGT
transceiver requires an additional global clock net for the MGT recovered clock. For the actual
router core, three global clock nets are used to provide clocks to the router instantiation. These
three clocks run at the SpaceWire line rate (156.25 MHz), the SpaceWire router core logic rate
(1/4 of the line rate, or 39.0625 MHz), and an endpoint or user-defined logic rate (85 MHz,
selected to match the oscillator on the FIB test board to facilitate transmission of data to the
spacecraft).

Although these numbers are essentially on par with the RapidIO source node design, it is
important to remember that this implementation includes both the network router and source
node endpoint logic. Thus, this design includes switching and routing capability whereas
RapidIO requires use of an external switch, as no RapidIO switch IP is currently available.

Table 6. Device Utilization Statistics for SpaceWire Single
Node Sensor Interface (source node) Design on Virtex-II Pro 70.

DCMs 1 out of 8 12%
Block RAMs 38 out of 328 11%
Flip-Flops 7369 out of 66176 11%
4-input LUTs 11815 out of 66176 17%
GCLKs 9 out of 16 56%

Table 7. Device Utilization Statistics for SpaceWire Single
Node Downlink (destination node) Design on Virtex-II Pro 70.

DCMs 1 out of 8 12%
Block RAMs 36 out of 328 10%
Flip-Flops 7888 out of 66176 11%
4-input LUTs 12004 out of 66176 18%
GCLKs 8 out of 16 50%

Figure 26 illustrates the hardware utilized for the SpaceWire hardware demonstration and its
connectivity.

63

ML325

Sensor Interface
Node

Downlink
Node

ML325

Sensor Interface
Node

Sensor Interface
Node

FIB

TI Serial Interfaces

CameraLink Interface

ML325

Sensor Interface
Node

Downlink
Node

ML325

Sensor Interface
Node

Sensor Interface
Node

FIB

TI Serial Interfaces

CameraLink Interface

Figure 26. SpaceWire hardware demonstration layout.

The SpaceWire image demonstration successfully demonstrates the ability to route data from
three separate sensor interface nodes to one downlink node, which then sends the data to a
ground station. This model programs each sensor interface node’s endpoint logic with a CCSDS
packet generator, which generates CCSDS packets containing one constituent color component
of an image. When the packets from the three sources arrive at the downlink node, they are sent
to the ground, where the image is reconstructed from the three data sources.

The downlink endpoint is programmed with a CCSDS framer that accepts incoming CCSDS
packet data and encapsulates those packets into CCSDS frames. Once the data is in CCSDS
frames, it is transmitted to the ground station, where it is stripped of framing data and packet
headers. The remaining data is then used to recompose the image. A node failure, simulated by
disconnecting the cables to one node, results in a loss of that color component and results in an
image with a distorted colormap.

4.3 Remote Configuration over SpaceWire

One key feature of the NBA is the ability to dynamically reprogram endpoint logic in flight to
provide different node functions within the network. In addition to initial power-on
programming duties, this provides a failover capability to mitigate in-flight failures. A system
that experiences a node failure in flight may reprogram one of the spare nodes on the network to
replace the function of the failed node, thus keeping the system fully operational.

A special configuration host interface node was created on a Xilinx ML523 development board
with a Virtex-5 LX110T FPGA to serve as the configuration host and bitfile source. This board,
in addition to having a typical router and endpoint instantiation, also included a soft-core
processor and a non-volatile flash memory in the form of a CompactFlash (CF) card. The device

64

utilization for this implementation is shown in Table 8. As future hardware will most likely be
targeting a Virtex-5 FX130T FPGA, the utilization numbers for that architecture are shown in
Table 9.

Table 8. Device Utilization Statistics for SpaceWire
Single Node Design on Virtex-5 LX110T.

DCMs 1 out of 12 8%
Block RAMs 64 out of 148 43%
Flip-Flops 8483 out of 69120 12%
6-input LUTs 9736 out of 69120 14%

Table 9. Device Utilization Statistics for SpaceWire
Single Node Design on Virtex-5 FX130T.

DCMs 1 out of 12 8%
Block RAMs 64 out of 148 43%
Flip-Flops 8485 out of 81920 10%
6-input LUTs 9720 out of 81920 11%

A MicroBlaze™ was instantiated in the Virtex-5 FPGA to serve as the soft-core processor
element. The MicroBlaze™ provided both a user interface for bitfile selection as well as the
control logic for transmitting the bitfile via SpaceWire. A custom MicroBlaze™ peripheral was
created to interface the processor to the SpaceWire router. This allowed the MicroBlaze™ to
interface to the SpaceWire router as an endpoint, enabling the processor to send and receive
SpaceWire packets via the network. This implementation in the ML 523 board is shown in
Figure 27.

To properly demonstrate the remote configuration of a FPGA, the ability to drive and read
special configuration pins on the FPGA is required. These configuration pins comprise the
SelectMAP programming interface on Xilinx FPGAs. Detailed information regarding this
configuration method is available in [17].

Currently the only development board available to this project capable of serving as a target for
remote configuration is a board developed by SEAKR Engineering, Inc. This board was
designed with two Virtex-II Pro FPGAs and a Virtex-4 FPGA attached via a daughter-card. One
of the Virtex-II Pro FPGAs has direct access to the SelectMAP pins of the Virtex-4 FPGA,
making this board an ideal candidate to demonstrate remote reconfiguration over SpaceWire.

65

Xilinx ML523 Prototype Board

LVDS
Transceiver

LVDS
Transceiver

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
Sw

itc
hSpaceWire

Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

LVDS
Transceiver

Reprogramming Host
Peripheral IP

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

PERIPHERAL BUS

Soft-core Processor
SystemACE
Controller

Flash
Card Slot

Serial
UART

RS-232
Port

Xilinx ML523 Prototype Board

LVDS
Transceiver

LVDS
Transceiver

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
Sw

itc
hSpaceWire

Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
Sw

itc
hSpaceWire

Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

LVDS
Transceiver

Reprogramming Host
Peripheral IP

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

SpaceWire Cable

PERIPHERAL BUS

Soft-core ProcessorSoft-core Processor
SystemACE
Controller

Flash
Card Slot

Serial
UART

RS-232
Port

Figure 27. Configuration host (ML523) block diagram.

For the configuration targets, an endpoint module was developed to receive bitfiles remotely via
SpaceWire and to drive a SelectMAP configuration interface appropriately. This module is
connected to the third local port instantiated on each SpaceWire router. This module receives
bitfiles from the ML523 board serving as the configuration host and drives SelectMAP interface
pins. On the SEAKR board, these SelectMAP interface pins program the Virtex-4 FPGA. Other
boards (such as ML325s) in the network also contain this module; however, their SelectMAP
interfaces are not connected, and sending a bitfile to these boards will result in no configuration
change. Figure 28 shows the implementation of these functions on the SEAKR board. Figure 29
shows the higher-level architecture for the reconfiguration demonstration.

Figure 30 is an example of the configuration interface, which is used to input a filename, select
source and destination node numbers, and begin programming over SpaceWire. The filename
allows the user to select a bitfile stored on the CF card. Destination node number specifies the
target node to program. Source node must be set if status information regarding the success or
failure of programming is desired.

66

SEAKR Board

(Note: Only one of two Virtex-II Pro FPGAs are denoted in this diagram)

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire
Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

User-Defined Node
Endpoint Logic

Virtex-4

SelectMAP

G
re

en
 L

ED
 1

G
re

en
 L

ED
 2

R
ed

 L
ED

 1

R
ed

 L
ED

 2

Virtex-II Pro FPGA

SEAKR Board

(Note: Only one of two Virtex-II Pro FPGAs are denoted in this diagram)

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire
Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

GSFC SpaceWire Router Core

N
on

-B
lo

ck
in

g
S

w
itc

hSpaceWire
Port 1

SpaceWire
Port 2

SpaceWire
Port 4

Time-Code
Processing

Local Endpoint
Port 1

Local Endpoint
Port 3

Time-Code
Interface Signals

Configuration Port
Routing Tables

Configuration Memory

Configuration Port
Routing Tables

Configuration Memory

SpaceWire
Port 3

Local Endpoint
Port 2

LVDS
Transceiver

Router
Configuration and
Port Monitoring

Reconfiguration
Logic

User-Defined Node
Endpoint Logic

Virtex-4

SelectMAP

G
re

en
 L

ED
 1

G
re

en
 L

ED
 2

R
ed

 L
ED

 1

R
ed

 L
ED

 2

Virtex-II Pro FPGA

Figure 28. Configuration target (SEAKR) block diagram.

ML325 ML325

Generic
Node

Generic
Node

Generic
Node

Generic
Node

ML523

Configuration
Host Node

SEAKR

Generic Node RS-232

ML325 ML325

Generic
Node

Generic
Node

Generic
Node

Generic
Node

ML523

Configuration
Host Node

SEAKR

Generic Node RS-232

Figure 29. System block diagram for reconfiguration demonstration.

67

Figure 30. Remote configuration over SpaceWire control interface.

This proof-of-concept successfully configured a remote FPGA using various bitfiles transmitted
across a variety of network topologies.

68

5. HARDWARE DEMONSTRATION CONCLUSIONS

This effort has demonstrated the transport of application layer packets across both RapidIO and
SpaceWire networks to a common downlink destination using small topologies comprised of
COTS and custom devices.

A complete demonstration that includes one of the researched topologies [18] for this LDRD [1]
would require at least 18 to 27 nodes. This demonstration, however, was designed in order to
prove the operation of the functions discussed in this report. A larger network would allow for a
much more in-depth level of verification, which could make the designs useful in practical
application.

The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful
implementation of the RapidIO hardware demonstration. It is highly recommended that any
future designers have this test equipment available before creating any custom components that
integrate the RapidIO protocol. These tools also proved the benefit of working with standard
serial interconnects in that commercial test equipment can be applied to the development effort
and not having to rely on custom hardware to provide this capability.

The SpaceWire implementation also successfully demonstrated the transfer and routing of
application data packets between multiple nodes. In this exercise, SpaceWire exhibited a
number of positive characteristics, including ease of implementation, simple protocol standard,
and availability of features desirable for space networks (such as bandwidth throttling to save
power). These traits, along with SpaceWire’s use in both past and current flight systems, make
SpaceWire a strong candidate for use in satellite networks.

In addition to proving the feasibility of both the RapidIO and SpaceWire protocols, this hardware
demonstration was able reprogram remote nodes using configuration bitfiles transmitted over the
network. This is one of the key features proposed in NBAs, and leveraging this work
demonstrates a key component of NBAs that will improve future system reliability and enhance
the capabilities of these systems.

The favorable results outlined in this document illustrate the potential use of either RapidIO or
SpaceWire in real-world NBAs. Which protocol is used in future satellite architectures will
ultimately be determined by a number of factors, including bandwidth requirement, protocol
feature set, and resource utilization. In either case, IP has been produced to support data
transmission using both protocols that can be leveraged in the development of future systems.

69

70

6. REFERENCES

1. Jeffrey L. Kalb, Modeling and Design of High Speed Networks for Satellite Applications,
SAND2008-5810. Albuquerque, NM: Sandia National Laboratories, September 2008.

2. John M. Eldridge and Jeffrey L. Kalb, Survey of Communication Protocols for Satellite

Payloads, SAND2008-0254. Albuquerque, NM: Sandia National Laboratories,
January 2008.

3. ECSS-E-50-12A, Space Engineering: SpaceWire – Links, Nodes, Routers, and Networks.

European Space Agency, January 2003.

4. David Heine, Jeffrey L. Kalb, David S. Lee, John M. Eldridge and Eric Ollila, Network

Modeling Study, SAND2008-6001. Albuquerque, NM: Sandia National Laboratories,
September 2008.

5. Xilinx, Inc. ML325 Characterization Board. May 2006.

(http://www.xilinx.com/products/devkits/HW-V2P-ML325.htm)

6. RapidIO Interoperability Laboratory. 2008. (http://www.rio-lab.com/)

7. Silicon Turnkey Express (STx), Serial RapidIO Development Platform (SRDP). 2008.
(http://www.silicontkx.com/srdp.htm)

8. RapidIO Trade Association, RapidIO Specification v1.3. 2008.

(http://www.rapidio.org/specs/current)

9. Tundra Semiconductor Corporation, Tsi578 Serial RapidIO Switch User Manual.
November 2007.

10. Tcl/Tk, Tool Command Language & Toolkit. 2008. (http://tcl.sourceforge.net/)

11. Xilinx, Inc., ISE Foundation & Embedded Development Kit v9.2i. 2008.

(http://www.xilinx.com)

12. Fabric Embedded Tools Corp., RapidFET Professional and RapidFET Probe. 2008.
(http://www.fetcorp.com/)

13. Tektronix, Inc. (http://www.tek.com/)

14. Nexus Technology, Inc., NEX-SRIO Protocol Analyzer. 2008.

(http://www.busboards.com/products/bus/srio/index.html)

71

http://www.xilinx.com/products/devkits/HW-V2P-ML325.htm
http://www.rio-lab.com/
http://www.silicontkx.com/srdp.htm
http://www.rapidio.org/specs/current
http://tcl.sourceforge.net/
http://www.xilinx.com/
http://www.fetcorp.com/
http://www.tek.com/
http://www.busboards.com/products/bus/srio/index.html

15. Daniel E. Gallegos, Benjamin Welch, Jason Jarosz, Jonathan Van Houten, and Mark
Learn, Soft Core Processing Study for Node Based Architectures, SAND2008-6015.
Albuquerque, NM: Sandia National Laboratories, September 2008.

16. David M. Holman and David S. Lee, A Survey of Routing Techniques in Store-and-

Forward and Wormhole Interconnects, SAND2008-0068. Albuquerque, NM: Sandia
National Laboratories, January 2008.

17. Xilinx, Inc., Virtex-4 FPGA Configuration User Guide. April 2008.

(http://www.xilinx.com/support/documentation/user_guides/ug071.pdf)

18. David S. Lee and Jeffrey L. Kalb, Network Topology Analysis, SAND2008-0069.
Albuquerque, NM: Sandia National Laboratories, January 2008.

72

http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

73

DISTRIBUTION

1 Leonard G. Burczyk
 Mail Stop D440
 Los Alamos National Laboratory
 Los Alamos, NM 87545

1 MS0343 Jim B. Woodard, 2600
1 MS0406 Toby O. Townsend, 5713
1 MS0501 Steve B. Rohde, 5337
1 MS0503 Mythi M. To, 5337
1 MS0530 Dan E. Gallegos, 2623
1 MS0964 Brian C. Brock, 5733
1 MS0971 Ethan L. Blansett, 5733
1 MS0971 Bob M. Huelskamp, 5730
1 MS0971 Jae W. Lee, 5733
1 MS0972 Kurt R. Lanes, 5560
1 MS0980 Jay F. Jakubczak, 5710
1 MS0980 Matt P. Napier, 5571
1 MS0980 Steve M. Gentry, 5703
1 MS0982 Dan E. Carroll, 5732
1 MS0982 J. Doug Clark, 5732
1 MS0982 Dan Kral, 5732
1 MS0986 Dave M. Bullington, 2664
1 MS0986 Jonathon W. Donaldson, 2664
1 MS0986 Dave Heine, 2664
1 MS0986 Jeff L. Kalb, 2664
1 MS0986 Dave S. Lee, 2664
1 MS0986 J. (Heidi) Ruffner, 2664
1 MS0986 John V. Vonderheide, 2660
1 MS1172 Ron J. Franco, 5415
1 MS1202 Ed J. Nava, 5632
1 MS1235 John M. Eldridge, 5632
1 MS1243 Ray H. Byrne, 5535
1 MS0123 D. Chavez, LDRD Office, 1011
1 MS0899 Technical Library, 9536 (electronic copy)

	EXECUTIVE SUMMARY
	1. INTRODUCTION
	2. HARDWARE DEMONSTRATION OVERVIEW
	2.1 Demonstration Components
	2.2 Hardware Implementation
	2.3 Additional Topics: Remote Reconfiguration

	3. RapidIO DEMONSTRATION
	3.1 RapidIO Test Network Topology
	3.1.1 Node Types
	3.1.2 Traffic Flow Overview

	3.2 Source Node Design
	3.2.1 User Interface
	3.2.2 Software API
	3.2.3 Hardware Interface
	3.2.3.1 Send Command Opcode/Data Registers
	3.2.3.1.1 Opcodes for CCSDS Packet Generator
	3.2.3.1.2 Opcodes for RapidIO Maintenance Frame Generator

	3.2.3.2 Receive Command Opcode/Data Registers

	3.2.4 CCSDS Packet Encapsulation Pipeline
	3.2.4.1 CCSDS Packet Generator Module (ccsds_pkt_gen.vhd)
	3.2.4.2 RapidIO Dword Builder Module (srio_dwrd_bldr.vhd)
	3.2.4.3 CCSDS Initiator Request Generator Module (ccsds_ireq_gen.vhd)
	3.2.4.4 Initiator Request Multiplexer Module (ireq_gen_mux.vhd)

	3.2.5 Maintenance Frame Generation Pipeline
	3.2.5.1 Maintenance Initiator Request Generator (maint_ireq_gen.vhd)
	3.2.5.2 Maintenance Request Generation Without Processor

	3.2.6 Transaction ID Block RAM (tid_bram.v)
	3.2.7 Scratch-Pad Memory Module (target_user.v)
	3.2.8 Initiator Response Handler (iresp_handler.vhd)
	3.2.9 RapidIO Design Environment (rio_wrapper.v)

	3.3 Destination Node Design
	3.3.1 RapidIO Dword Breaker Module (srio_dwrd_brkr.vhd)
	3.3.2 CCSDS Downlink Framer Flow Controller (ccsds_dlf_flow_ctrl.vhd)
	3.3.3 CCSDS Downlink Framer Module

	3.4 CCSDS Over SRIO Self-Verifying Test Bench
	3.4.1 Test Bench Top-Level (cos_to_clink_tb.v)
	3.4.2 Test Bench Task Functions
	3.4.2.1 CCSDS Packet Generator Functions (tasks_ccsds.v)
	3.4.2.2 Maintenance Frame Generator Functions (tasks_maint.v)

	3.4.3 Signal Monitors and Signal Spys (signal_<mons/spys>.v)

	3.5 Image Generation Module
	3.5.1 Theory of Operation
	3.5.2 Fetching the Original Image Data (bmpParse.c, Gen_LCD_Image.java)
	3.5.3 Image Generation Hardware (image_gen_bram.vhd)

	3.6 Debug and Analysis with RapidFET™
	3.7 Debug and Analysis with the NEX-SRIO
	3.8 Debug and Analysis Setup with STx SRDP
	3.9 Future Work with RapidIO

	4. SPACEWIRE DEMONSTRATION
	4.1 SpaceWire IP and Hardware Selection
	4.2 SpaceWire Implementation
	4.3 Remote Configuration over SpaceWire

	5. HARDWARE DEMONSTRATION CONCLUSIONS
	6. REFERENCES

