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1. INTRODUCTION 

1.1 Background 

The FY06 Defense Appropriation contains funding for the “Development of Advanced, 

Sophisticated, and Discrimination Technologies for UXO Cleanup” in the Environmental 

Security Technology Certification Program.  In 2003, the Defense Science Board observed:  

“The … problem is that instruments that can detect the buried UXOs also detect numerous scrap 

metal objects and other artifacts, which leads to an enormous amount of expensive digging.  

Typically 100 holes may be dug before a real UXO is unearthed!  The Task Force assessment is 

that much of this wasteful digging can be eliminated by the use of more advanced technology 

instruments that exploit modern digital processing and advanced multi-mode sensors to achieve 

an improved level of discrimination of scrap from UXOs.”   

 

Significant progress has been made in discrimination technology.  To date, testing of these 

approaches has been primarily limited to test sites with only limited application at live sites.  

Acceptance of discrimination technologies requires demonstration of system capabilities at UXO 

sites under real world conditions.  FE Warren Air Force Base (AFB) in Cheyenne, WY is one 

such site. 
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1.2 Objective of the Demonstration 

The demonstration objective was to determine the discrimination capabilities, cost and reliability 

of the Berkeley UXO Discriminator (BUD) in discrimination of UXO from scrap metal in real 

life conditions.  Lawrence Berkeley National Laboratory performed a detection and 

discrimination survey of the Priority 1 area (~ 5 acres) of the FE Warren AFB.  The data 

included a system characterization with the emplaced calibration items and targets in the 

Geophysical Prove Out (GPO) area.   

 

2.  TECHNOLOGY DESCRIPTION 

 

2.1 Technology Development and Application 

The Environmental Security Technology Certification Program, ESTCP, has supported 

Lawrence Berkeley National Laboratory (LBNL) in the development of the Berkeley UXO 

Discriminator (BUD) that not only detects the object itself but also quantitatively determines its 

size, shape, and orientation.  Furthermore, BUD performs target characterization from a single 

position of the sensor platform above a target.  BUD was designed to detect UXO in the 20 mm 

to 155 mm size range for depths between 0 and 1.5 m, and to characterize them in a depth range 

from 0 to 1.1 m. The system incorporates three orthogonal transmitters, and eight pairs of 

differenced receivers.  The transmitter-receiver assembly together with the acquisition box, as 

well as the battery power and global positioning system (GPS) receiver, is mounted on a small 
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cart to assure system mobility.  System positioning is provided by a state-of-the-art Real Time 

Kinematic (RTK) GPS receiver.  The survey data acquired by BUD is processed by software 

developed by LBNL, which is efficient and simple, and can be operated by relatively untrained 

personnel.  BUD is shown in Figure 1.   

 

 

Figure 1.  Berkeley UXO Discriminator (BUD)  

 

Eight receiver coils are placed horizontally along the two diagonals of the upper and lower 

planes of the two horizontal transmitter loops.  These receiver coil pairs are located on symmetry 

lines through the center of the system and each pair sees identical fields during the on-time of 

current pulses in the transmitter coils.  They are wired in opposition to produce zero output 

during the on–time of the pulses in three orthogonal transmitters.  Moreover, this configuration 
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dramatically reduces noise in measurements by canceling background electromagnetic fields 

(these fields are uniform over the scale of the receiver array and are consequently nulled by the 

differencing operation), and by canceling noise contributed by the tilt of the receivers in the 

Earth’s magnetic field, and greatly enhances the receivers sensitivity to gradients of the target 

response.   

 

Data acquisition is performed on a single board.  The transmitter coils are powered by circuits 

which are separate from the data acquisition board.  These pulsers provide resonant circuit 

switching to create bi-polar half-sine pulses of 350 μs width.  The current peaks at 18 A which 

results in a resonant receiver circuit voltage of ~750 Volts.  The operational overall half-sine 

duty cycle is ~12%.  The resonant frequency of the inductive load is ~90 kHz.  Transients are 

digitized with a sampling interval of 4 μs.  The sensors are critically damped 6-inch 325 turn 

loops with a self-resonant frequency of 25 kHz.  The data acquisition board has 12 high-speed 

ADC channels.  Eight of these channels are used for the signal from receiver coils, and the 

remaining four channels provide information about the system (i.e. tilt information, odometer).   

 

It has been demonstrated that a satisfactory classification scheme is one that determines the 

principal dipole polarizabilities of a target – a near intact UXO displays a single major 

polarizability coincident with the long axis of the object and two equal transverse polarizabilities.  

The induced moment of a target depends on the strength of the transmitted inducing field.  The 

moment normalized by the inducing field is the polarizability.  This description of the inherent 

polarizabilities of a target constitutes a major advance in discriminating UXO from irregular 
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scrap metal.  Figures 2-4 illustrate the discrimination capability of the system for UXO objects 

(Figures 2 and 3), and scrap metal (Figure 4).  All three figures have estimated principal 

polarizabilities as a function of time plotted on the left, values of true and estimated location and 

orientation on the right, and object images at the bottom.  While UXO objects have a single 

major polarizability coincident with the long axis of the object and two equal transverse 

polarizabilities (Figure 2-3), the scrap metal exhibits three distinct principal polarizabilities 

(Figure 4).  The locations and orientations are recovered within a few percent of true values for 

all three objects. 

 

These results clearly show that a multiple transmitter – multiple receiver system can resolve the 

intrinsic polarizabilities of a target and that there are very clear distinctions between symmetric 

intact UXO and irregular scrap metal.   

 

 

Figure 2.  Inversion results for the principal polarizabilities, location and orientation of 81 mm 
projectile   
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Figure 3.  Inversion results for the principal polarizabilities, location and orientation of 105 mm 
projectile   

 

 

Figure 4.  Inversion results for the principal polarizabilities, location and orientation of 19x8 cm 
scrap metal 

 

The detection performance of the system is governed by a size-depth curve shown in Figure 5.  

This curve was calculated for BUD assuming that the receiver plane is 0.2 m above the ground.  

Figure 5 shows that, for example, BUD can detect an object with 0.1 m diameter down to the 
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depth of 0.9 m with depth uncertainty of 10%.  Any objects buried at a depth of more than 1.3 m 

will have a low probability of detection.  The discrimination performance of the system is 

governed by a size-depth curve shown in Figure 6.  Again, this curve was calculated for BUD 

assuming that the receiver plane is 0.2 m above the ground.  Figure 6 shows that, for example, 

BUD can discriminate an object with 0.1 m diameter down to the depth of 0.63 m with depth 

uncertainty of 10%.  Any objects buried at the depth more than 0.9 m will have a low probability 

of discrimination.   

 

 

Figure 5.  10% uncertainty in location as a function of object diameter and depth of the detection 
for BUD with receivers 0.2 m above the ground  
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Figure 6.  10% uncertainty in polarizability as a function of object diameter and depth of the 
discrimination for BUD with receivers 0.2 m above the ground 

 

Object orientation estimates and equivalent dipole polarizability estimates used for large and 

shallow UXO/scrap discrimination are more problematic as they are affected by higher order 

(non-dipole) terms induced in objects due to source field gradients along the length of the 

objects.  For example, a vertical 0.4 m object directly below the system needs to be about 0.90 m 

deep for perturbations due to gradients along the length of the object to be of the order of 20 % 

of the uniform field object response.  Similarly, vertical objects 0.5 m, and 0.6 m long need to be 

1.15 m, and 1.42 m, respectively, below the system.  For horizontal objects the effect of 

gradients across the objects' diameter are much smaller.  For example, 155 mm and 105 mm 

projectiles need to be only 0.30 m, and 0.19 m, respectively, below the system.  A polarizability 

index (in cm3), which is an average value of the product of time (in seconds) and polarizability 
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rate (in m3/s) over the 34 sample times logarithmically spaced from 140 to 1400 μs, and three 

polarizabilities, can be calculated for any object.  We use this polarizability index to decide when 

the object is in a uniform source field.  Objects with the polarizability index smaller than 600 

cm3 and deeper than 1.8 m below BUD, or smaller than 200 cm3 and deeper than 1.35 m, or 

smaller than 80 cm3 and deeper than 0.90 m, or smaller than 9 cm3 and deeper than 0.20 m below 

BUD are sufficiently deep that the effects of vertical source field gradients should be less than 

15%.  All other objects are considered large and shallow objects.   

To assure proper object identification and UXO/scrap discrimination, in the case of large and 

shallow objects, we take measurements at five sites spaced 0.5 m along a line traversing the 

object.  Initially, object orientation is estimated from the response at the most distant of these 

sites.  Then, the site, for which the line from the object center to the BUD bottom receiver plane 

center that is closest to being 90° to the orientation of the objects' interpreted axis of greatest 

polarizability, is selected.  The data from this site have the smallest source field gradients in the 

direction of the estimated axis of greatest polarizability.  The results of polarizability inversion 

from this site is used for object classification.   

 

At FE Warren AFB the range of UXO targets goes from 37 mm projectile up to 81 mm mortar.  

The BUD detection threshold is based on the signal strength relative to levels of background 

response variation observed at Yuma Proving Ground.  Measured signal strengths (field value) 

normalized by this background variation for a 37 mm projectile at 40 cm depth (the depth equal 

to 11 x diameter) at our Richmond field test facility were around 15, therefore the detection 

threshold is set to 7, which is 50% of that value.   
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2.2 Previous Testing of the Technology 

The performance of the BUD has been demonstrated at a local test site in California, as well as at 

the Yuma Proving Ground (YPG), Arizona, and Camp Sibert, Alabama.  The results have been 

presented at various meetings and published in scientific journals.   

 

2.3 Advantages and Limitations of the Technology 

This is the first AEM system that can not only detect UXO but also discriminate it from non-

UXO/scrap and give its characteristics (location, size, polarizability).  Moreover, the object can 

be characterized from a single position of the sensor platform above the object.  BUD was 

designed to detect UXO in the 20 mm to 155 mm size range buried anywhere from the surface 

down to 1.5 m depth.  Any objects buried at the depth more than 1.5 m will have a low 

probability of detection.  In addition, BUD was designed to characterize UXO in the same size 

range in depths between 0 and 1.1 m.  Any objects buried at the depth more than 1.1 m will have 

a low probability of discrimination.  With existing algorithms in the system computer it is not 

possible to recover the principal polarizabilities of large objects close to the system.  Detection of 

large shallow objects is assured, but at present discrimination is not.  Post processing of the field 

data is required for shape discrimination of large shallow targets.  See Chapter 2.1 for details.   
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3.  DEMONSTRATION DESIGN 

 

3.1 Operational Parameters for the Technology 

We shipped all the equipment and supplies to the test site using a container and a commercial 

trucking company.  Personnel flew and drove to the site in rented vehicles.  Equipment was 

stored in the shipping container which was dropped off close to the survey area.  The survey was 

contracted out to a geophysical survey company Zapata Engineering.  The survey team consisted 

of two people, and a PI and additional LBL employee at the beginning of the survey who 

provided a field crew training.  Data quality control and progress was done remotely.  The field 

crew uploaded acquired data on the LBNL server daily, and if there were some problems after 

reviewing the data the field crew was instructed to repeat some measurements.   

 

Assembling the cart, connecting the batteries, checking the data acquisition system and verifying 

the data records took about 30 minutes every morning.  This was followed by system calibration 

using 75 mm projectile.  This point was measured every morning and every evening.  Responses 

of the calibration target were consistent and repeatable throughout the survey.  The principal 

polarizability curves as a function of time for our calibration target are shown in Figure 7. 
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Figure 7.  Principal polarizability curves as a function of time for 75 mm projectile. 

 

The primary mode of BUD operation was simultaneous detection and characterization/ 

discrimination, although due to a time and weather constrains we used the cued mode in one part 

of the GPO area.  The Priority 1 survey area was divided into two hundred ~100-m long lines in 

a more-less east-west direction.  Line spacing in the orthogonal direction (north-south) was 1 m.  

We surveyed lines using a GPS and strings and then sprayed them in with a biodegradable paint.  

BUD was pushed along the line at a constant speed in a search mode.  Data were recorded and 

stored continuously.  In principle, any object within the 1 m × 1 m footprint of the horizontal 

transmitter coil and 1.2 m in front of the system can be detected and characterized.  The 

detection threshold was set to 7.  In the search mode the operator was alerted to the presence of a 

target every time the signal level exceeded the detection threshold.  The threshold value was 

recorded together will data file name, acquisition time, and BUD GPS location.  If the target was 

inside of the BUD footprint, the operator stopped and a full sequence of measurements was 

   16



initiated.  The three discriminating polarizability responses were recorded and visually presented 

on the computer screen.  The depth and horizontal location with respect to the cart were 

recorded, together with the GPS location of the reference point on the cart.  Then the cart again 

moved at a constant speed in search mode until the next target was detected and the 

discrimination process was repeated.  This mode of operation has the advantage that target 

reacquisition is not necessary for characterization.  As described in Chapter 2.1, object 

orientation estimates and equivalent dipole polarizability estimates used for large and shallow 

UXO/scrap discrimination are more problematic as they are affected by higher order (non-

dipole) terms induced in objects due to source field gradients along the length of the objects.  In 

the case when a large shallow object was found, we collected five measurements spaced 0.5 m 

along a line traversing the object (i.e. if the object location was at 0.0, measurements were taken 

at 1.0 m, 0.5 m, 0.0 m, -0.5 m, and -1.0 m) so that system got further away from the object, and 

hence minimized source gradients, at one or more locations.  The measurement that best satisfied 

the criteria described earlier was used for the object characterization.   

 

For some objects in the GPO area we used the cued mode.  In this case BUD was brought to 

marked locations and ran in the discrimination mode.  The three discriminating polarizability 

responses were recorded and visually presented on the computer screen.  The depth and 

horizontal location with respect to the cart was recorded, together with a GPS location of the 

reference point on the cart.  As described earlier, for large shallow objects we collected five 

measurements spaced 0.5 m along a line traversing the object (i.e. if the object location was at 

   17



0.0, measurements were taken at 1.0 m, 0.5 m, 0.0 m, -0.5 m, and -1.0 m).  The measurement 

that best satisfied the criteria described earlier was used for the object characterization.   

 

3.2 Period of Operation 

The survey was performed between October 1, 2007 and October 17, 2007.  The time required 

for the major activities involved in the field demonstration are provided in Table 1.   

 

TABLE 1. TOTAL TIME OF MAJOR DEMONSTRATION ACTIVITIES  

Task Time  Notes 

Site Orientation, Safety 

Briefing 

3 hr  

Unloading and packing  1 day ½ day unloading, ½ packing 

GPS Base Setup 6 hr 30 min/day 

Field Checks & Calibrations 12 hr 1 hr/day system and 

background calibration 

GPO  2 days 1 acre 

Detection and Discrimination 

Survey 

9.5 days 5 acres 

Data Processing, Quality 

Assurance &Archiving  

15 days  

Contingencies 2.5 days background response 

variations, repeat 

measurements, weather related 

issues, system malfunction 

Total Time 15 days  
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The following GPS coordinates of our base station were used for BUD positioning: (Easting, 

Northing) = (509576.94, 4558840.20).   

 

Demobilization consisted of disassembly and removal of the system and packing of the container 

which took about 3 hours.  BUD and all materials and supplies were removed from the site and 

shipped in the container back to Berkeley, California after the survey.   

 

4.  DATA ANALYSIS AND INTERPRETATION 

 

The first step prior to data collection was a system calibration and a background level estimation.  

We measured the background field on all channels at a place free of metallic objects.  This step 

was repeated at least twice to make sure the background field was stable and could be used as the 

baseline measurement that was subtracted from the data.  The next step was to take data over the 

calibration target buried in the ground.   

 

Twelve channels of field data are recorded at a rate of 250 k-samples/second for each of three 

transmitters.  Field data were stacked together in a field programmable gate array (FPGA) and 

transferred to a field computer (laptop) forming a primitive stack, labeled with header 

information (instrument position, tilt and heading, odometer, time stamp, channels of transmitter 

   19



current, etc).  An even number of primitive stacks was averaged together to form stacked data for 

further processing.   

 

The peak transmitter current was estimated from the stacked transmitter current channel record, 

and the data were normalized by that value.  Nominal transmitter shut-off time was estimated, 

and induction responses were computed at 34 logarithmically spaced times between 140 and 

1400 μs, averaged in half-sine windows with widths 10% of the center time after transmitter 

pulse shut-off.  Responses were differenced with background responses collected over a nearby 

site determined to be relatively free of metallic objects by having a system response which varies 

little with system translation.  Error bars were computed for these based on the scatter in raw 4 

μs samples at late time, and used to estimate uncertainties in field inversions of equivalent dipole 

polarizability responses and object position.   

 

In post processing, the data were reprocessed, with the background response for each line of data 

computed using a trimmed median response at each time and receiver, for each transmitter 

response.  The trimmed median used is the median of all points within 2 median absolute 

deviations (MAD) of the (untrimmed) median response at each time, receiver, and transmitter.  

As the background variation is a larger source of uncertainty than the previously mentioned noise 

estimated from scatter in raw 4 μs, 1.48 times the MAD in individual line responses were used as 

the estimated noise level in later processing.  The resulting 24 channels of normalized responses 

were then inverted for candidate object position and principal polarizabilities as a function of 

time after transmitter shut-off.  Data before 140 μs were ignored.   
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In the half of the GPO surveyed in the detection mode (Figure 8) all the emplaced targets were 

detected.  The color represents the strength of the measured response normalized by the 

background variation.  The detection threshold was set to 7, therefore the red color represent the 

background response, while yellow, green and blue colors indicate locations of metallic objects.  

The rest of the GPO area was done in the cued mode due to weather and time constrains.  Black 

symbols indicate locations of stationary BUD measurements, and purple diamonds indicate GPO 

corners.  When a detected object was large/close to the system several measurements were taken 

as described in Chapter 2.1.  The GPO area contains seven different types of UXO – 37 mm 

projectile, hand grenade, 60 mm mortar, 3” stokes mortar, 75 mm projectile, 81 mm mortar, and 

2.36” rocket.  Principal polarizability curves as a function of time for these UXO are shown in 

Figures 9-15.   

 

Figure 8.  BUD GPO detection map. 
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Figure 9.  Principal polarizability curves as a function of time for 37 mm projectile. 

 

 

Figure 10.  Principal polarizability curves as a function of time for a hand grenade, MK II. 
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Figure 11.  Principal polarizability curves as a function of time for 60 mm mortar. 

 

 

Figure 12.  Principal polarizability curves as a function of time for 3” stokes mortar. 
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Figure 13.  Principal polarizability curves as a function of time for 75 mm AP projectile. 

 

 

Figure 14.  Principal polarizability curves as a function of time for 81 mm mortar. 
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Figure 15.  Principal polarizability curves as a function of time for 2.36” rocket. 

 

In our mode of operation several soundings at different locations, are responses of the same 

object.  The discrimination algorithm is based on a single sounding; hence a tool for selecting 

one sounding per object was required.  We developed a means of selecting the most 

representative sounding from sets of soundings interrogating the same object based on maximum 

likelihood and using an assumption of Cauchy distributions of the object principal 

polarizabilities and of their major polarizability axis' dip angle.  Our analysis of soundings from 

the GPO area shows that for 32 soundings when the field strength (the measured signal 

normalized by Yuma background variations) was greater than 15, the polarizability curves were 

consistent with axially symmetric objects such as UXO.  In the case that this field strength was 

between 11 and 15, three soundings were consistent (60%) and two were not.  The soundings 

with the field strength below 11 were inconsistent with the response of axially symmetric 

objects, most likely due to bias in those responses.  As we described earlier, we re-processed data 
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using the GPO MADs instead of Yuma background variations, therefore we calculated the 

equivalent field strength numbers for 11 and 15, and they were 5.9 and 9.2.  The total number of 

objects in the GPO was 54.  We selected 35 soundings consistent with axially symmetric objects 

responses as UXO training data for use in the discrimination at the Priority 1 survey area.  The 

training data set was expanded by 12 responses of 37 mm, 2.75" and 81 mm UXO acquired in 

our local test facility, and 16 responses of 2.75", 81 mm and 105 mm UXO from the Yuma 

Calibration Grid.  179 scrap responses from our survey in Camp Sibert, AL comprised the 

complimentary scrap training data needed for discrimination.  An example of a scrap response is 

shown in Figure 16.   

 

 

Figure 16.  Principal polarizability curves as a function of time for scrap metal. 
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The Priority 1 area was surveyed in our preferred mode of operation – detection and 

discrimination at the same time (see Chapter 3.1 for a description of our survey procedure).  

Figure 17 shows the detection map of this area.  Again, the detection threshold was set to 7, 

therefore red and yellow colors represent the background response, while green and blue colors 

indicate locations of metallic objects.   

 
Figure 17.  BUD detection map of the Priority 1 area. 

 

In a part of the Priority 1 area (lines 114 – 161, Northing 4559779 – 4559732) we observed a 

large background response drift in two BUD receiver channels.  This was mitigated by 

implementing inverse weighting by MADS from these lines as a better means of locating 
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metallic objects in the presence of a large background response.  Due to variability of the S/N in 

data from the Priority 1 area, we calculated field strengths in three different ways – (a) using 

Yuma background variations, (b) using 1.48 times FE Warren GPO MADs, and (c) using 1.48 

times Priority 1 area MADs of lines 114-161.  In case (a) we identified 1911 anomalies, 805 of 

which were above the detection threshold of 7; in case (b) we identified 1873 anomalies, 709 of 

which were above the detection threshold of 3.5; and in case (c) we identified 1857 anomalies, 

783 of which were above the detection threshold of 1.9.  Our final interpretation contains a 

combination of these estimates.  For lines 0-113 and 162-184 we used local maxima from a set 

calculated using option (b), hence any anomaly with a response large then 3.5 was considered to 

be due to a metallic object.  For lines 114-161 we used local maxima from a set calculated using 

option (c), and therefore any anomaly with response 1.9 or larger was considered to be due to a 

metallic object.  Combining these two data sets resulted in a total of 1533 detected anomalies.  

Since the data acquired in the discrimination (stationary) mode have higher S/N, we selected 

those soundings any times when they were nearest to each of the 1533 detected anomalies.  In 

the case when a local maximum (detected anomaly) didn’t have a stationary sounding nearby, we 

used data from the search mode.  There were 158 such soundings in our data set.   

 

The Priority 1 area discrimination set contained 1533 detected anomalies.  The corresponding 

polarizability inversion responses were classified as single UXO/not single UXO (e.g., scrap, 

scrap + UXO, or multiple UXO) using the selected training data (see Appendix A for more 

details).  Figure 18 shows by colors a probability that an identified metallic object is a single 

UXO.  Values are given in fractions, i.e. 1=100%, 0.1=10%.  73 objects (5%) have probability 
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higher than 50% of being single UXO, 1417 objects (92%) have probability less than 10% of 

being single UXO, and 728 objects (86%) have probability less than 1% of being single UXO.  

For the classifications made using most of the training data (but not the low amplitude GPO area 

object responses), there were 786 maxima with the field strength larger than 9.2, of which 25 (± 

2) were estimated to be single UXO, based on the sums of their estimated probabilities of being 

single UXO and their squares, a 3% positive rate.  Based on the comparison of estimated and 

true depths of UXO in the GPO area, the estimated depths are accurate to ~0.25 m.  Of the 747 

maxima, with the field strength between below 9.2, 53 (± 3) single UXO are estimated to be 

present, with an overall total of 78 (± 5) single UXO.  For responses with the field strength less 

than 9.2, assuming a 40% rate of polarizabilities being poorly estimated for accurate 

identification, and the 3% positive rate among those, suggest a missed identification rate of 

1.4%.  So, for the objects with low amplitude responses a floor of probability of being UXO was 

artificially imposed.  We place little confidence in the estimated depths of those objects.  Despite 

the fairly low estimated numbers of intact single UXO, to have less than 1% probability of 

leaving any UXO behind, 835 anomalies need to be dug based on the analyzed data.  If that 

probability would be 10%, 808 anomalies need to be excavated.  Figure 19 is a ‘priority dig map’ 

where in green we show locations identified as scrap therefore safe to leave in the ground while 

in red we show locations that need to be dug.  We also considered discrimination based on only 

the selected 35 responses from the GPO area and a subset of 41 scrap responses used as training 

data in our Camp Sibert discriminations.  The third discrimination we considered was based on 

the largest training data set that included those 19 GPO responses with low amplitude that were 

excluded from previous training data sets. 
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Figure 18.  Probability of a metallic object being a single UXO. Values are given in fractions 
(1=100%, 0.1=10%) 
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Figure 19.  Priority dig map –green dots are identified as scrap while red dots are locations that 
need to be dug.  

 

5.  PERFORMANCE ASSESSMENT 

 

We provide target characteristics (location, size, and polarizability) for detected objects as 

follows: 

(a) x, y, z (depth below the surface) location of object 

(b) principal polarizability responses vs. time (as in Figures 2-4) 
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(c) identification as intact UXO or not single UXO (e.g. scrap, scrap+UXO, multiple UXO) 

 

The priority dig list contains 1533 anomalies that we identified in the Priority 1 area.  We 

estimated that 78 +- 5 single UXO are present.  Despite the fairly low estimated numbers of 

intact single UXO, many objects have low amplitude responses, and hence in order to have less 

than 1% probability of leaving any UXO behind 835 anomalies need to be dug based on the 

analyzed data.  If that probability would be 10%, 808 anomalies need to be excavated.  

 

Estimation of Receiver Operating Characteristic (ROC) Curves  

This section describes how we estimated ROC curves without knowing the ground truth.  Given 

a set of objects with probability p of being UXO and a threshold p0 for considering object with 

p≥p0 to be identified as UXO, if p≥p0 then all are considered UXO.  However, on average a 

fraction (1-p) of them were not actually UXO, so they were false alarms.  If p0>p then all are 

considered non-UXO (scrap), but on average a fraction p of them were actually UXO, so these 

are missed identifications.  Extending this to a set of m objects with probabilities pi, i=1, m of 

being UXO, the expected overall false alarm rate is  

      ∑
≥

−
0pp

ip1
m
1      (1) 

and the expected overall false negative rate is  

      ∑
< 0pp

ip
m
1      (2) 

where these rates are per total number of targets. Given the same set of identification 

probabilities, the expected number of UXO is  
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and of non-UXO is  
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i

i
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i
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where the uncertainties are given by the square root of the sum of the variances of the m terms in 

the sums, and are the same for the two sums. Using these to renormalize Eqs. (1) and (2), the 

expected false alarm rate per non-UXO is  

     
∑
∑

−

−
≥

i
i

pp
i

p1

p1
0i ,      (4) 

and the expected false negative rate per UXO is  

     
∑
∑

<

i
i

pp
i

p

p
0i .      (5) 

The ROC curve for the identification problem described above is given in Figure 20.  
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Figure 20: Estimated ROC curve for the targets priority dig list. 

 

6.  COST ASSESSMENT 

 

Our preferred mode of operation involves detection and characterization/discrimination at the 

same time.  The advantage of this mode of operation is that target reacquisition is not necessary 

for discrimination.  Hence, this eliminates surveying costs and a second, cued, survey at the 

expense of smaller daily coverage.  We demonstrated this mode of operation in the Priority 1 

area.  It took us 9.5 days to cover the area (~0.5 acres/day) and 2 days to measure responses in 

the GPO area.  The field crew consisted of two people.  
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APPENDIX A.   

UXO DISCRIMINATION USING TRAINING DATA  

 

Training data consisted of a set of principal polarizability responses at 34 logarithmically spaced 

times centered from 140 μs to 1400 μs after transmitter shut-off.  This data set consisted of 35 

UXO from the GPO area, 12 responses of 37 mm, 2.75" and 81 mm UXO acquired in our local 

test facility, 16 responses of 2.75", 81 mm and 105 mm UXO from the YPG Calibration Grid, 

and 179 scrap responses from our survey in Camp Sibert, AL.  Discrimination was made for 

UXO vs. scrap responses.   

 

The data time interval was sub-divided logarithmically into a number ndiv of sub-intervals (e.g., 

6).  The product of each principal polarizability with its sample time was averaged over each of 

these intervals.  Since there are three principal polarizabilities, this results in nfeat = 3ndiv reduced 

data, hence forth called ‘features’. Additional feature used in the analysis was a median 

loge(magnitude) (in m3) which increased the total number of features nfeat to 3ndiv +1.  The 

number of sub-divisions ndiv was chosen using cross validation.  In cross validation, an analysis 

method is applied to most of a training data set and the results are used to predict something 

about the remaining (excluded) training data.  This is done many times, excluding a different set 

of training data each time, and a choice made, e.g., the value of ndiv, based on what gives the best 

predictions averaged over many times.   
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In our application, two thirds of the training data were randomly selected for direct use in 

training, and one third was reserved for later calibration and is termed ‘reserved data’.  Based on 

the selected 2/3 of the training data, the probability that an observation is due to scrap is 

estimated from a ratio of empirical probability density estimates for feature values.  Empirical 

probability distributions are probability distribution estimates made based on observed data.  

Empirical probability distributions will be constructed below.  

 

Within the selected 2/3 of the training data (‘non-reserved’ data), additional responses were 

randomly selected for exclusion in cross validation, and are termed ‘excluded data’.  In this 

work, a constant number of UXO training data, and a constant number of scrap training data 

were excluded at a time, in roughly equal proportions.  The number of excluded data was chosen 

so that one response was withheld at a time from the smaller of the sets of non-reserved UXO 

and scrap training data.  In cross validation one UXO and one scrap were withheld from the 

training responses at a time.  This was cycled through all excluded responses excluding each 

scrap and each UXO responses once.  

 

We estimate empirical probability densities separately for UXO and scrap classes.  In 

constructing an empirical probability distribution for either UXO or scrap responses, it is 

desirable to smear probability associated with any particular data point into a region centered 

around it, as it is extremely unlikely that another data point will have exactly that value.  To get 

an idea of how much to smear out the probability associated with each data point in forming an 
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empirical probability distribution, a trimmed cross power matrix is constructed for variation of 

data vectors about their median values.  To do this, within training data for a class, values of 

each feature are sorted, the median and median absolute deviation (MAD) from the median are 

noted.  In finding these medians and MADs, responses reserved for calibration and responses 

excluded for cross-validation are omitted.  The values for each feature are then shifted by 

subtracting its median value.  As the scale of different features may vary from feature to feature, 

before forming the trimmed cross power matrix, the shifted feature values for each feature are 

normalized by dividing their MAD resulting in shifted normalized feature vectors, vi
(UXO) for 

UXO responses, and vi
(scrap) for scrap responses.  Trimmed cross power matrices C(class) are 

computed from these, with superscript (class) meaning either (uxo) or (scrap).  To compute the 

trimmed cross power matrix for a class, values of |vi
(scrap)| are computed for the class’s training 

data and sorted to find median(|vi
(scrap)|), omitting reserved and excluded data. Then the class 

trimmed cross power matrices are computed as 
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where ñ(class) ≡ n(class) − n(class)
rsrv - n(class)

with, and n(class)
rsrv, is the number of (class) responses 

reserved for subsequent calibration, and n(class)
with is the number of (class) responses excluded as 

a part of cross validation.  The sums are over all non-excluded non-reserved class responses, t 

denotes transpose, and median means median(|vi
(scrap)|). In the second sum, the contribution of 
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large magnitude feature vectors are downweighted.  Feature vector vi
(class) probability density 

function is estimated empirically as proportional to  
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=
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with  

 2/1)class(n/)n1()class( ))C(det()n~(K/1 featfeat+=          (A.3) 

where superscript (class) has been omitted from vi
(class) and vj

(class) in the denominator, and reserved 

and excluded vi
(class) terms omitted from the sum. Quantity in Eq. A.2 will be referred to as a 

density, although strictly speaking a density is normalized to have unit integral, and quantity in 

Eq. A.2 has not been normalized.  Eq. A.2 is a generalization of a Cauchy distribution, with the 

outer exponent being the smallest half integer value yielding a finite variance.  

 

In cross validation, densities (Eq. A.2) are computed for UXO and scrap classes from non-

excluded responses, and feature vectors vj
(uxo) and vj

(scrap) are computed for excluded training 

responses not reserved for calibration, where for the j’th response, the two differ in component 

offsets and normalizations.  The first is used in estimating the response’s likelihood as a UXO 

response, and the second in estimating its likelihood as a scrap response.  For a given response, 

assuming that the proportionality constant is the same for both UXO and scrap estimated 

densities, the probability that the response is due to a scrap would be  
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as the common proportionality factor cancels in their ratio.  The probability that is due to UXO, 

would be one less this number.  Allowing for a ratio of proportionality constants to be α2, the 

densities are then αf(uxo) (vj
(uxo)) and f(scrap) (vj

(scrap))/α (within a common scale factor), and the 

probability that the response is due to scrap is  

   
)v(f)v(f

)v(f
)v(p )scrap(

j
)scrap()uxo(

j
)uxo(2

)scrap(
j

)scrap(
)scrap(

j
)scrap(

+α
=       (A.5) 

and the UXO probability its compliment (1 – p(scrap)).  The probability in Eq. A.5 depends only 

on α2, , and .  The latter two are computed and saved for each 

excluded training datum, and proportionality constant α2 chosen subsequently.   

)v(f )uxo(
j

)uxo( )v(f )scrap(
j

)scrap(

 

In short, after computing f(scrap) (vj
(scrap)) and f(uxo) (vj

(uxo)) for the set of excluded responses not 

reserved for calibration, the set of excluded responses is changed, trimmed feature covariance 

matrices recomputed, and densities computed for the set of new unreserved excluded responses. 

Again, n(scrap)
with is the number of scrap training data withheld as a part of cross validation in each 

cycle, n(uxo)
with is the similar number of UXO training data withheld in each cycle.  Letting ncycl 

be the number of cycles of excluding some training data, ncycl × n(scrap)
with unreserved scrap 

training responses, and ncycl × n(uxo)
with unreserved UXO training responses are cycled through the 

excluded set.  For a given value of α2, the scrap probabilities associated with these values are 

summed as  

    ∑=
reservednot,exludedj

)scrap(
j

)scrap()scrap( )v(pn~        (A.6) 
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Since the number of scrap responses that have been thus excluded is known to be ncycl × 

n(scrap)
with, parameter α2 is adjusted, so that  

<ñ(scrap)> = ncycl × n(scrap)
with        (A.7) 

Eq. A.6 is monotonic in α2, so solution is unique.  Newton’s method started from α2 = 1, keeping 

α2 from decreasing to less than 0.1 of its previous value on any iteration, works very well.  Since 

p(scrap) = 1 - p(uxo), the criterion for setting α2 also sets the sum of p(uxo) (vj
(uxo)) to the number of 

UXO responses cycled through the excluded training data set ncycl × n(uxo)
with.   

 

For a prospective number of sub-intervals ndiv, cross power matrices C(class) are 3 ndiv+1 x 3 

ndiv+1 square matrices requiring at least 3 ndiv+1 vector outer products to be summed (in Eq. A.1) 

to avoid singularity.  This limits the prospective numbers of time interval sub divisions to  

    ndiv ≤ min(ñ(scrap), ñ(uxo))/3        (A.8) 

but sub-divisions near the limiting value are expected to give poor results due to variance in the 

cross power matrix estimates. 

 

In general UXO identifications are made by choosing a threshold value po
(uxo) above which 

responses are considered to be due to UXO.  To obtain as few missed identifications as possible 

for a given level of po
(uxo), it is desirable to have as few true UXO responses with p(uxo)  below 

this level as possible, that is, as many with p(scrap) = 1 - p(uxo) below po
(scrap) = 1 - po

(uxo) as 

possible.  To select a number of interval sub-divisions that will work well with a variety of 

threshold values, we choose ndiv minimizing the sum  
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If some UXO response looks totally like a scrap response then it would contribute 1 to <ñ(miss)> 

in summation in Eq. A.9; if it looks nothing like scrap responses it would contribute 0 to 

<ñ(miss)>.  So, quantity <ñ(miss)> is a measure of how much the UXO training data look like scrap 

responses under the classifier (choice of ndiv) being considered.  For each value of ndiv tried, 

<ñ(miss)> is computed using values p(scrap) (vj
(scrap)) which are computed using cross validation.  

 

Recapping, 1/3 of the training data is reserved for later use; the remaining UXO and scrap data 

are randomly ordered within each of these classes.  A sequence of candidate ndiv values are 

cycled through an outer loop.  Sets of excluded UXO and scrap training data are chosen starting 

with the first on their randomly ordered lists.  Trimmed feature covariance matrices are 

computed excluding these and the reserved data.  Quantities f(scrap) (vj
(scrap)) and f(uxo) (vj

(uxo)) are 

computed for the excluded data.  The sets of excluded responses are changed (moving down the 

random ordered lists), trimmed feature covariance matrices recomputed, and densities computed 

for the new set of unreserved excluded responses, based on the non-excluded unreserved 

responses.  After cycling essentially all of the non-reserved training data through the excluded 

sets, α2 is chosen (for the current ndiv) using Newton’s method to enforce criterion in Eq. A.7.  

That is, the sum of scrap probabilities over responses that have been, in turn, excluded from the 

covariance matrix sums (Eq. A.1) and the empirical density sum (Eq. A.2), is equal to the 

number of scrap responses among these.  Then, with this value of α2, the sum of estimated scrap 

probabilities over the UXO responses that have been in turn excluded, is computed (Eq. A.9).  
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This whole sequence is repeated for each candidate value of ndiv, and ndiv giving the lowest value 

of Eq. A.9 is selected.  

 

Once ndiv has been selected, covariance matrices C(uxo) and C(scrap) are recomputed using all non-

reserved training data to compute feature medians and MADs for UXO and for scrap responses, 

and in forming the covariance matrices themselves.  Similarly, all non-reserved training data are 

then used in reforming empirical distributions for scrap and UXO classes analogously to Eqs. 

A.2 and A.3 but summed over all the non-reserved responses, omitting any self-response terms 

(i=j), with the numbers of non-reserved UXO and scrap responses ñ(uxo) and ñ(scrap), replacing 

ñ(class) appropriately.  Then all data, reserved and non-reserved, is used in computing an estimated 

number of scrap responses <n(scrap)> analogously to Eq. A.6, and α2 reselected, so that the 

resulting <n(scrap)> is equal to the total number of scrap responses, to calibrate the resulting 

empirical distributions and probabilities.  In this step, the inclusion of non-reserved data (which 

entered into the covariance matrices) in the probability sums used in the final calibration, may 

bias the resulting probabilities somewhat, but is thought to be more than compensated for in 

reduced variance in the final value of α2 obtained.  The inclusion of the 1/3 of reserved data, that 

was omitted in estimation of the feature covariance matrices, in the probability sum <n(scrap)>  

used in the final calibration, lessens the effect of any such bias.  

 

The resulting covariance estimates, empirical probability distributions for vscrap and vuxo and 

proportionality constant α2 are then used to evaluate the probability that a response is due to 
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scrap through Eq. A.5 evaluated using the response’s feature vector, shifted and normalized as a 

prospective scrap response vscrap and as a prospective UXO response vuxo.  
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