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Summary
We developed a workflow adaptation and scheduling system for Grid workflow. The 
system currently interfaces with and uses the Karajan workflow system. We 
developed machine learning agents that provide the planner/scheduler with 
information needed to make decisions about when and how to replan. The Kubrick 
restructures workflow at runtime, making it unique among workflow scheduling 
systems. The existing Kubrick system provides a platform on which to integrate 
additional quality of service constraints and in which to explore the use of an 
ensemble of scheduling and planning algorithms. This will be the principle thrust of 
our Phase II work.
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1 Background

1.1 Problem 
Coordinating the scientific and business oriented computing tasks of a virtual 
organization – a distributed collaboration that may span organizational and 
national boundaries -- requires sophisticated resource management technology. A 
computing Grid is a loosely coupled collection of compute, storage, and network 
resources assembled by a virtual organization to support its activities; with those 
resources coordinated by software called Grid middleware. The plan that describes 
how those distributed services and software components interact with each other 
to achieve a particular computing task is termed a Grid workflow and is an 
essential Grid middleware element. Workflow management software needs to be 
developed to provide a way of coordinating job scheduling, file transfer, and other 
services involved in the execution of a Grid workflow.

Although there are many heuristics that have been developed for Grid workflow 
scheduling, most of the research has focused on static scheduling. That is, a 
mapping from an abstract description of the workflow to concrete resources is 
done prior to the start of the workflow’s tasks, and this mapping is not altered 
while the workflow’s tasks are processed. A Grid however is by definition a loosely 
couple collection of resources, some of which could be volatile: storage and 
compute resources are constantly being upgraded and modified; new releases of 
software libraries become available; Grid services have different levels of stability 
and responsiveness. To achieve acceptable levels of service, workflow 
management systems must be responsive to these varying conditions. For 
example, a long-running workflow might be able to increase its reliability by 
moving computation to a set of machines having more robust versions of critical 
software libraries. Another workflow might need to be altered by its user in 
response to unexpected intermediate results. Real time and interactive workflows 
in particular need tools that allow the workflow to be adapted in response to 
changing conditions and user requirements. Further, scheduling and planning 
heuristics should be employed in response to the structure of the workflow and 
associated Quality of Service (QoS) requirements. The ability to alter workflow in 
response to changing Grid resources and user requirements is essential.
Although the Grid community has delivered several Grid workflow systems, among 
them DAGMan [Thain03], Karajan [vonLaszewski05], Chimera [Foster02], and 
Gridflow[Cao03], these systems would benefit from the ability to re-plan on the fly. 
Workflow execution systems lack the information about high level workflow goals 
that would allow effective optimization. Further, they do not provide the users with 
both the tools needed to quickly assess how the workflow is progressing and how 
to change it.

Our purpose in this project is to develop a Grid workflow management and 
monitoring platform called Kubrick that will enable the runtime adaptation of Grid 
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workflow. The system will provide users an interface that provides them with 
information on the status of the workflow and viable options for optimization. In 
accordance with user provided constraints on QoS, Kubrick will be able monitor the 
workflow and relevant Grid resources and determine when it is appropriate to alter 
the workflow: either restructuring it or rescheduling the workflow using the most 
appropriate scheduling heuristic. We will achieve this goal using technologies in 
machine learning, automated planning, agent-based system design, and advance 
visual interface technology. 

1.2 Opportunity
Grid computing is going to be a multi-billion dollar business according to Gartner 
studies. Hence it provides the potential for an enormous growth within the 
software industry. We believe that by providing a sophisticated workflow 
framework that integrates knowledge about the way services and resources are 
utilized, we will develop a much needed Grid upperware component. Hence, we 
will address needs that are crucial for Grid a success within the business and 
research community. We believe that Kubrick’s runtime workflow management is 
one major component that will be needed by most Grid efforts. 

Our technical plan is to develop a workflow system that is more adaptive and 
robust than current systems while at the same time allowing more expressiveness 
in the workflow formulation. 
We see four opportunities for substantial improvement in management of Grid 
workflow. First is the ability to reschedule or rewrite workflow in response to 
changing Grid conditions. Current monitoring and prediction services do not deal 
effectively with temporary resource unavailability as many resources are 
integrated in a static fashion into the Grid. For example, suppose that a number of 
tasks of a workflow have been dispatched to a set of local scheduler queues. The 
workflow system could determine that a particular queue was having consistent 
delays. In response to this, the workflow manager could move the dispatched 
tasks to another queue, and modify bindings so that subsequent decisions in 
scheduling took this information into account. For example, Deelman[Deelman05] 
notes that the queue limitation in the Condor scheduler results in jobs being held 
idle in the queue. Giving the workflow system the ability to insightfully learn 
system dependencies and act upon that learned information would give it the 
power of adapting to unforeseen interactions likely to occur in a complex 
computing environment.

The second is the ability to take a wide range of QoS parameters into account in 
the scheduling of workflow. For example, the system could incorporate a QoS 
feature of reliability in scheduling workflow. In response to the known failure of a 
particular workflow branch, a workflow planning system could spawn mirror 
images of a task on a scheduler besides the one initially targeted, or could add 
debugging tasks to the branch that was known to have failed. Dong & Akl’s survey 
of Grid scheduling algorithms [Dong06] reviews several Grid workflow scheduling 
heuristics (among them list heuristics, genetic algorithm approaches, and 
clustering algorithms). They identified just one attempt [vonLaszewski03] to 
involve QoS requirements into Grid workflow scheduling, and this limited to the 
QoS dimension of bandwidth. Further, while von Laszewki’s algorithm takes into 
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account QoS in assigning resources to tasks (e.g. selection of host having 
connection guaranteeing highest bandwidth), the issue of how QoS constraints 
could be used to define workflow objectives is left open. A user should therefore 
be able to express QoS requirements at a number of levels (e.g. application, 
workflow task, and workflow) and have the scheduling determined by this 
information. 
The third feature is the providing of a powerful user interface that would users to 
both inspect and alter the current status of the workflow as it executes.
The fourth is the ability to adjust the selection of scheduling algorithms to the 
structure and context of the workflow. For example, in the QoS-aware Grid 
scheduler [vonLaszewski03], the scheduling algorithm used was a min-min 
algorithm augmented with the ability to consider QoS (bandwidth). A workflow 
which is to be optimized with respect to reliability (probability of completion) over 
makespan might be better served with another scheduling algorithm. A large 
workflow having a large number of similar and separable branches might be better 
scheduled with clustering algorithms. Our system will be unique in its ability to 
take both performance goals and structure of the workflow into account in 
selecting which scheduling heuristic to apply. Workflow scheduling studies suggest 
that this kind of context specific approach could result in significant performance 
improvements over existing systems.
To develop this system, we will leverage existing Grid middleware such as the Java 
CogKit including the Karajan workflow engine, and the Pegasus workflow planning 
and scheduling engine. Additionally, we will also use AI tools developed by Stottler 
Henke Associates, to make the workflow systems truly insightful. Among them are:

 Machine learning tools to do job characterization and to discover 
dependencies between jobs and resources. Relevant here are data mining 
algorithms developed for detection of adverse drug reactions (SafetyMiner 
project) and anomaly detection (MASRR project and ChAD CVFDT data 
mining system).

 Distributed agents to support the event based identification of opportunities 
to repair and optimize workflow. Relevant is our Simbionic agent toolkit and 
Agent Based High Availability (ABHA) distributed agent system.

 Additional planning and scheduling tools where needed to support the 
online adaptation of workflow. Here, the Aurora planning and scheduling 
system can provide relevant technology.

As a result a powerful enhanced workflow system will exist that provides a number 
of critical and unique features such as: 1) user directed adaptation of Grid 
workflow during execution; 2) flexible delegation of workflow management tasks 
amongst distributed workflow engines and planners; 3) goal directed learning of 
workflow properties and dependencies; 4) automated integration of workflow 
failure diagnosis into subsequent workflow execution; and 5) the ability to 
selectively add robustness features to workflow branches.

1.3 Technical approach
To recap, our approach is to develop a Grid workflow adaptation service that can 
be used by workflow generators, schedulers, and execution engines to achieve 
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runtime performance not previously possible. There are two reasons we believe 
that we will be able to offer improved performance. First, the Kubrick service will 
be able to take into account a broad spectrum of Quality of Service (QoS) metrics 
in assessing the state of workflow and in determining whether and how to adapt 
the workflow. Previous studies in Grid workflow management have shown that QoS 
can figure prominently in improving workflow performance, but few metrics 
(beyond bandwidth and makespan) have been considered. Secondly, there has 
been no detailed exploration of how an ensemble of workflow scheduling heuristics 
can be used selectively taking into account workflow structure and the dynamics 
of the Grid environment in which the workflow executes. Further, there has been 
no serious examination of how best to apply rewriting of workflow graph structure 
at runtime. We will develop algorithms that allow situation-driven scheduling and 
workflow graph rewriting. 

Our work will be conducted in the context of a production Grid being used to 
support analysis of data produced by the Relativistic Heavy Ion Collider at 
Brookhaven National Laboratory. This is the STAR Grid and has a number of 
production workflows that could potentially benefit from the technology that will 
be developed in our project. The Advanced Photon Source project is another 
potential testing bed for our service: the workflow being developed for analysis of 
APS data is stream oriented and thus could benefit from the ability to reschedule 
workflow during execution time. 

To achieve the maximum benefit to DoE for our service, we will develop the 
capability of rewriting abstract as well as concrete workflow. The Condor DAGMan 
workflow execution system is used to manage concrete workflow for a number of 
advance workflow systems – among them Karajan and Pegasus. Thus, by providing 
an adaptation layer to DAGMan, potentially many workflow systems and users will 
be able to benefit from Kubrick’s capabilities. We will develop this capability in 
collaboration with the Condor development team.
During the second year of our Phase II effort, we will conduct extensive 
performance evaluations of the Kubrick service on the STAR Grid and with the APS 
project. Our commercial strategy will be to use these results as the basis for 
forming alliances in the electronic design automation (EDA) and financial services 
industries. 

2 Benefits
Grid architectures are playing an increasing role in public services. Three high 
profile examples include the real-time sensor Grids responsible for earthquake and 
tsunami alerting, the real time Grid efforts that are focused on the surveillance of 
critical national infrastructure such as groundwater, and the massive web-service 
Grids maintained by companies such as Yahoo! and Google that provide what have 
come to be perceived as essential daily services. This effort will provide a platform 
that will increase the efficiency and reliability of Grids – particularly those that are 
highly heterogeneous and dynamic. The monitoring and alerting Grids sited are 
particularly compelling examples.
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2.1 Relevance to federal and commercial markets
The Department of Energy supports a large number of international Grid efforts – 
both in the biological and physical sciences. Workflow management tools are being 
increasingly used to manage the complex data management and processing 
involved in these efforts. We are building a platform that can be used by workflow 
engines, static workflow schedulers, and workflow generators. We have 
demonstrated Kubrick’s ability to work with the Karajan workflow system, which is 
used by many projects within Department of Energy. Our work in Phase II will 
provide more functionality to Karajan. Further, during Phase II we will be working 
with the Condor distributed computing project to develop the capability to rewrite 
Condor workflow elements (directed acyclic graphs or DAGs) during runtime. Since 
Condor is used by hundreds of distributed computing efforts throughout the world, 
Kubrick could be an immensely valuable service to thousands of users planet wide.

In the commercial sector, workflow is increasingly becoming critical to business 
function. A critical issue is dealing with varying reliabilities of legacy code wrapped 
by web service interfaces. The Kubrick platform’s ability to restructure workflow in 
real time in response to quality of service constraints could provide one solution to 
this problem. Kubrick is particularly focused on the management of high 
performance scientific workflow. Applications in the electronic design automation 
(EDA) and financial services markets have requirements that are similar to those of 
the scientific workflows that Kubrick will initially support. 

Each of these software markets generate on the order of $10billion in sales per 
year. Given its potential benefit to users in these markets, we believe it reasonable 
to achieve $10million revenue from a commercial offering of Kubrick over the next 
five years.

The commercial offering of Kubrick could be integrated into an existing workflow 
management system – following the same approach taken in the development 
being planned for the deployment within Department of Energy. It could 
alternatively be sold as a complete workflow solution when packaged with an open 
source engine such as Karajan. Revenue would come from direct sales of the 
Kubrick system, through consulting services, and through licensing arrangements. 
The advantages to the consumers of Kubrick would be in faster time to market and 
increased efficiency.

3 Phase I goals
To review, the main goal of the Phase I work was development of a proof of 
concept of insightful workflow management for the Grid: in others words a system 
which could adapt workflow using insights derived from monitoring and modeling 
the workflow and associated Grid resources. To that end, our work focused upon 
the particular case of how an insightful workflow system could identify, describe, 
and deal with changes to the performance of critical resources. 

The principal deliverables and tasks – each now completed – of the Phase I efforts 
were as follows:

1. Knowledge engineering. With Argonne National Laboratory (ANL) staff, we will 
develop use cases workflow use and also refine system requirements. 
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Additional feedback from collaborators involved in the STAR Grid project will 
also be sought. This will include at least one face to face meeting with ANL staff 
and teleconferences as needed. Use cases involving workflow for the 
Advanced Photon Source experiment at Argonne National Laboratory 
were explored. The workflow adaptation technology developed during 
Phase I has been integrated and tested with the Karajan workflow 
engine.

2. Develop Workflow Agent Architecture. This architecture, based on the Karajan 
event model, serves as the basis for coordinating the adaptive components of 
workflow. We will use the ABHA and Simbionic agent systems to develop this 
core infrastructure. Event-based monitoring agents were developed to 
support workflow optimization and repair. This is discussed in Sections 
3.4 and 3.5.

3. Develop Learning Agents. We will develop a collection of learning agents for 
characterizing workflow behavior and learning dependencies between 
resources and workflow elements. For example, the CVFDT algorithm could be 
used to develop a decision tree for identifying factors impacting the completion 
time of a workflow item. Rules are stored with the workflow template and are 
actively integrated into workflow monitoring to detect critical events. Learning 
agents were developed using he WEKA machine learning API and 
provide information necessary for workflow scheduling algorithms. 
Experiments are discussed in Section 3.7

4. Develop Adaptation Agent. A class of agents that respond to Karajan requests 
to adapt workflow in response to conditions of the grid. An initial 
implementation would involve developing a wrapper for the Pegasus system. 
Additional agents might include an interface to the Aurora planner. We 
implemented runtime workflow rewriting – discussed in Section 3.5 – as  
well as scheduling algorithms used in Pegasus and some not 
implemented in that scheduler.

5. Develop Robustness Annotations and Features for Karajan. This would include 
the ability to partition workflow amongst running engines and support for 
reliability primitives. Support for reliability-based workflow adaptation 
was implemented and results are discussed in Section 3.6

6. Develop Initial Prototype. Discussed in the remainder of this Section.

7. Test Prototype Discussed in the remainder of this Section.

8. Prepare Final Report

9. Prepare Phase II Proposal. 

The learning and adaptation mechanisms implemented in Phase I provide a core 
set of features from which to start development of the Phase II system.

4 Solution: The Kubrick Grid Workflow Management System
Kubrick is a system that provides scheduling and workflow repair capabilities. A 
workflow engine (e.g. Karajan) will ask Kubrick to schedule an abstract task. 
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Kubrick will transform this task into concrete executables and resources to use (a 
concrete job), or into an abstract workflow that represents how to accomplish the 
task. Kubrick then monitors the execution of these concrete jobs and workflows 
and will consider other transformations for the original task whenever the ones it 
has tried have not completed successfully or progressed as expected. Next we 
summarize these Kubrick functionalities and describe the techniques used to 
achieve them:  

 Kubrick schedules tasks. It decides on the task resources to use and use 
existing Karajan’s1 facilities to actually execute the task. Scheduling 
algorithms use performance models (e.g., jobs’ expected execution times) in 
order to optimize the assignment of resources. These algorithms consider 
the workflow structure when making these assignments.

 Kubrick transforms abstract tasks into concrete executables or abstract 
DAGs.  It executes both with the help of Karajan. Which executable or DAG is 
to be chosen involves a "scheduling/optimization" decision. Kubrick chooses 
the executable/DAG that will run faster given the resource’s state. If needed, 
Kubrick tries different executables/DAGs without the workflow engine 
(Karajan) knowing that these transformations have been done for the 
original workflow. Performance models (see below) are used by the service 
to prune the space of possible executables/DAGs to associate with a task.

 Kubrick learns performance models from historical data. These models 
provide estimates of execution times for an executable under a given 
resource configuration. These estimates are used by the scheduler when 
assigning resources and are used by the monitoring component (see below) 
to evaluate progress and consider re-scheduling if needed. Kubrick infers 
performance models for DAGs from those for executables.

 Kubrick monitors task/DAGs execution by comparing expected versus actual 
execution time and progress. It uses a CPM/PERT criterion to decide when it 
should re-schedule a task: the system monitors the critical path (CPM) of a 
workflow and uses probabilistic estimates of expected progress (PERT) to 
decide whether to re-schedule [Sample et. al, 2002, Lawrence 1997].

In the next sections we explain each of the implemented Kubrick components 
supporting the above functionality. 

4.1 Workflow adaptations:  abstract task representations

Kubrick takes as input abstract tasks and produces concrete jobs to be executed. 
A task is abstract in that (i) does not specify particular resources to use, (ii) does 
not specify the specific executable program to use, or (iii) it denotes a high-level 
specification whose realization accounts to execute one of many possible 
workflows describing different ways to achieve the task. Conditions (i) and (ii) are 
1 Any workflow engine shall use Kubrick. Kubrick might actually use different workflow engines in order to 
execute a task (for instance, transforming a task into a workflow that is executed by Condor). The phase I 
prototype used Karajan as the default workflow engine. 
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common to other systems (e.g., Pegasus [Deelman05]). Condition (iii) is a Kubrick 
feature inspired by Artificial Intelligence Hierarchical Task Planning Languages 
[Ghalab et al., 2004]: an abstract task represents “a goal” that needs to be 
achieved (e.g., solve a linear equation), and there could be many ways such goal 
can be achieved (e.g., use LU factorization, use an iterative method, BiCG ). Using 
this representation feature, the workflow designer does not specify how to perform 
the task but rather which task to perform. Kubrick is in charge of deciding how to 
execute the task by assigning resources, deciding on the executable 
configurations, and by recursively transforming an abstract workflow into concrete 
executables.  Abstract tasks let Grid users specify workflows in high level terms 
proper of their problem domain facilitating the use of the Grid by non technically 
Grid savvy users.  A shared library of workflows can be used by a group of users. 
The technical challenge is to efficiently find a way to realize an abstract task 
without completely exploring the possibly huge set of different ways a task could 
be performed.   

Example

 The following workflow is a Karajan specification of a workflow to solve a linear 
equation Ax=B :  

<project>

  <include file="cogkit.xml"/>

  <include file="Kubrick.xml"/>

  <solveEquation A="a.data" B="b.data"/>

</project>

The file “Kubrick.xml” is a Karajan module which defines the element 
solveEquation and other Kubrick convenient elements. Two methods are associated 
with this task: LU and BiCG. The LU method is added to Kubrick as follows (see 
Figure 1 for a graphical representation of the LU and BiCG workflows):

<addMethod name=”LU-factorization” task=”solveEquation”>

   <applicability> true </applicability>

   <rank n=1/>

   <logic>

          <task name=”split” A={A} />

          <task name=”lu-process-1” A={A}  B={B} output= L />

          <task name=”lu-process-2”/  A={A} B={B} output =U/ >

          <task name=”merge” L={L} U={U} output=X />

    </logic>

   <resourceConstraints>

             split.processors > 4

   </resourceConstraints>
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</addMethod>

As illustrated in the declaration above, a task method will has associated the 
following information:

 Applicability: conditions that must be satisfied for Kubrick to apply the 
method (not implemented in phase 1)

 Rank: the user can “prioritize” the different methods. Kubrick will use such 
rank when deciding which method to use. In the prototype, Kubrick selects 
methods by calculating the expected completion time of the method’s 
workflow (more later) and used the rank to favor a method when 
completions times are about the same for different methods.

 Logic: a DAG description defining the subtasks that should be executed. The 
DAG structure is derived from the relationship among tasks’ inputs and 
outputs. Languages like Chimera [Foster 2002] can be used to specify the 
DAG. In phase II we will explore the idea of providing a graphical interface to 
define such graphs.

 Resource constraints: description of constraints used when selecting 
machines/clusters where to execute a task. In the example above, the split 
task should be executed in a machine with at least 4 processors. The 
language to specify constraints is similar to that of classAds used by the 
Condor system [Thain03].

In the next sections we will illustrate how and when the LU and BiCG workflows are 
used.
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Figure 1. DAGs associated with the LU and BiCG transformations. The DAGs do not correspond to 
actual implementations of the LU and BiCG. The DAGs serve to illustrate the scheduling of workflows 
using parallel tasks (LU) versus those using sequencing. Edges values indicate the size of data 
communicated between tasks, values that influence the scheduler decision. 

{end of example}

4.2 Kubrick interactions with the workflow engine

Kubrick provides a workflow engine independent mechanism to efficiently execute 
an abstract task description.  Each of the possible ways a task can be realized is 
called a task transformation. The result of a task transformation is either a 
concrete workflow or an abstract workflow. Kubrick chooses which transformations 
to apply, applies such transformation, and executes the resulting workflow. To 
execute a DAG, Kubrick instantiates the DAGs for a given task, creates a Karajan 
workflow specification, and asks Karajan to execute the workflow. The major work 
of Kubrick is to keep track of all transformation and resource configurations that 
have been tried for a task. 
A high-level description of Kubrick’s algorithm to apply task transformations is as 
follows: 

 Receive an abstract task specification to execute

 Create a concrete job description, possibly by defining a DAG workflow to execute 
the job

- The concrete job description depends on the availability of resources: the 
“best way to execute the job”.

-To execute a DAG workflow, Kubrick uses the same workflow engine that 
submitted the job in the first place.
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- Kubrick maintains the relationship between the original job and any tag 
transformations derived from it.

- To execute a basic job (e.g., submit a job to a Condor queue), the Kubrick 
service uses the usual workflow engine facilities to do so.

Monitor the execution of the job and re-schedule the job if QoS are violated.

Notice that Kubrick does not replace any of the functions of the workflow engine 
(Karajan in our case). Kubrick uses the workflow engine to carry on the execution 
of any task transformation and hides from the workflow engine all the 
transformations carried on to successfully execute an abstract task.  By applying 
these transformations to a task, Kubrick is dynamically adapting the original task 
until it succeeds or it should be declared to fail.

This way, Kubrick enhances a workflow engine by allowing the specification, 
execution and repair of abstract tasks without the workflow engine making a 
difference between concrete and abstract tasks. The following example illustrates 
the interactions between Kubrick and the workflow engine.

Example
Consider Karajan executing the abstract workflow {A;B} (do A then B). Suppose 
task A can be done in any of the following 2 ways: {A_1_1; A_1_2;A_1_3} or  
{A_2_1; A_2_2}, where each of the abstract task A_i_j can be done using 2 actual 
executables. Suppose B can be done in only one way. Then, without taking into 
account possible resource assignments, there are 12 different ways the original 
workflow can be executed.

Here is one possible way the abstract workflow {A;B} could end up being executed 
when using Kubrick.

1. Karajan asks Kubrick to schedule task A
2. Kubrick decides to transform A into workflow {A_2_1; A_2_2}. 

3. Kubrick asks Karajan to execute {A_2_1; A_2_2}

Notice that the workflow engine (Karajan) does not maintain any relationship 
between {A,B} and {A_2_1;A_2_2}. Kubrick maintains such relationships. Here is 
how the execution continues:

 4. Karajan asks Kubrick to schedule task A_2_1
5. Kubrick assigns an executable to A_2_1, say A_2_1’

        To execute A_2_1’, a concrete job, Kubrick relies on Karajan facilities to 
execute job.

6. Kubrick asks Karajan to execute job A_2_1’
7. Eventually A_2_1’ is executed successfully. Karajan informs Kubrick that 

A_2_1’ is done.
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8. Kubrick informs Karajan that A_2_1 is done

9. Karajan continues with the execution of workflow {A_2_1; A_2_2}
10. Karajan asks Kubrick to schedule task A_2_2

Notice that Kubrick repeatedly uses Karajan to execute different workflow 
transformations. Technically, these are different instances of the Karajan workflow 
engine, each executing a particular workflow. All these Karajan instances use the 
same Kubrick service, which has all the information to relate these instances of the 
Karajan engine and the corresponding workflows associated with a task 
transformation.

Suppose the execution of task A_2_2 eventually fails, causing the execution of 
workflow {A_2_1;A_2_2} to fail. Kubrick will then repair the original workflow 
{A,B} by another transformation for A, namely {A_1_1;A_1_2;A_1_3}. Assuming the 
execution of this workflow and those generated for B will eventually succeed, the 
original workflow {A, B} will then succeed. The instance of Karajan executing such 
workflow will declare the workflow successful, and it will never know of any of the 
many other workflows that were tried when executing A.
In Section 3.6 we will show a trace illustrating the above interactions when 
executing the solveEquation workflow.

4.3 Kubrick scheduling component: generating concrete workflows

Scheduling refers to decide which resources assign to a task or workflow.  In our 
case, to which clusters and queues should a job be sent. Kubrick leverages in state 
of the art workflow scheduling techniques to select such resources (see Section 
5.3.4 for a review).  These techniques consider the whole workflow structure when 
doing scheduling decisions rather than stand alone tasks. Since solving this 
problem is NP-complete, most algorithms use scheduling heuristics like min-min, 
min-max, sufferage, genetic algorithms, etc., to find a good but sub-optimal 
solution to the problem.
Kubrick provides implementation of some of these techniques (i.e., min-min, 
max-min, suffrage), and defines APIs to add new techniques to the service. Since 
more of these techniques require performance models of task execution (e.g., 
expected job runtime on a given cluster), Kubrick has a learning component 
providing such estimates.  The more jobs are run through Kurbrick, the more 
accurate these estimates are, and the better the scheduling decisions are. 
In addition to the conventional functions of a Grid scheduler, Kubrick’s scheduling 
component is used to evaluate workflow transformation when repairing a workflow 
(see details below).  The component is used to answer two types of questions 
before doing any actual scheduling: (i) the expected execution time of a given 
workflow/task, and (ii) provide alternative resource assignments for an already 
scheduled tasks.
The algorithm below illustrates the overall schema of how heuristics like min-min, 
max-min, suffrage, etc. are used to map workflow [Mandal et al. 2005] :
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Scheduling algorithm:

 Input = A Workflow (DAG or unmapped tasks)

Output: map from tasks to resources

 

Mapping = {}

While all tasks in workflow not mapped do 

      NextToMap := unmapped tasks whose parents have been scheduled

      findBestSchedule(nextToMap, mapping)

  endWhile

FindBestSchedule

   Input:  set of unmapped tasks and current mapping

   Output: extend mapping by mapping all tasks

 while all tasks not mapped do

   foreach  Task t do

        foreach Resource R do

              ECT(t,R)= rank(t,R) + EAT(R);

        endForeach

         

        Find minECT(t,R) over all R

       (t’,R’) = use heuristic to select next task to schedule (e.g., min-min, max-min)

        mapping = mapping + { (t’,R’) }

        update EAT(R’)

endWhile

where:

   ECT(t,R)  = Estimated Completion Time of executing task t on resource R

   EAT(R) = Estimated Available Time of resource R

   Rank(t,R) = time/cost to setup task t on resource R. This includes time needed to 
move the

       data produced by predecessor tasks to the resource R.

  heuristic = criteria used to decide which task should be scheduled next.

Example
Consider the workflow to solve a linear equation. The abstract task solveEquation 
can be solved using either LU or BiCG methods. Kubrick will calculate the 
estimated completion time (ECT) for each of these methods, and choose the one 
with the minimum completion time. For purpose of the illustration, suppose we 
have 4 machines (m1,m2,m3,m4) with the following estimated for task execution 
and data moving costs:
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1. Assume a homogeneous system where the execution of a task is more or less 
the same in each machine.

2. Tasks split, lu-process-1, lu-process-2 and merge have EET of 12.4, 13.09, 
12.33 and 16.13 (seconds).

3. Tasks BiCT-process-1 and BiCG-process-2 have EET of 20.46 and 26.25.
4. The cost of moving one unit of data (e.g., a megabyte) from machine m_i to 

m_j is 0.5 (if i >j), 0 (if i=j) and 1.0 (if i < j). 

(The values above facilitate to verification and understanding of the trace shown 
below. Real workflows have thousands of tasks and Grids are heterogeneous and 
large).

Using a min-min heuristic, the algorithm described above will generate the 
following schedules, indicating that the LU transformation should be executed:

Execution context karajanWorkflows/solveEquation.xml

Execution context waiting for done karajanWorkflows/solveEquation.xml

Kubrick solving equation Ax=B

SHAI Min_Min_Scheduler: scheduling solve-equation

***** BiCG-Transformation schedule

===========================================

 Schedule Expected completion time = 62.850716

 Resource assignments: 

// added comment: ECT = Estimated completion time, EET= Estimated Execution 
Time 

Resource: m2

  biCG-process-1  [ECT =20.461637, EET = 20.461637]

  biCG-process-2  [ECT =46.720356, EET = 26.258718]

  merge[ECT =62.850716 , EET = 16.130358]

---------------------------------

***** LU-Transformation schedule

===========================================

 Schedule Expected completion time = 46.867905

 Resource assignments: 

Resource: m2

  merge  [ECT =46.867905 , EET = 16.130358]
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  lu-process-1  [ECT =30.49587, EET = 13.090506]

---------------------------------

Resource: m3

  lu-process-2  [ECT =25.737549 , EET = 13.332184]

  split  [ECT =12.405364 , EET = 12.405364]

---------------------------------

Kubrick adapting solve-equation --> using LU-Transformation

The scheduler does a sensible work given our assumptions: (i) BiCG being a 
sequential task makes sense to be executed in one machine so there is not cost 
associated with moving data among machines; (ii) LU being parallel should be split 
among machines. Given the cost of moving data, parent tasks (e.g., split) whose 
children are executed in a different machine should be scheduled in a machine 
with higher index than their children: for instance, since the split task is scheduled 
in m3, lu-process-1 should not be scheduled in m4.

Once the LU-transformation schedule is chosen, Kubrick generates the following 
Karajan concrete workflow representing the transformation:

<project>

<include file="cogkit.xml"/>

<include file="Kubrick.xml"/>

//added comment: the property “kid” is a unique identifier added by Kubrick to a 
task specification. The id

//  helps identify a task as part of a workflow, which in turns facilitates Kubrick’s 
monitoring of a workflow

//  execution.

<execute task="split" A="a.data" B="b.data" kid="kid-15" machine="m3"/>

<parallel>

    <sequential>

           <execute task="stage-data" srchost="m3" desthost="m2" size="10" 
kid="kid-18"/>

           <execute task="lu-process-1" A="a.data" B="b.data" kid="kid-16" 
machine="m2"/>

  </sequential>

   <sequential>

          <execute task="lu-process-2" A="a.data" B="b.data" kid="kid-17" 
machine="m3"/>

          <execute task="stage-data" srchost="m3" desthost="m2" size="10" 
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kid="kid-21"/>

    </sequential>

  </parallel>

 <execute task="merge" A="a.data" B="b.data" kid="kid-22" machine="m2"/>

</project>

Notice that the definition of the concrete workflow includes the data stage tasks 
entailed by the schedule. For instance, move the output of the split task from 
machine 3 to machine 2 where the the lu-process-1 task is to be executed. Kubrick 
will ask then Karajan to execute the workflow, and start the monitoring of the 
workflow. In the next section we show the trace of the monitoring and 
re-scheduling actions taken by Kubrick.

{end of example}

4.4 Kubrick monitoring and rescheduling component

Re-scheduling in Kubrick happens whenever a task transformation is applied. More 
often this is the case when a previous task transformation fails. However, Kubrick 
proactively monitors a task/workflow execution to compare expected execution 
times versus actual execution times. If for instance, a task execution is taken too 
long as to change the critical paths of the workflow it belongs to, then Kubrick 
might consider re-scheduling the task, by for instance, trying other resources for 
the task (i.e., moving a job stuck in a queue to another queue), or considering 
another task transformation. The decision to re-schedule takes into account the 
probabilistic nature of the estimated execution times used when scheduling.  In the 
trace below we illustrate this technique.

Example

Consider the execution of the LU concrete workflow described in the previous 
example. The following trace shows Kubrick monitoring of the workflow progress as 
it is executed by Karajan. The trace stops at the point were the execution of task 
lu-process-1 starts taking longer than expected:
Starting monitoring for workflow with id kid-23

Execution context C:\Projects\Kubrick\karajan\cog code\cog\tmp\workflow__202.xml

Execution context waiting for done C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__202.xml

//  added comment: workflow_202.xml is the name of the file containing the Karajan 
concrete workflow

//    description for the LU-transformation

//   As Kubrick detects that  Karajan starts/ends the execution of a task in the 
workflow the following

//   information is shown: EST = Estimated Start Time (time in seconds),  AST = 
Actual Start time
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//      ECT= Estimated Completion Time,  ACT = Actual Completion Time

SHAI Min_Min_Scheduler: scheduling split

Task split with id kid-15 started for workflow with id kid-23 [ EST= 0.0 ---  AST=0.391]

Running shai local: split

shai host completed the task --> split[execution time = 14]SUCCEED

Task split with id kid-15 ended for workflow with id kid-23 [ ECT= 12.405364 ---  
ACT= 14.641]

SHAI Min_Min_Scheduler: scheduling stage-data

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 0]SUCCEED

Running shai local: stage-data

SHAI Min_Min_Scheduler: scheduling lu-process-2

Task lu-process-2 with id kid-17 started for workflow with id kid-23 [ EST= 12.405364 
---  AST=14.641]

Running shai local: lu-process-2

shai host completed the task --> stage-data[execution time = 5]SUCCEED

SHAI Min_Min_Scheduler: scheduling lu-process-1

Task lu-process-1 with id kid-16 started for workflow with id kid-23 [ EST= 17.405365 
---  AST=19.656]

Running shai local: lu-process-1

shai host completed the task --> lu-process-2[execution time = 13]SUCCEED

Task lu-process-2 with id kid-17 ended for workflow with id kid-23 [ ECT= 25.737549 
---  ACT= 28.625]

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 5]SUCCEED

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR= 
2.6181011 AET= 17.703]

//added comment: VAR refers to the Variance of the estimated  execution time for 
lu-process-1

//       in machine 2.

In the trace above, the split operation is executed, and the lu-process-1 and 
lu-process-2 are started in parallel. The task lu-process-2 finishes and the 
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lu-process-1 has not finished after 17 seconds, time at which the task execution is 
declared “abnormal”. A task execution is declared “abnormal” when the execution 
time is greater than the expected completion time plus one variance of the 
estimation. The declaration of a task being abnormal triggers the rescheduling 
policy which might or not cancel the task execution (see below). If the task is not 
canceled, the rescheduling is repeatedly triggered after “variance” every seconds 
pass without the task being finished.

To decide whether to repair a workflow given a task execution delay we compare 
the estimated completion time for the workflow (WEC) against a new estimation of 
the workflow completion given a task delay and the actual execution time of 
finished tasks (WECT’). We reschedule if the task delay implies a delay in the 
overall workflow execution (WECT’ > WECT) and such workflow delay is significant, 
as given by the expression

[  (WECT’ – WECT) / σ  ] > 2

where σ is the standard deviation of the workflow completion time estimate, and 
such random variable has a normal distribution with mean WECT [Sample et. al, 
2002, Lawrence 1997 ](See section 5.3.4 for review of PERT techniques used to 
estimate workflow completion times).  Our re-scheduling expression then do a 90% 
confidence test to accept the hypothesis that a workflow execution is going to be 
delayed. WECT and σ are defined as

WECT  = Σ ECTi     and σ = √ Σ σi
2

where the sum is taken over the tasks in the workflow critical path, ECT i is the 
estimated completion time of the ith task in the critical path and σi

2 is the variance 
of such estimation.  

The trace below show how the criteria above work in our example: 
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Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR= 
2.6181011 AET= 17.703]

Kubrick: Task delay causes delays in workflow execution [ delay= 6.6214523 , 
previous workflow ECT = 46.867905 , new workflow ECT = 53.489357

Kubrick: checking if delay is significant ... 

[ delay = 6.6214523 , workflow ect standard deviation = 5.3028994 
,x=delay/sigma = 1.2486476]

 Delay is not significant (x < 2.0 standard deviations)

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR= 
2.6181011 AET= 19.703]

Kubrick: Task delay causes delays in workflow execution [ delay= 8.621452 , 
previous workflow ECT = 46.867905 , new workflow ECT = 55.489357

Kubrick: checking if delay is significant ... 

[ delay = 8.621452 , workflow ect standard deviation = 5.3028994 
,x=delay/sigma = 1.6257998]

 Delay is not significant (x < 2.0 standard deviations)

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR= 
2.6181011 AET= 21.703]

Kubrick: Task delay causes delays in workflow execution [ delay= 10.621452 , 
previous workflow ECT = 46.867905 , new workflow ECT = 57.489357

Kubrick: checking if delay is significant ... 

[ delay = 10.621452 , workflow ect standard deviation = 5.3028994 
,x=delay/sigma = 2.0029519]

*** Delay is significant with a 99% probability ( x > 2.0 standard deviations)

 Considering re-scheduling possibilities 

Possible to re-schedule using transformation BiCG-Transformation, with ECT = 
62.850716

Kubrick: do not re-schedule.. adaptation has greater ECT than current schedule
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Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR= 
2.6181011 AET= 23.734]

Kubrick: Task delay causes delays in workflow execution [ delay= 12.652451 , 
previous workflow ECT = 46.867905 , new workflow ECT = 59.520355

Kubrick: checking if delay is significant ... 

[ delay = 12.652451 , workflow ect standard deviation = 5.3028994 
,x=delay/sigma = 2.3859496]

*** Delay is significant with a 99% probability ( x > 2.0 standard deviations)

 Considering re-scheduling possibilities 

Possible to re-schedule using transformation BiCG-Transformation, with ECT = 
62.850716

Kubrick: do not re-schedule.. adaptation has greater ECT than current schedule

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR= 
2.6181011 AET= 27.765]

Kubrick: Task delay causes delays in workflow execution [ delay= 16.683456 , 
previous workflow ECT = 46.867905 , new workflow ECT = 63.55136

Kubrick: checking if delay is significant ... 

[ delay = 16.683456 , workflow ect standard deviation = 5.3028994 
,x=delay/sigma = 3.146101]

*** Delay is significant with a 99% probability ( x > 2.0 standard deviations

 Considering re-scheduling possibilities 

Possible to re-schedule using transformation BiCG-Transformation, with ECT = 
62.850716

Executing adaptation 

Once the execution of a workflow is deemed to be delayed, Kubrick must decide 
on how to fix it (if possible). In the prototype we considered two options: leave 
things as they are or try another adaptation for the abstract task the workflow is 
about.  In order to decide which option to take, the estimate completion time of 
each option is calculated and the one with minimum estimated completion time is 
chosen. There is another alternative that was not evaluated during phase I: 
re-schedule the unexecuted task of the given workflow [Sakellariou and Zhao, 
2004a].

The trace below completes the execution of the original abstract task to solve the 
linear equation:
Karajan canceling current workflow ….

Execution failed:

Aborted
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:kexecute @ karajanWorkflows\Kubrick.xml, line: 67

sys:sequential @ C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__202.xml, line: 7

sys:parallel @ C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__202.xml, line: 6

kernel:project @ C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__202.xml, line: 2

Execution context set done C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__202.xml

Kubrick adapting solve-equation --> using BiCG-Transformation

===========================================

 Schedule Expected completion time = 62.850716

 Resource assigments: 

Resource: m2

  BiCG-process-2[ect =46.720356][eet = 26.258718]

  BiCG-process-1[ect =20.461637][eet = 20.461637]

  merge[ect =62.850716][eet = 16.130358]

---------------------------------

Starting monitoring for workflow with id kid-45

Execution context C:\Projects\Kubrick\karajan\cog code\cog\tmp\workflow__231.xml

Execution context waiting for done C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__231.xml

{}

SHAI Min_Min_Scheduler: scheduling biCG-process-1

Task BiCG-process-1 with id kid-40 started for workflow with id kid-45 [ EST= 0.0 ---  
AST=0.313]

Running shai local: biCG-process-1

shai host completed the task --> biCG-process-1[execution time = 22]SUCCEED

Task BiCG-process-1 with id kid-40 ended for workflow with id kid-45 [ ECT= 
20.461637 ---  ACT= 23.031]

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 0]SUCCEED

SHAI Min_Min_Scheduler: scheduling biCG-process-2

Task BiCG-process-2 with id kid-41 started for workflow with id kid-45 [ EST= 
20.461637 ---  AST=23.031]
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Running shai local: BiCG-process-2

shai host completed the task --> BiCG-process-2[execution time = 29]SUCCEED

Task BiCG-process-2 with id kid-41 ended for workflow with id kid-45 [ ECT= 
46.720356 ---  ACT= 52.42]

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 0]SUCCEED

SHAI Min_Min_Scheduler: scheduling merge

Task merge with id kid-43 started for workflow with id kid-45 [ EST= 46.720356 ---  
AST=52.436]

Running shai local: merge

shai host completed the task --> merge[execution time = 17]SUCCEED

Execution context set done C:\Projects\Kubrick\karajan\cog 
code\cog\tmp\workflow__231.xml

Task merge with id kid-43 ended for workflow with id kid-45 [ ECT= 62.850716 ---  
ACT= 69.638]

Kubrick: adaptation BiCG-Transformation  succeed for task solve-equation

Execution context set done karajanWorkflows/solveEquation.xml

Ending monitoring for workflow with id kid-45

Got workflow status: SUCCEED

{end of example}

4.5 Kubrick QoS and service performance component

So far our description of Kubrick has focused on abstract tasks that can be 
decomposed into a workflow. Such decomposition stops when a service or program 
executable needs to be determined. Even at that level of detail Kubrick will use 
performance metrics to decide which service or program to use. Kubrick maintains 
a map from an abstract service category (e.g., data-transfer) to the specific 
providers of such service (e.g., ftp, gridFTp). When an abstract service is referred 
in a workflow then Kubrick will decide which provider to use. This selection is 
based on QoS characteristics of the service invocation (e.g., reliability, cost, 
speed), constraints of the service (e.g., the provider should be installed in both the 
source and destination hosts), and a user defined selection criteria (e.g., choose 
the fastest service, choose the most reliable).

Example
A Kubrick abstract service has associated a set of user defined properties that are 
used to evaluate services able to perform such task. For example,
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<define-abstract-service>

    <name>data-transfer</name>

    <args  names=”srcHost, file, destHost”/>

    <properties>

       <property name=”reliability” type=”double”/>

       <property name=”cost” type=”double”/>

       <property name=”speed” type=”double” info=”in Mbits/sec”>

    </properties>

    
<selectionCriteria>com.stottlerhenke.Kubrick.services.dataTransfer.SelectionCriteria
</selectionCriteria>

</define-abstract-service>

defines the abstract service “data-transfer”,  with parameters srcHost, file and 
destHost , and associated properties reliability, cost and speed. These properties 
are characteristics that can be asked of any provider for the task. The selection 
criterion class encapsulates the algorithm to select among providers for the task. 
For example, the implementation to select the most reliable service will look as 
follows:

public Service selectService(Task task, Set<Services> services, KubrickHandle 
Kubrick) {

    Double maxReliability = -1 ;//not set

    Service choosenService = null;

 

    For (Service service : services) {

       Double reliability = Kubrick.getTaskServiceProperty(task,service,”reliability”);

       If (reliability > maxReliability) {

            maxReliability = reliability;

            choosenService = service;

       }

    }

    return choosenService;

}

A provider for the service is defined as follows:
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  <service name=”ftp”>

     <abstract-service>data-transfer</abstract-service>

     <arguments names=”srcFile,srcHost,destHost” />

     <serviceHandler>com.stottlerhenke.Kubrick.services.ftp</serviceHandler>

     <constraints>

        <!-- the host and destination have ftp installed -->

        <and>

            <installed exec=”ftp” host={srcHost}>

            <installed exec=”ftp” host={destHost}>

        </and>

    </constraints>

    

   <property name=”number of times a service is run” type=”int”/>

    <property name=”number of times a service failed” type=”int”/>

</service>

defines the ftp service stating that it will be used only if “ftp” is installed in both 
the source host and the destination. The declaration also states “private” 
properties about the system that will be maintained by Kubrick. The serviceHandler 
class define the Java code that will be responsible for executing the service, 
updating the service “private” properties, updating the “task” public properties 
(i.e., reliability), and solving basic queries about the system (e.g., is ftp installed in 
a given machine). 2 Kubrick maintains the tuple <taskName, service, properties> 
storing the current value of properties for a particular service providing a 
particular task. The service handler for a service, informs Kubrick of changes in the 
properties values. For example, every time the “ftp” service is run, the ftp task 
handler will tell Kubrick of the new values for its properties. Kubrick uses the value 
of these properties to calculate the value of more complex Boolean expressions 
denoting service’s constraints.

{End of example}

Prototype trace
This section describes how Kubrick prototype implements the ideas above. As an 
example, we considered the following file transfer task, defined in Karajan using 
Kubrick enhanced tags (i.e., <transfer>):  

<project>

  <include file="cogkit.xml"/>

  <include file="Kubrick.xml"/>

2 A service handler is in charge of executing a given task. Since a Kubrick service definition just adds meta 
information about existing services, the implementation of a Kubrick task handler most often relies in the 
existing implementations for the underlying service. 

27



Stottler Henke Associates, Inc.             Final Report DE-FG02-06ER84519

  <set name="host" value="arbat.mcs.anl.gov"/>

  <for name="i">  <range from="1" to="5"/>

        <transfer srcfile="Test.data" desthost="{host}"/>

  </for>

</project>

The task is to move 5 times the same file “Test.data” from the current host to 
“arbat.mcs.anl.gov”. The Kubrick’s tag <transfer> denotes the abstract service of 
moving a data file to a destination. The service is “abstract” in that it does not 
specify the provider that should be used to do such transfer. The choice of such 
provider is Kubrick’s responsibility.

In the prototype Kubrick knows about 3 providers that could potentially be used to 
carry on the transfer task: ftp, gridFtp and gsFtp. The latest provider is not be 
installed in the destination host, thus Kubrick has two possible providers to use: ftp 
or gridFtp. Moreover, we assume that ftp is 50% reliable whereas gridFtp is 100% 
reliable. These are not the actual services reliability. We “injected” ftp failures for 
the purposes of the prototype demo. 

The trace below  shows Kubrick executing the workflow, selecting providers to 
transfer the data, and updating the service provider “reliability” estimates as the 
service is used. Kubrick selects the most reliable service when doing a data 
transfer (see below). Given the services reliabilities, the 5 data transfers are 
executed using the following order of services: gridFtp, ftp, gridFtp, gridFtp, ftp.  
GridFtp is used twice as much as ftp since gridFtp is twice as reliable as ftp. Below 
we discuss the service selection criteria illustrated by the trace, show simulation 
results when considering larger number of transfers, and compare nominal 
behavior of the service selection criterion (when the actual service reliability is 
known) versus its behavior when using reliability estimates.
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Execution context karajanWorkflows/Test_FileTransfer.xml

Execution context waiting for done karajanWorkflows/Test_FileTransfer.xml

SHAI Min_Min_Scheduler: scheduling file-transfer

Available services for task of type file-transfer

kftp

kgt2

kgsiftp

Service kgsiftp: the following constraint is false (installed  exec=gridftp 
host=arbat.mcs.anl.gov)

Service kgsiftp: the following constraint is false (installed  exec=gridftp 
host=localhost)

Service kgsiftp not considered.

Using criteria  --choose most reliable service –

Reliability of kftp=1.0 weightedReliability = 0.5

 tries 1.0 total tries =2.0

Reliability of kgt2=1.0 weightedReliability = 0.5

 tries 1.0 total tries =2.0

chosen service= kgt2

GT2: submitting task ... done
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// added comment:  second file to transfer

Kubrick transfering Test.data to arbat.mcs.anl.gov

SHAI Min_Min_Scheduler: scheduling file-transfer

Using criteria  --choose most reliable service --

Reliability of kftp=1.0 weightedReliability = 0.6666666666666667

 tries 1.0 total tries =3.0

Reliability of kgt2=1.0 weightedReliability = 0.33333333333333337

 tries 2.0 total tries =3.0

chosen service= kftp

Ftp: submitting task

    *** File transfer completed but too many packets lost 

// added comment:  third file to transfer

Kubrick transfering Test.data to arbat.mcs.anl.gov

SHAI Min_Min_Scheduler: scheduling file-transfer

Using criteria  --choose most reliable service --

Reliability of kftp=0.5 weightedReliability = 0.25

 tries 2.0 total tries =4.0

Reliability of kgt2=1.0 weightedReliability = 0.5

 tries 2.0 total tries =4.0

chosen service= kgt2
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// added comment:  fourth file to transfer

SHAI Min_Min_Scheduler: scheduling Kubrick_transfer

Running shai local: Kubrick_transfer

Using criteria  --choose most reliable service --

Reliability of kftp=0.5 weightedReliability = 0.3

 tries 2.0 total tries =5.0

Reliability of kgt2=1.0 weightedReliability = 0.4

 tries 3.0 total tries =5.0

chosen service= kgt2

// added comment:  fifth file to transfer

SHAI Min_Min_Scheduler: scheduling Kubrick_transfer

Using criteria  --choose most reliable service --

Reliability of kftp=0.5 weightedReliability = 0.33333333333333337

 tries 2.0 total tries =6.0

Reliability of kgt2=1.0 weightedReliability = 0.33333333333333337

 tries 4.0 total tries =6.0

chosen service= kftp

Data transfer service selection criterion.

In the prototype, Kubrick’s select the most reliable service when doing a data 
transfer. The reliability of a software product is usually defined to be “the 
probability of execution without failure for some specified interval of natural units 
or time” [Musa, 1998]. The probability of successful execution is measured by 
repeatedly operating a system according to the selected operational profile, i.e. 
selecting inputs according to the frequency constraints of the profile, for the 
specified unit of time.  The reliability is computed by measuring the percentage of 
those executions that terminate successfully. A reliability value is reported for each 
operational profile. The service reliability is then the weighted reliability over the 
given profiles (weights correspond to the frequency an operational profile is to be 
found under deployment). 

For our purposes, we have three operational profiles: small, medium and large size 
file transfers. A data transmission is successful if (i) the file is transmitted in his 
totality and (ii) the packet loss of the transmission is less than a given threshold 
(e.g., 10%). Packet loss is defined as the fraction of packets sent for which the host 
does not receive an acknowledgment from the destination. This includes packets 
that are not received by the destination as well as acknowledgments that are lost 
before returning to the host. Acknowledgments that do not arrive within a 
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predefined round trip delay at the source are also considered lost. This way, our 
measure of “data transfer reliability” includes a minimum of data quality transfer 
and speed performance.

In the prototype Kubrick estimates the reliability of a service as it uses the 
services. This is done according to the formula

Rel(s) = (# of successful service’s transfers)  /  (# of times the service is used)

where Rel(s) denotes the service reliability. The count of successful services 
transfers is always made with respect to the last SSM tries of the service. SSM 
represents the “service success memory”. Since we filter the service tries history, 
the value of SSM determines how responsive Kubrick is to the actual value of the 
service reliability.  Kubrick could also proactively estimate the value of the service 
reliability by setting up measurement tests for such purpose, like is done in the 
INCA project [Smallen et al, 2007].

The implementation of choosing the most reliable service criterion takes into 
account the frequency with which a service has been tried, so that services are 
“sampled” proportionally to their reliability. Let n i denote the numbers of times 
service i has been tried (we assume ni > 0), and n denote the number of total data 
transfers (i.e., n = Σ ni). Let Rel(si) denote the “reliability of service i" and let wi 
denote the “weighted reliability of service i” defined as follows:

wi = Rel(si) * [ 1 – ni/n].

Then the service selection criteria will select the service whose weighted reliability 
is maximum, breaking ties in favor of services that have been tried the less. 

The number of times a service is used is always calculated with respect to the last 
DTM services tries made by Kubrick. The value of DTM represents the “data 
transfer memory” of the selection criteria. In particular, it will be the case that a 
service is guaranteed to be selected at least every DTM data transfers.

In our example we have two services.  Let’s assume service 1 has higher reliability 
than service 2. Then the selection criteria rule indicates that service 2 (the service 
with less reliability) should be selected in favor of service 1 whenever 
                                                    
w1

< w2

which reduces to 

                  Rel(s1) *[1 – 
(n1/n1+n2)]

< Rel(s2) * [1 – n2/n1+n2]
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                        Rel(s1) * n2 < Rel(s2)*n1

                                      n2/n1 < (Rel(s2) / Rel (s1)) 

Thus the “service sampling rate” should be the same as the rate of the services 
reliability. For example, suppose service 1 is twice as reliable as service 2. Then the 
sampling rate will be 
n1 = 2 * n2

so that for each 2 tries of service 1, one try of service 2 is done.  The figures below 
show a simulation of the rule behavior when using perfect knowledge of the 
service’s reliability and when using reliability estimates. The actual reliability of 
service 1 is 100%, and the actual reliability of service 2 is 50%. When using 
reliability estimates, the reliability of service 2 tends to be underestimated as 40%, 
causing Kubrick to use the service more often than in the ideal case.

Adapting to changes in reliability
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The reliability of a transfer data service depends on some “hidden” variables that 
are out of the simple model of reliability here presented. These variables include 
things like workload of the service server, load of the destination host, rate of 
service requests, and seasonal usage of the service. 

Our service selection rule adapts to changes of service reliability as illustrated in 
the figure below. We assume that service 1 is 100% reliable the first 50 transfers, 
then 10% reliable for the next 50 transfers, and finally 100% reliable for the next 
100 transfers. Service 2 remains 50% reliable all the time. When knowing the 
actual reliability, Kubrick “immediately” starts using service 2 when service 1 
reliability decays to 10%. When using reliability estimates,   there is a “lag” period 
between when the service “true” reliability changes and Kubrick’s estimation of 
the reliability reflects that change (about 25 transfers). During that time Kubrick 
equally uses both services until the estimate for service 1 reliability is close to its 
actual value (10%), time at which Kubrick starts using service 2 more often.   

4.6 Kubrick learning component
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Kubrick uses job execution times to learn performance models that predict 
workflow execution times under a given resource configuration. Much work exist 
learning performance models for job execution [Smith et al. 1998, Jang et al, 2004, 
Wu and Xu, 2006]. We have used decision tree like approaches to learn these 
models from workload logs collected from large scale parallel systems 
[http://www.cs.huji.ac.il/labs/parallel/workload/logs.html].  Below we discuss some 
initial results.

The table below summarizes the performance of two learning algorithms using the 
logs for the San Diego Super Computer (SDSC) center, with 23 queues. The 
algorithms are M5 [Quinlan 1992, Wang & Witten, 1997] and a combination of 
Kmeans and M5 (we first apply Kmeans, with K=12, for the 12 months of the year, 
and then apply M5 to each data cluster). Although the results vary per queue, two 
observations can be made from the data: (i) we obtain high standard deviations on 
the predictions, whereas (ii) the mean error seems acceptable. 

Queue Weka km5p

 Mean error

Standard deviation

Percentage error

Kubrick Kmean + m5

Mean error

Standard deviation

Percentage error

0 
(interactiv
e)

677.3158920014358

110.3411699636768

12%

521.3423794902953

133.37535981577432

11%

1 (express) 552.5078970958339

271.6066280206868

52%

630.3617670528236

219.91734993432067

41%

2 (high) 2919.174511162218

333.0247814208248

44%

2231.2343609757704

297.24746226866085

45%

3 (normal) 3275.045535285894

205.96520488208276

26%

1451.1399200967567

230.54473072420268

46%

4 (low) 5039.532617391392

2020.6239638615225

69%

2572.418660686894

1131.6901212805194

71%

5 
(standby)

764.5333333333334

1286.4

207%

10.666666666666666

32.0

70%

23 (legion) 222.15126050420167

262.29411764705884

437%

26.357142857142858

5.0

57%
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