
Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Insightful Workflow For Grid Computing

Charles Earl, Ph.D. – Principal Investigator

Contract Number DE-FG02-06ER84519

Phase I Final Technical Report

Contractor:
Stottler Henke Associates, Inc. (SHAI)

951 Mariner’s Island Blvd Suite 360
San Mateo, CA 94404

Unlimited Distribution

Government Agency: Department of Energy

1

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Summary
We developed a workflow adaptation and scheduling system for Grid workflow. The
system currently interfaces with and uses the Karajan workflow system. We
developed machine learning agents that provide the planner/scheduler with
information needed to make decisions about when and how to replan. The Kubrick
restructures workflow at runtime, making it unique among workflow scheduling
systems. The existing Kubrick system provides a platform on which to integrate
additional quality of service constraints and in which to explore the use of an
ensemble of scheduling and planning algorithms. This will be the principle thrust of
our Phase II work.

2

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

SUMMARY..2

1 BACKGROUND...4

1.1 PROBLEM...4

1.2 OPPORTUNITY...5
1.3 TECHNICAL APPROACH..6

2 BENEFITS..7

2.1 RELEVANCE TO FEDERAL AND COMMERCIAL MARKETS...7

3 PHASE I GOALS..7

4 SOLUTION: THE KUBRICK GRID WORKFLOW MANAGEMENT SYSTEM......8

4.1 WORKFLOW ADAPTATIONS: ABSTRACT TASK REPRESENTATIONS....................................9
4.2 KUBRICK INTERACTIONS WITH THE WORKFLOW ENGINE...11

4.3 KUBRICK SCHEDULING COMPONENT: GENERATING CONCRETE WORKFLOWS...................13
4.4 KUBRICK MONITORING AND RESCHEDULING COMPONENT..16

4.5 KUBRICK QOS AND SERVICE PERFORMANCE COMPONENT..22
4.6 KUBRICK LEARNING COMPONENT..30

5 REFERENCES CITED..31

3

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

1 Background

1.1 Problem
Coordinating the scientific and business oriented computing tasks of a virtual
organization – a distributed collaboration that may span organizational and
national boundaries -- requires sophisticated resource management technology. A
computing Grid is a loosely coupled collection of compute, storage, and network
resources assembled by a virtual organization to support its activities; with those
resources coordinated by software called Grid middleware. The plan that describes
how those distributed services and software components interact with each other
to achieve a particular computing task is termed a Grid workflow and is an
essential Grid middleware element. Workflow management software needs to be
developed to provide a way of coordinating job scheduling, file transfer, and other
services involved in the execution of a Grid workflow.

Although there are many heuristics that have been developed for Grid workflow
scheduling, most of the research has focused on static scheduling. That is, a
mapping from an abstract description of the workflow to concrete resources is
done prior to the start of the workflow’s tasks, and this mapping is not altered
while the workflow’s tasks are processed. A Grid however is by definition a loosely
couple collection of resources, some of which could be volatile: storage and
compute resources are constantly being upgraded and modified; new releases of
software libraries become available; Grid services have different levels of stability
and responsiveness. To achieve acceptable levels of service, workflow
management systems must be responsive to these varying conditions. For
example, a long-running workflow might be able to increase its reliability by
moving computation to a set of machines having more robust versions of critical
software libraries. Another workflow might need to be altered by its user in
response to unexpected intermediate results. Real time and interactive workflows
in particular need tools that allow the workflow to be adapted in response to
changing conditions and user requirements. Further, scheduling and planning
heuristics should be employed in response to the structure of the workflow and
associated Quality of Service (QoS) requirements. The ability to alter workflow in
response to changing Grid resources and user requirements is essential.
Although the Grid community has delivered several Grid workflow systems, among
them DAGMan [Thain03], Karajan [vonLaszewski05], Chimera [Foster02], and
Gridflow[Cao03], these systems would benefit from the ability to re-plan on the fly.
Workflow execution systems lack the information about high level workflow goals
that would allow effective optimization. Further, they do not provide the users with
both the tools needed to quickly assess how the workflow is progressing and how
to change it.

Our purpose in this project is to develop a Grid workflow management and
monitoring platform called Kubrick that will enable the runtime adaptation of Grid

4

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

workflow. The system will provide users an interface that provides them with
information on the status of the workflow and viable options for optimization. In
accordance with user provided constraints on QoS, Kubrick will be able monitor the
workflow and relevant Grid resources and determine when it is appropriate to alter
the workflow: either restructuring it or rescheduling the workflow using the most
appropriate scheduling heuristic. We will achieve this goal using technologies in
machine learning, automated planning, agent-based system design, and advance
visual interface technology.

1.2 Opportunity
Grid computing is going to be a multi-billion dollar business according to Gartner
studies. Hence it provides the potential for an enormous growth within the
software industry. We believe that by providing a sophisticated workflow
framework that integrates knowledge about the way services and resources are
utilized, we will develop a much needed Grid upperware component. Hence, we
will address needs that are crucial for Grid a success within the business and
research community. We believe that Kubrick’s runtime workflow management is
one major component that will be needed by most Grid efforts.

Our technical plan is to develop a workflow system that is more adaptive and
robust than current systems while at the same time allowing more expressiveness
in the workflow formulation.
We see four opportunities for substantial improvement in management of Grid
workflow. First is the ability to reschedule or rewrite workflow in response to
changing Grid conditions. Current monitoring and prediction services do not deal
effectively with temporary resource unavailability as many resources are
integrated in a static fashion into the Grid. For example, suppose that a number of
tasks of a workflow have been dispatched to a set of local scheduler queues. The
workflow system could determine that a particular queue was having consistent
delays. In response to this, the workflow manager could move the dispatched
tasks to another queue, and modify bindings so that subsequent decisions in
scheduling took this information into account. For example, Deelman[Deelman05]
notes that the queue limitation in the Condor scheduler results in jobs being held
idle in the queue. Giving the workflow system the ability to insightfully learn
system dependencies and act upon that learned information would give it the
power of adapting to unforeseen interactions likely to occur in a complex
computing environment.

The second is the ability to take a wide range of QoS parameters into account in
the scheduling of workflow. For example, the system could incorporate a QoS
feature of reliability in scheduling workflow. In response to the known failure of a
particular workflow branch, a workflow planning system could spawn mirror
images of a task on a scheduler besides the one initially targeted, or could add
debugging tasks to the branch that was known to have failed. Dong & Akl’s survey
of Grid scheduling algorithms [Dong06] reviews several Grid workflow scheduling
heuristics (among them list heuristics, genetic algorithm approaches, and
clustering algorithms). They identified just one attempt [vonLaszewski03] to
involve QoS requirements into Grid workflow scheduling, and this limited to the
QoS dimension of bandwidth. Further, while von Laszewki’s algorithm takes into

5

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

account QoS in assigning resources to tasks (e.g. selection of host having
connection guaranteeing highest bandwidth), the issue of how QoS constraints
could be used to define workflow objectives is left open. A user should therefore
be able to express QoS requirements at a number of levels (e.g. application,
workflow task, and workflow) and have the scheduling determined by this
information.
The third feature is the providing of a powerful user interface that would users to
both inspect and alter the current status of the workflow as it executes.
The fourth is the ability to adjust the selection of scheduling algorithms to the
structure and context of the workflow. For example, in the QoS-aware Grid
scheduler [vonLaszewski03], the scheduling algorithm used was a min-min
algorithm augmented with the ability to consider QoS (bandwidth). A workflow
which is to be optimized with respect to reliability (probability of completion) over
makespan might be better served with another scheduling algorithm. A large
workflow having a large number of similar and separable branches might be better
scheduled with clustering algorithms. Our system will be unique in its ability to
take both performance goals and structure of the workflow into account in
selecting which scheduling heuristic to apply. Workflow scheduling studies suggest
that this kind of context specific approach could result in significant performance
improvements over existing systems.
To develop this system, we will leverage existing Grid middleware such as the Java
CogKit including the Karajan workflow engine, and the Pegasus workflow planning
and scheduling engine. Additionally, we will also use AI tools developed by Stottler
Henke Associates, to make the workflow systems truly insightful. Among them are:

 Machine learning tools to do job characterization and to discover
dependencies between jobs and resources. Relevant here are data mining
algorithms developed for detection of adverse drug reactions (SafetyMiner
project) and anomaly detection (MASRR project and ChAD CVFDT data
mining system).

 Distributed agents to support the event based identification of opportunities
to repair and optimize workflow. Relevant is our Simbionic agent toolkit and
Agent Based High Availability (ABHA) distributed agent system.

 Additional planning and scheduling tools where needed to support the
online adaptation of workflow. Here, the Aurora planning and scheduling
system can provide relevant technology.

As a result a powerful enhanced workflow system will exist that provides a number
of critical and unique features such as: 1) user directed adaptation of Grid
workflow during execution; 2) flexible delegation of workflow management tasks
amongst distributed workflow engines and planners; 3) goal directed learning of
workflow properties and dependencies; 4) automated integration of workflow
failure diagnosis into subsequent workflow execution; and 5) the ability to
selectively add robustness features to workflow branches.

1.3 Technical approach
To recap, our approach is to develop a Grid workflow adaptation service that can
be used by workflow generators, schedulers, and execution engines to achieve

6

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

runtime performance not previously possible. There are two reasons we believe
that we will be able to offer improved performance. First, the Kubrick service will
be able to take into account a broad spectrum of Quality of Service (QoS) metrics
in assessing the state of workflow and in determining whether and how to adapt
the workflow. Previous studies in Grid workflow management have shown that QoS
can figure prominently in improving workflow performance, but few metrics
(beyond bandwidth and makespan) have been considered. Secondly, there has
been no detailed exploration of how an ensemble of workflow scheduling heuristics
can be used selectively taking into account workflow structure and the dynamics
of the Grid environment in which the workflow executes. Further, there has been
no serious examination of how best to apply rewriting of workflow graph structure
at runtime. We will develop algorithms that allow situation-driven scheduling and
workflow graph rewriting.

Our work will be conducted in the context of a production Grid being used to
support analysis of data produced by the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory. This is the STAR Grid and has a number of
production workflows that could potentially benefit from the technology that will
be developed in our project. The Advanced Photon Source project is another
potential testing bed for our service: the workflow being developed for analysis of
APS data is stream oriented and thus could benefit from the ability to reschedule
workflow during execution time.

To achieve the maximum benefit to DoE for our service, we will develop the
capability of rewriting abstract as well as concrete workflow. The Condor DAGMan
workflow execution system is used to manage concrete workflow for a number of
advance workflow systems – among them Karajan and Pegasus. Thus, by providing
an adaptation layer to DAGMan, potentially many workflow systems and users will
be able to benefit from Kubrick’s capabilities. We will develop this capability in
collaboration with the Condor development team.
During the second year of our Phase II effort, we will conduct extensive
performance evaluations of the Kubrick service on the STAR Grid and with the APS
project. Our commercial strategy will be to use these results as the basis for
forming alliances in the electronic design automation (EDA) and financial services
industries.

2 Benefits
Grid architectures are playing an increasing role in public services. Three high
profile examples include the real-time sensor Grids responsible for earthquake and
tsunami alerting, the real time Grid efforts that are focused on the surveillance of
critical national infrastructure such as groundwater, and the massive web-service
Grids maintained by companies such as Yahoo! and Google that provide what have
come to be perceived as essential daily services. This effort will provide a platform
that will increase the efficiency and reliability of Grids – particularly those that are
highly heterogeneous and dynamic. The monitoring and alerting Grids sited are
particularly compelling examples.

7

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

2.1 Relevance to federal and commercial markets
The Department of Energy supports a large number of international Grid efforts –
both in the biological and physical sciences. Workflow management tools are being
increasingly used to manage the complex data management and processing
involved in these efforts. We are building a platform that can be used by workflow
engines, static workflow schedulers, and workflow generators. We have
demonstrated Kubrick’s ability to work with the Karajan workflow system, which is
used by many projects within Department of Energy. Our work in Phase II will
provide more functionality to Karajan. Further, during Phase II we will be working
with the Condor distributed computing project to develop the capability to rewrite
Condor workflow elements (directed acyclic graphs or DAGs) during runtime. Since
Condor is used by hundreds of distributed computing efforts throughout the world,
Kubrick could be an immensely valuable service to thousands of users planet wide.

In the commercial sector, workflow is increasingly becoming critical to business
function. A critical issue is dealing with varying reliabilities of legacy code wrapped
by web service interfaces. The Kubrick platform’s ability to restructure workflow in
real time in response to quality of service constraints could provide one solution to
this problem. Kubrick is particularly focused on the management of high
performance scientific workflow. Applications in the electronic design automation
(EDA) and financial services markets have requirements that are similar to those of
the scientific workflows that Kubrick will initially support.

Each of these software markets generate on the order of $10billion in sales per
year. Given its potential benefit to users in these markets, we believe it reasonable
to achieve $10million revenue from a commercial offering of Kubrick over the next
five years.

The commercial offering of Kubrick could be integrated into an existing workflow
management system – following the same approach taken in the development
being planned for the deployment within Department of Energy. It could
alternatively be sold as a complete workflow solution when packaged with an open
source engine such as Karajan. Revenue would come from direct sales of the
Kubrick system, through consulting services, and through licensing arrangements.
The advantages to the consumers of Kubrick would be in faster time to market and
increased efficiency.

3 Phase I goals
To review, the main goal of the Phase I work was development of a proof of
concept of insightful workflow management for the Grid: in others words a system
which could adapt workflow using insights derived from monitoring and modeling
the workflow and associated Grid resources. To that end, our work focused upon
the particular case of how an insightful workflow system could identify, describe,
and deal with changes to the performance of critical resources.

The principal deliverables and tasks – each now completed – of the Phase I efforts
were as follows:

1. Knowledge engineering. With Argonne National Laboratory (ANL) staff, we will
develop use cases workflow use and also refine system requirements.

8

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Additional feedback from collaborators involved in the STAR Grid project will
also be sought. This will include at least one face to face meeting with ANL staff
and teleconferences as needed. Use cases involving workflow for the
Advanced Photon Source experiment at Argonne National Laboratory
were explored. The workflow adaptation technology developed during
Phase I has been integrated and tested with the Karajan workflow
engine.

2. Develop Workflow Agent Architecture. This architecture, based on the Karajan
event model, serves as the basis for coordinating the adaptive components of
workflow. We will use the ABHA and Simbionic agent systems to develop this
core infrastructure. Event-based monitoring agents were developed to
support workflow optimization and repair. This is discussed in Sections
3.4 and 3.5.

3. Develop Learning Agents. We will develop a collection of learning agents for
characterizing workflow behavior and learning dependencies between
resources and workflow elements. For example, the CVFDT algorithm could be
used to develop a decision tree for identifying factors impacting the completion
time of a workflow item. Rules are stored with the workflow template and are
actively integrated into workflow monitoring to detect critical events. Learning
agents were developed using he WEKA machine learning API and
provide information necessary for workflow scheduling algorithms.
Experiments are discussed in Section 3.7

4. Develop Adaptation Agent. A class of agents that respond to Karajan requests
to adapt workflow in response to conditions of the grid. An initial
implementation would involve developing a wrapper for the Pegasus system.
Additional agents might include an interface to the Aurora planner. We
implemented runtime workflow rewriting – discussed in Section 3.5 – as
well as scheduling algorithms used in Pegasus and some not
implemented in that scheduler.

5. Develop Robustness Annotations and Features for Karajan. This would include
the ability to partition workflow amongst running engines and support for
reliability primitives. Support for reliability-based workflow adaptation
was implemented and results are discussed in Section 3.6

6. Develop Initial Prototype. Discussed in the remainder of this Section.

7. Test Prototype Discussed in the remainder of this Section.

8. Prepare Final Report

9. Prepare Phase II Proposal.

The learning and adaptation mechanisms implemented in Phase I provide a core
set of features from which to start development of the Phase II system.

4 Solution: The Kubrick Grid Workflow Management System
Kubrick is a system that provides scheduling and workflow repair capabilities. A
workflow engine (e.g. Karajan) will ask Kubrick to schedule an abstract task.

9

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Kubrick will transform this task into concrete executables and resources to use (a
concrete job), or into an abstract workflow that represents how to accomplish the
task. Kubrick then monitors the execution of these concrete jobs and workflows
and will consider other transformations for the original task whenever the ones it
has tried have not completed successfully or progressed as expected. Next we
summarize these Kubrick functionalities and describe the techniques used to
achieve them:

 Kubrick schedules tasks. It decides on the task resources to use and use
existing Karajan’s1 facilities to actually execute the task. Scheduling
algorithms use performance models (e.g., jobs’ expected execution times) in
order to optimize the assignment of resources. These algorithms consider
the workflow structure when making these assignments.

 Kubrick transforms abstract tasks into concrete executables or abstract
DAGs. It executes both with the help of Karajan. Which executable or DAG is
to be chosen involves a "scheduling/optimization" decision. Kubrick chooses
the executable/DAG that will run faster given the resource’s state. If needed,
Kubrick tries different executables/DAGs without the workflow engine
(Karajan) knowing that these transformations have been done for the
original workflow. Performance models (see below) are used by the service
to prune the space of possible executables/DAGs to associate with a task.

 Kubrick learns performance models from historical data. These models
provide estimates of execution times for an executable under a given
resource configuration. These estimates are used by the scheduler when
assigning resources and are used by the monitoring component (see below)
to evaluate progress and consider re-scheduling if needed. Kubrick infers
performance models for DAGs from those for executables.

 Kubrick monitors task/DAGs execution by comparing expected versus actual
execution time and progress. It uses a CPM/PERT criterion to decide when it
should re-schedule a task: the system monitors the critical path (CPM) of a
workflow and uses probabilistic estimates of expected progress (PERT) to
decide whether to re-schedule [Sample et. al, 2002, Lawrence 1997].

In the next sections we explain each of the implemented Kubrick components
supporting the above functionality.

4.1 Workflow adaptations: abstract task representations

Kubrick takes as input abstract tasks and produces concrete jobs to be executed.
A task is abstract in that (i) does not specify particular resources to use, (ii) does
not specify the specific executable program to use, or (iii) it denotes a high-level
specification whose realization accounts to execute one of many possible
workflows describing different ways to achieve the task. Conditions (i) and (ii) are
1 Any workflow engine shall use Kubrick. Kubrick might actually use different workflow engines in order to
execute a task (for instance, transforming a task into a workflow that is executed by Condor). The phase I
prototype used Karajan as the default workflow engine.

10

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

common to other systems (e.g., Pegasus [Deelman05]). Condition (iii) is a Kubrick
feature inspired by Artificial Intelligence Hierarchical Task Planning Languages
[Ghalab et al., 2004]: an abstract task represents “a goal” that needs to be
achieved (e.g., solve a linear equation), and there could be many ways such goal
can be achieved (e.g., use LU factorization, use an iterative method, BiCG). Using
this representation feature, the workflow designer does not specify how to perform
the task but rather which task to perform. Kubrick is in charge of deciding how to
execute the task by assigning resources, deciding on the executable
configurations, and by recursively transforming an abstract workflow into concrete
executables. Abstract tasks let Grid users specify workflows in high level terms
proper of their problem domain facilitating the use of the Grid by non technically
Grid savvy users. A shared library of workflows can be used by a group of users.
The technical challenge is to efficiently find a way to realize an abstract task
without completely exploring the possibly huge set of different ways a task could
be performed.

Example

 The following workflow is a Karajan specification of a workflow to solve a linear
equation Ax=B :

<project>

 <include file="cogkit.xml"/>

 <include file="Kubrick.xml"/>

 <solveEquation A="a.data" B="b.data"/>

</project>

The file “Kubrick.xml” is a Karajan module which defines the element
solveEquation and other Kubrick convenient elements. Two methods are associated
with this task: LU and BiCG. The LU method is added to Kubrick as follows (see
Figure 1 for a graphical representation of the LU and BiCG workflows):

<addMethod name=”LU-factorization” task=”solveEquation”>

 <applicability> true </applicability>

 <rank n=1/>

 <logic>

 <task name=”split” A={A} />

 <task name=”lu-process-1” A={A} B={B} output= L />

 <task name=”lu-process-2”/ A={A} B={B} output =U/ >

 <task name=”merge” L={L} U={U} output=X />

 </logic>

 <resourceConstraints>

 split.processors > 4

 </resourceConstraints>

11

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

</addMethod>

As illustrated in the declaration above, a task method will has associated the
following information:

 Applicability: conditions that must be satisfied for Kubrick to apply the
method (not implemented in phase 1)

 Rank: the user can “prioritize” the different methods. Kubrick will use such
rank when deciding which method to use. In the prototype, Kubrick selects
methods by calculating the expected completion time of the method’s
workflow (more later) and used the rank to favor a method when
completions times are about the same for different methods.

 Logic: a DAG description defining the subtasks that should be executed. The
DAG structure is derived from the relationship among tasks’ inputs and
outputs. Languages like Chimera [Foster 2002] can be used to specify the
DAG. In phase II we will explore the idea of providing a graphical interface to
define such graphs.

 Resource constraints: description of constraints used when selecting
machines/clusters where to execute a task. In the example above, the split
task should be executed in a machine with at least 4 processors. The
language to specify constraints is similar to that of classAds used by the
Condor system [Thain03].

In the next sections we will illustrate how and when the LU and BiCG workflows are
used.

12

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Figure 1. DAGs associated with the LU and BiCG transformations. The DAGs do not correspond to
actual implementations of the LU and BiCG. The DAGs serve to illustrate the scheduling of workflows
using parallel tasks (LU) versus those using sequencing. Edges values indicate the size of data
communicated between tasks, values that influence the scheduler decision.

{end of example}

4.2 Kubrick interactions with the workflow engine

Kubrick provides a workflow engine independent mechanism to efficiently execute
an abstract task description. Each of the possible ways a task can be realized is
called a task transformation. The result of a task transformation is either a
concrete workflow or an abstract workflow. Kubrick chooses which transformations
to apply, applies such transformation, and executes the resulting workflow. To
execute a DAG, Kubrick instantiates the DAGs for a given task, creates a Karajan
workflow specification, and asks Karajan to execute the workflow. The major work
of Kubrick is to keep track of all transformation and resource configurations that
have been tried for a task.
A high-level description of Kubrick’s algorithm to apply task transformations is as
follows:

 Receive an abstract task specification to execute

 Create a concrete job description, possibly by defining a DAG workflow to execute
the job

- The concrete job description depends on the availability of resources: the
“best way to execute the job”.

-To execute a DAG workflow, Kubrick uses the same workflow engine that
submitted the job in the first place.

13

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

- Kubrick maintains the relationship between the original job and any tag
transformations derived from it.

- To execute a basic job (e.g., submit a job to a Condor queue), the Kubrick
service uses the usual workflow engine facilities to do so.

Monitor the execution of the job and re-schedule the job if QoS are violated.

Notice that Kubrick does not replace any of the functions of the workflow engine
(Karajan in our case). Kubrick uses the workflow engine to carry on the execution
of any task transformation and hides from the workflow engine all the
transformations carried on to successfully execute an abstract task. By applying
these transformations to a task, Kubrick is dynamically adapting the original task
until it succeeds or it should be declared to fail.

This way, Kubrick enhances a workflow engine by allowing the specification,
execution and repair of abstract tasks without the workflow engine making a
difference between concrete and abstract tasks. The following example illustrates
the interactions between Kubrick and the workflow engine.

Example
Consider Karajan executing the abstract workflow {A;B} (do A then B). Suppose
task A can be done in any of the following 2 ways: {A_1_1; A_1_2;A_1_3} or
{A_2_1; A_2_2}, where each of the abstract task A_i_j can be done using 2 actual
executables. Suppose B can be done in only one way. Then, without taking into
account possible resource assignments, there are 12 different ways the original
workflow can be executed.

Here is one possible way the abstract workflow {A;B} could end up being executed
when using Kubrick.

1. Karajan asks Kubrick to schedule task A
2. Kubrick decides to transform A into workflow {A_2_1; A_2_2}.

3. Kubrick asks Karajan to execute {A_2_1; A_2_2}

Notice that the workflow engine (Karajan) does not maintain any relationship
between {A,B} and {A_2_1;A_2_2}. Kubrick maintains such relationships. Here is
how the execution continues:

 4. Karajan asks Kubrick to schedule task A_2_1
5. Kubrick assigns an executable to A_2_1, say A_2_1’

 To execute A_2_1’, a concrete job, Kubrick relies on Karajan facilities to
execute job.

6. Kubrick asks Karajan to execute job A_2_1’
7. Eventually A_2_1’ is executed successfully. Karajan informs Kubrick that

A_2_1’ is done.

14

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

8. Kubrick informs Karajan that A_2_1 is done

9. Karajan continues with the execution of workflow {A_2_1; A_2_2}
10. Karajan asks Kubrick to schedule task A_2_2

Notice that Kubrick repeatedly uses Karajan to execute different workflow
transformations. Technically, these are different instances of the Karajan workflow
engine, each executing a particular workflow. All these Karajan instances use the
same Kubrick service, which has all the information to relate these instances of the
Karajan engine and the corresponding workflows associated with a task
transformation.

Suppose the execution of task A_2_2 eventually fails, causing the execution of
workflow {A_2_1;A_2_2} to fail. Kubrick will then repair the original workflow
{A,B} by another transformation for A, namely {A_1_1;A_1_2;A_1_3}. Assuming the
execution of this workflow and those generated for B will eventually succeed, the
original workflow {A, B} will then succeed. The instance of Karajan executing such
workflow will declare the workflow successful, and it will never know of any of the
many other workflows that were tried when executing A.
In Section 3.6 we will show a trace illustrating the above interactions when
executing the solveEquation workflow.

4.3 Kubrick scheduling component: generating concrete workflows

Scheduling refers to decide which resources assign to a task or workflow. In our
case, to which clusters and queues should a job be sent. Kubrick leverages in state
of the art workflow scheduling techniques to select such resources (see Section
5.3.4 for a review). These techniques consider the whole workflow structure when
doing scheduling decisions rather than stand alone tasks. Since solving this
problem is NP-complete, most algorithms use scheduling heuristics like min-min,
min-max, sufferage, genetic algorithms, etc., to find a good but sub-optimal
solution to the problem.
Kubrick provides implementation of some of these techniques (i.e., min-min,
max-min, suffrage), and defines APIs to add new techniques to the service. Since
more of these techniques require performance models of task execution (e.g.,
expected job runtime on a given cluster), Kubrick has a learning component
providing such estimates. The more jobs are run through Kurbrick, the more
accurate these estimates are, and the better the scheduling decisions are.
In addition to the conventional functions of a Grid scheduler, Kubrick’s scheduling
component is used to evaluate workflow transformation when repairing a workflow
(see details below). The component is used to answer two types of questions
before doing any actual scheduling: (i) the expected execution time of a given
workflow/task, and (ii) provide alternative resource assignments for an already
scheduled tasks.
The algorithm below illustrates the overall schema of how heuristics like min-min,
max-min, suffrage, etc. are used to map workflow [Mandal et al. 2005] :

15

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Scheduling algorithm:

 Input = A Workflow (DAG or unmapped tasks)

Output: map from tasks to resources

Mapping = {}

While all tasks in workflow not mapped do

 NextToMap := unmapped tasks whose parents have been scheduled

 findBestSchedule(nextToMap, mapping)

 endWhile

FindBestSchedule

 Input: set of unmapped tasks and current mapping

 Output: extend mapping by mapping all tasks

 while all tasks not mapped do

 foreach Task t do

 foreach Resource R do

 ECT(t,R)= rank(t,R) + EAT(R);

 endForeach

 Find minECT(t,R) over all R

 (t’,R’) = use heuristic to select next task to schedule (e.g., min-min, max-min)

 mapping = mapping + { (t’,R’) }

 update EAT(R’)

endWhile

where:

 ECT(t,R) = Estimated Completion Time of executing task t on resource R

 EAT(R) = Estimated Available Time of resource R

 Rank(t,R) = time/cost to setup task t on resource R. This includes time needed to
move the

 data produced by predecessor tasks to the resource R.

 heuristic = criteria used to decide which task should be scheduled next.

Example
Consider the workflow to solve a linear equation. The abstract task solveEquation
can be solved using either LU or BiCG methods. Kubrick will calculate the
estimated completion time (ECT) for each of these methods, and choose the one
with the minimum completion time. For purpose of the illustration, suppose we
have 4 machines (m1,m2,m3,m4) with the following estimated for task execution
and data moving costs:

16

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

1. Assume a homogeneous system where the execution of a task is more or less
the same in each machine.

2. Tasks split, lu-process-1, lu-process-2 and merge have EET of 12.4, 13.09,
12.33 and 16.13 (seconds).

3. Tasks BiCT-process-1 and BiCG-process-2 have EET of 20.46 and 26.25.
4. The cost of moving one unit of data (e.g., a megabyte) from machine m_i to

m_j is 0.5 (if i >j), 0 (if i=j) and 1.0 (if i < j).

(The values above facilitate to verification and understanding of the trace shown
below. Real workflows have thousands of tasks and Grids are heterogeneous and
large).

Using a min-min heuristic, the algorithm described above will generate the
following schedules, indicating that the LU transformation should be executed:

Execution context karajanWorkflows/solveEquation.xml

Execution context waiting for done karajanWorkflows/solveEquation.xml

Kubrick solving equation Ax=B

SHAI Min_Min_Scheduler: scheduling solve-equation

***** BiCG-Transformation schedule

===

 Schedule Expected completion time = 62.850716

 Resource assignments:

// added comment: ECT = Estimated completion time, EET= Estimated Execution
Time

Resource: m2

 biCG-process-1 [ECT =20.461637, EET = 20.461637]

 biCG-process-2 [ECT =46.720356, EET = 26.258718]

 merge[ECT =62.850716 , EET = 16.130358]

***** LU-Transformation schedule

===

 Schedule Expected completion time = 46.867905

 Resource assignments:

Resource: m2

 merge [ECT =46.867905 , EET = 16.130358]

17

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

 lu-process-1 [ECT =30.49587, EET = 13.090506]

Resource: m3

 lu-process-2 [ECT =25.737549 , EET = 13.332184]

 split [ECT =12.405364 , EET = 12.405364]

Kubrick adapting solve-equation --> using LU-Transformation

The scheduler does a sensible work given our assumptions: (i) BiCG being a
sequential task makes sense to be executed in one machine so there is not cost
associated with moving data among machines; (ii) LU being parallel should be split
among machines. Given the cost of moving data, parent tasks (e.g., split) whose
children are executed in a different machine should be scheduled in a machine
with higher index than their children: for instance, since the split task is scheduled
in m3, lu-process-1 should not be scheduled in m4.

Once the LU-transformation schedule is chosen, Kubrick generates the following
Karajan concrete workflow representing the transformation:

<project>

<include file="cogkit.xml"/>

<include file="Kubrick.xml"/>

//added comment: the property “kid” is a unique identifier added by Kubrick to a
task specification. The id

// helps identify a task as part of a workflow, which in turns facilitates Kubrick’s
monitoring of a workflow

// execution.

<execute task="split" A="a.data" B="b.data" kid="kid-15" machine="m3"/>

<parallel>

 <sequential>

 <execute task="stage-data" srchost="m3" desthost="m2" size="10"
kid="kid-18"/>

 <execute task="lu-process-1" A="a.data" B="b.data" kid="kid-16"
machine="m2"/>

 </sequential>

 <sequential>

 <execute task="lu-process-2" A="a.data" B="b.data" kid="kid-17"
machine="m3"/>

 <execute task="stage-data" srchost="m3" desthost="m2" size="10"

18

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

kid="kid-21"/>

 </sequential>

 </parallel>

 <execute task="merge" A="a.data" B="b.data" kid="kid-22" machine="m2"/>

</project>

Notice that the definition of the concrete workflow includes the data stage tasks
entailed by the schedule. For instance, move the output of the split task from
machine 3 to machine 2 where the the lu-process-1 task is to be executed. Kubrick
will ask then Karajan to execute the workflow, and start the monitoring of the
workflow. In the next section we show the trace of the monitoring and
re-scheduling actions taken by Kubrick.

{end of example}

4.4 Kubrick monitoring and rescheduling component

Re-scheduling in Kubrick happens whenever a task transformation is applied. More
often this is the case when a previous task transformation fails. However, Kubrick
proactively monitors a task/workflow execution to compare expected execution
times versus actual execution times. If for instance, a task execution is taken too
long as to change the critical paths of the workflow it belongs to, then Kubrick
might consider re-scheduling the task, by for instance, trying other resources for
the task (i.e., moving a job stuck in a queue to another queue), or considering
another task transformation. The decision to re-schedule takes into account the
probabilistic nature of the estimated execution times used when scheduling. In the
trace below we illustrate this technique.

Example

Consider the execution of the LU concrete workflow described in the previous
example. The following trace shows Kubrick monitoring of the workflow progress as
it is executed by Karajan. The trace stops at the point were the execution of task
lu-process-1 starts taking longer than expected:
Starting monitoring for workflow with id kid-23

Execution context C:\Projects\Kubrick\karajan\cog code\cog\tmp\workflow__202.xml

Execution context waiting for done C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__202.xml

// added comment: workflow_202.xml is the name of the file containing the Karajan
concrete workflow

// description for the LU-transformation

// As Kubrick detects that Karajan starts/ends the execution of a task in the
workflow the following

// information is shown: EST = Estimated Start Time (time in seconds), AST =
Actual Start time

19

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

// ECT= Estimated Completion Time, ACT = Actual Completion Time

SHAI Min_Min_Scheduler: scheduling split

Task split with id kid-15 started for workflow with id kid-23 [EST= 0.0 --- AST=0.391]

Running shai local: split

shai host completed the task --> split[execution time = 14]SUCCEED

Task split with id kid-15 ended for workflow with id kid-23 [ECT= 12.405364 ---
ACT= 14.641]

SHAI Min_Min_Scheduler: scheduling stage-data

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 0]SUCCEED

Running shai local: stage-data

SHAI Min_Min_Scheduler: scheduling lu-process-2

Task lu-process-2 with id kid-17 started for workflow with id kid-23 [EST= 12.405364
--- AST=14.641]

Running shai local: lu-process-2

shai host completed the task --> stage-data[execution time = 5]SUCCEED

SHAI Min_Min_Scheduler: scheduling lu-process-1

Task lu-process-1 with id kid-16 started for workflow with id kid-23 [EST= 17.405365
--- AST=19.656]

Running shai local: lu-process-1

shai host completed the task --> lu-process-2[execution time = 13]SUCCEED

Task lu-process-2 with id kid-17 ended for workflow with id kid-23 [ECT= 25.737549
--- ACT= 28.625]

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 5]SUCCEED

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR=
2.6181011 AET= 17.703]

//added comment: VAR refers to the Variance of the estimated execution time for
lu-process-1

// in machine 2.

In the trace above, the split operation is executed, and the lu-process-1 and
lu-process-2 are started in parallel. The task lu-process-2 finishes and the

20

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

lu-process-1 has not finished after 17 seconds, time at which the task execution is
declared “abnormal”. A task execution is declared “abnormal” when the execution
time is greater than the expected completion time plus one variance of the
estimation. The declaration of a task being abnormal triggers the rescheduling
policy which might or not cancel the task execution (see below). If the task is not
canceled, the rescheduling is repeatedly triggered after “variance” every seconds
pass without the task being finished.

To decide whether to repair a workflow given a task execution delay we compare
the estimated completion time for the workflow (WEC) against a new estimation of
the workflow completion given a task delay and the actual execution time of
finished tasks (WECT’). We reschedule if the task delay implies a delay in the
overall workflow execution (WECT’ > WECT) and such workflow delay is significant,
as given by the expression

[(WECT’ – WECT) / σ] > 2

where σ is the standard deviation of the workflow completion time estimate, and
such random variable has a normal distribution with mean WECT [Sample et. al,
2002, Lawrence 1997](See section 5.3.4 for review of PERT techniques used to
estimate workflow completion times). Our re-scheduling expression then do a 90%
confidence test to accept the hypothesis that a workflow execution is going to be
delayed. WECT and σ are defined as

WECT = Σ ECTi and σ = √ Σ σi
2

where the sum is taken over the tasks in the workflow critical path, ECT i is the
estimated completion time of the ith task in the critical path and σi

2 is the variance
of such estimation.

The trace below show how the criteria above work in our example:

21

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR=
2.6181011 AET= 17.703]

Kubrick: Task delay causes delays in workflow execution [delay= 6.6214523 ,
previous workflow ECT = 46.867905 , new workflow ECT = 53.489357

Kubrick: checking if delay is significant ...

[delay = 6.6214523 , workflow ect standard deviation = 5.3028994
,x=delay/sigma = 1.2486476]

 Delay is not significant (x < 2.0 standard deviations)

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR=
2.6181011 AET= 19.703]

Kubrick: Task delay causes delays in workflow execution [delay= 8.621452 ,
previous workflow ECT = 46.867905 , new workflow ECT = 55.489357

Kubrick: checking if delay is significant ...

[delay = 8.621452 , workflow ect standard deviation = 5.3028994
,x=delay/sigma = 1.6257998]

 Delay is not significant (x < 2.0 standard deviations)

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR=
2.6181011 AET= 21.703]

Kubrick: Task delay causes delays in workflow execution [delay= 10.621452 ,
previous workflow ECT = 46.867905 , new workflow ECT = 57.489357

Kubrick: checking if delay is significant ...

[delay = 10.621452 , workflow ect standard deviation = 5.3028994
,x=delay/sigma = 2.0029519]

*** Delay is significant with a 99% probability (x > 2.0 standard deviations)

 Considering re-scheduling possibilities

Possible to re-schedule using transformation BiCG-Transformation, with ECT =
62.850716

Kubrick: do not re-schedule.. adaptation has greater ECT than current schedule

22

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR=
2.6181011 AET= 23.734]

Kubrick: Task delay causes delays in workflow execution [delay= 12.652451 ,
previous workflow ECT = 46.867905 , new workflow ECT = 59.520355

Kubrick: checking if delay is significant ...

[delay = 12.652451 , workflow ect standard deviation = 5.3028994
,x=delay/sigma = 2.3859496]

*** Delay is significant with a 99% probability (x > 2.0 standard deviations)

 Considering re-scheduling possibilities

Possible to re-schedule using transformation BiCG-Transformation, with ECT =
62.850716

Kubrick: do not re-schedule.. adaptation has greater ECT than current schedule

Monitor: abnormal task execution for task lu-process-1 [EET= 13.090506 VAR=
2.6181011 AET= 27.765]

Kubrick: Task delay causes delays in workflow execution [delay= 16.683456 ,
previous workflow ECT = 46.867905 , new workflow ECT = 63.55136

Kubrick: checking if delay is significant ...

[delay = 16.683456 , workflow ect standard deviation = 5.3028994
,x=delay/sigma = 3.146101]

*** Delay is significant with a 99% probability (x > 2.0 standard deviations

 Considering re-scheduling possibilities

Possible to re-schedule using transformation BiCG-Transformation, with ECT =
62.850716

Executing adaptation

Once the execution of a workflow is deemed to be delayed, Kubrick must decide
on how to fix it (if possible). In the prototype we considered two options: leave
things as they are or try another adaptation for the abstract task the workflow is
about. In order to decide which option to take, the estimate completion time of
each option is calculated and the one with minimum estimated completion time is
chosen. There is another alternative that was not evaluated during phase I:
re-schedule the unexecuted task of the given workflow [Sakellariou and Zhao,
2004a].

The trace below completes the execution of the original abstract task to solve the
linear equation:
Karajan canceling current workflow ….

Execution failed:

Aborted

23

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

:kexecute @ karajanWorkflows\Kubrick.xml, line: 67

sys:sequential @ C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__202.xml, line: 7

sys:parallel @ C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__202.xml, line: 6

kernel:project @ C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__202.xml, line: 2

Execution context set done C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__202.xml

Kubrick adapting solve-equation --> using BiCG-Transformation

===

 Schedule Expected completion time = 62.850716

 Resource assigments:

Resource: m2

 BiCG-process-2[ect =46.720356][eet = 26.258718]

 BiCG-process-1[ect =20.461637][eet = 20.461637]

 merge[ect =62.850716][eet = 16.130358]

Starting monitoring for workflow with id kid-45

Execution context C:\Projects\Kubrick\karajan\cog code\cog\tmp\workflow__231.xml

Execution context waiting for done C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__231.xml

{}

SHAI Min_Min_Scheduler: scheduling biCG-process-1

Task BiCG-process-1 with id kid-40 started for workflow with id kid-45 [EST= 0.0 ---
AST=0.313]

Running shai local: biCG-process-1

shai host completed the task --> biCG-process-1[execution time = 22]SUCCEED

Task BiCG-process-1 with id kid-40 ended for workflow with id kid-45 [ECT=
20.461637 --- ACT= 23.031]

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 0]SUCCEED

SHAI Min_Min_Scheduler: scheduling biCG-process-2

Task BiCG-process-2 with id kid-41 started for workflow with id kid-45 [EST=
20.461637 --- AST=23.031]

24

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Running shai local: BiCG-process-2

shai host completed the task --> BiCG-process-2[execution time = 29]SUCCEED

Task BiCG-process-2 with id kid-41 ended for workflow with id kid-45 [ECT=
46.720356 --- ACT= 52.42]

SHAI Min_Min_Scheduler: scheduling stage-data

Running shai local: stage-data

shai host completed the task --> stage-data[execution time = 0]SUCCEED

SHAI Min_Min_Scheduler: scheduling merge

Task merge with id kid-43 started for workflow with id kid-45 [EST= 46.720356 ---
AST=52.436]

Running shai local: merge

shai host completed the task --> merge[execution time = 17]SUCCEED

Execution context set done C:\Projects\Kubrick\karajan\cog
code\cog\tmp\workflow__231.xml

Task merge with id kid-43 ended for workflow with id kid-45 [ECT= 62.850716 ---
ACT= 69.638]

Kubrick: adaptation BiCG-Transformation succeed for task solve-equation

Execution context set done karajanWorkflows/solveEquation.xml

Ending monitoring for workflow with id kid-45

Got workflow status: SUCCEED

{end of example}

4.5 Kubrick QoS and service performance component

So far our description of Kubrick has focused on abstract tasks that can be
decomposed into a workflow. Such decomposition stops when a service or program
executable needs to be determined. Even at that level of detail Kubrick will use
performance metrics to decide which service or program to use. Kubrick maintains
a map from an abstract service category (e.g., data-transfer) to the specific
providers of such service (e.g., ftp, gridFTp). When an abstract service is referred
in a workflow then Kubrick will decide which provider to use. This selection is
based on QoS characteristics of the service invocation (e.g., reliability, cost,
speed), constraints of the service (e.g., the provider should be installed in both the
source and destination hosts), and a user defined selection criteria (e.g., choose
the fastest service, choose the most reliable).

Example
A Kubrick abstract service has associated a set of user defined properties that are
used to evaluate services able to perform such task. For example,

25

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

<define-abstract-service>

 <name>data-transfer</name>

 <args names=”srcHost, file, destHost”/>

 <properties>

 <property name=”reliability” type=”double”/>

 <property name=”cost” type=”double”/>

 <property name=”speed” type=”double” info=”in Mbits/sec”>

 </properties>

<selectionCriteria>com.stottlerhenke.Kubrick.services.dataTransfer.SelectionCriteria
</selectionCriteria>

</define-abstract-service>

defines the abstract service “data-transfer”, with parameters srcHost, file and
destHost , and associated properties reliability, cost and speed. These properties
are characteristics that can be asked of any provider for the task. The selection
criterion class encapsulates the algorithm to select among providers for the task.
For example, the implementation to select the most reliable service will look as
follows:

public Service selectService(Task task, Set<Services> services, KubrickHandle
Kubrick) {

 Double maxReliability = -1 ;//not set

 Service choosenService = null;

 For (Service service : services) {

 Double reliability = Kubrick.getTaskServiceProperty(task,service,”reliability”);

 If (reliability > maxReliability) {

 maxReliability = reliability;

 choosenService = service;

 }

 }

 return choosenService;

}

A provider for the service is defined as follows:

26

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

 <service name=”ftp”>

 <abstract-service>data-transfer</abstract-service>

 <arguments names=”srcFile,srcHost,destHost” />

 <serviceHandler>com.stottlerhenke.Kubrick.services.ftp</serviceHandler>

 <constraints>

 <!-- the host and destination have ftp installed -->

 <and>

 <installed exec=”ftp” host={srcHost}>

 <installed exec=”ftp” host={destHost}>

 </and>

 </constraints>

 <property name=”number of times a service is run” type=”int”/>

 <property name=”number of times a service failed” type=”int”/>

</service>

defines the ftp service stating that it will be used only if “ftp” is installed in both
the source host and the destination. The declaration also states “private”
properties about the system that will be maintained by Kubrick. The serviceHandler
class define the Java code that will be responsible for executing the service,
updating the service “private” properties, updating the “task” public properties
(i.e., reliability), and solving basic queries about the system (e.g., is ftp installed in
a given machine). 2 Kubrick maintains the tuple <taskName, service, properties>
storing the current value of properties for a particular service providing a
particular task. The service handler for a service, informs Kubrick of changes in the
properties values. For example, every time the “ftp” service is run, the ftp task
handler will tell Kubrick of the new values for its properties. Kubrick uses the value
of these properties to calculate the value of more complex Boolean expressions
denoting service’s constraints.

{End of example}

Prototype trace
This section describes how Kubrick prototype implements the ideas above. As an
example, we considered the following file transfer task, defined in Karajan using
Kubrick enhanced tags (i.e., <transfer>):

<project>

 <include file="cogkit.xml"/>

 <include file="Kubrick.xml"/>

2 A service handler is in charge of executing a given task. Since a Kubrick service definition just adds meta
information about existing services, the implementation of a Kubrick task handler most often relies in the
existing implementations for the underlying service.

27

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

 <set name="host" value="arbat.mcs.anl.gov"/>

 <for name="i"> <range from="1" to="5"/>

 <transfer srcfile="Test.data" desthost="{host}"/>

 </for>

</project>

The task is to move 5 times the same file “Test.data” from the current host to
“arbat.mcs.anl.gov”. The Kubrick’s tag <transfer> denotes the abstract service of
moving a data file to a destination. The service is “abstract” in that it does not
specify the provider that should be used to do such transfer. The choice of such
provider is Kubrick’s responsibility.

In the prototype Kubrick knows about 3 providers that could potentially be used to
carry on the transfer task: ftp, gridFtp and gsFtp. The latest provider is not be
installed in the destination host, thus Kubrick has two possible providers to use: ftp
or gridFtp. Moreover, we assume that ftp is 50% reliable whereas gridFtp is 100%
reliable. These are not the actual services reliability. We “injected” ftp failures for
the purposes of the prototype demo.

The trace below shows Kubrick executing the workflow, selecting providers to
transfer the data, and updating the service provider “reliability” estimates as the
service is used. Kubrick selects the most reliable service when doing a data
transfer (see below). Given the services reliabilities, the 5 data transfers are
executed using the following order of services: gridFtp, ftp, gridFtp, gridFtp, ftp.
GridFtp is used twice as much as ftp since gridFtp is twice as reliable as ftp. Below
we discuss the service selection criteria illustrated by the trace, show simulation
results when considering larger number of transfers, and compare nominal
behavior of the service selection criterion (when the actual service reliability is
known) versus its behavior when using reliability estimates.

28

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Execution context karajanWorkflows/Test_FileTransfer.xml

Execution context waiting for done karajanWorkflows/Test_FileTransfer.xml

SHAI Min_Min_Scheduler: scheduling file-transfer

Available services for task of type file-transfer

kftp

kgt2

kgsiftp

Service kgsiftp: the following constraint is false (installed exec=gridftp
host=arbat.mcs.anl.gov)

Service kgsiftp: the following constraint is false (installed exec=gridftp
host=localhost)

Service kgsiftp not considered.

Using criteria --choose most reliable service –

Reliability of kftp=1.0 weightedReliability = 0.5

 tries 1.0 total tries =2.0

Reliability of kgt2=1.0 weightedReliability = 0.5

 tries 1.0 total tries =2.0

chosen service= kgt2

GT2: submitting task ... done

29

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

// added comment: second file to transfer

Kubrick transfering Test.data to arbat.mcs.anl.gov

SHAI Min_Min_Scheduler: scheduling file-transfer

Using criteria --choose most reliable service --

Reliability of kftp=1.0 weightedReliability = 0.6666666666666667

 tries 1.0 total tries =3.0

Reliability of kgt2=1.0 weightedReliability = 0.33333333333333337

 tries 2.0 total tries =3.0

chosen service= kftp

Ftp: submitting task

 *** File transfer completed but too many packets lost

// added comment: third file to transfer

Kubrick transfering Test.data to arbat.mcs.anl.gov

SHAI Min_Min_Scheduler: scheduling file-transfer

Using criteria --choose most reliable service --

Reliability of kftp=0.5 weightedReliability = 0.25

 tries 2.0 total tries =4.0

Reliability of kgt2=1.0 weightedReliability = 0.5

 tries 2.0 total tries =4.0

chosen service= kgt2

30

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

// added comment: fourth file to transfer

SHAI Min_Min_Scheduler: scheduling Kubrick_transfer

Running shai local: Kubrick_transfer

Using criteria --choose most reliable service --

Reliability of kftp=0.5 weightedReliability = 0.3

 tries 2.0 total tries =5.0

Reliability of kgt2=1.0 weightedReliability = 0.4

 tries 3.0 total tries =5.0

chosen service= kgt2

// added comment: fifth file to transfer

SHAI Min_Min_Scheduler: scheduling Kubrick_transfer

Using criteria --choose most reliable service --

Reliability of kftp=0.5 weightedReliability = 0.33333333333333337

 tries 2.0 total tries =6.0

Reliability of kgt2=1.0 weightedReliability = 0.33333333333333337

 tries 4.0 total tries =6.0

chosen service= kftp

Data transfer service selection criterion.

In the prototype, Kubrick’s select the most reliable service when doing a data
transfer. The reliability of a software product is usually defined to be “the
probability of execution without failure for some specified interval of natural units
or time” [Musa, 1998]. The probability of successful execution is measured by
repeatedly operating a system according to the selected operational profile, i.e.
selecting inputs according to the frequency constraints of the profile, for the
specified unit of time. The reliability is computed by measuring the percentage of
those executions that terminate successfully. A reliability value is reported for each
operational profile. The service reliability is then the weighted reliability over the
given profiles (weights correspond to the frequency an operational profile is to be
found under deployment).

For our purposes, we have three operational profiles: small, medium and large size
file transfers. A data transmission is successful if (i) the file is transmitted in his
totality and (ii) the packet loss of the transmission is less than a given threshold
(e.g., 10%). Packet loss is defined as the fraction of packets sent for which the host
does not receive an acknowledgment from the destination. This includes packets
that are not received by the destination as well as acknowledgments that are lost
before returning to the host. Acknowledgments that do not arrive within a

31

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

predefined round trip delay at the source are also considered lost. This way, our
measure of “data transfer reliability” includes a minimum of data quality transfer
and speed performance.

In the prototype Kubrick estimates the reliability of a service as it uses the
services. This is done according to the formula

Rel(s) = (# of successful service’s transfers) / (# of times the service is used)

where Rel(s) denotes the service reliability. The count of successful services
transfers is always made with respect to the last SSM tries of the service. SSM
represents the “service success memory”. Since we filter the service tries history,
the value of SSM determines how responsive Kubrick is to the actual value of the
service reliability. Kubrick could also proactively estimate the value of the service
reliability by setting up measurement tests for such purpose, like is done in the
INCA project [Smallen et al, 2007].

The implementation of choosing the most reliable service criterion takes into
account the frequency with which a service has been tried, so that services are
“sampled” proportionally to their reliability. Let n i denote the numbers of times
service i has been tried (we assume ni > 0), and n denote the number of total data
transfers (i.e., n = Σ ni). Let Rel(si) denote the “reliability of service i" and let wi
denote the “weighted reliability of service i” defined as follows:

wi = Rel(si) * [1 – ni/n].

Then the service selection criteria will select the service whose weighted reliability
is maximum, breaking ties in favor of services that have been tried the less.

The number of times a service is used is always calculated with respect to the last
DTM services tries made by Kubrick. The value of DTM represents the “data
transfer memory” of the selection criteria. In particular, it will be the case that a
service is guaranteed to be selected at least every DTM data transfers.

In our example we have two services. Let’s assume service 1 has higher reliability
than service 2. Then the selection criteria rule indicates that service 2 (the service
with less reliability) should be selected in favor of service 1 whenever

w1

< w2

which reduces to

 Rel(s1) *[1 –
(n1/n1+n2)]

< Rel(s2) * [1 – n2/n1+n2]

32

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

 Rel(s1) * n2 < Rel(s2)*n1

 n2/n1 < (Rel(s2) / Rel (s1))

Thus the “service sampling rate” should be the same as the rate of the services
reliability. For example, suppose service 1 is twice as reliable as service 2. Then the
sampling rate will be
n1 = 2 * n2

so that for each 2 tries of service 1, one try of service 2 is done. The figures below
show a simulation of the rule behavior when using perfect knowledge of the
service’s reliability and when using reliability estimates. The actual reliability of
service 1 is 100%, and the actual reliability of service 2 is 50%. When using
reliability estimates, the reliability of service 2 tends to be underestimated as 40%,
causing Kubrick to use the service more often than in the ideal case.

Adapting to changes in reliability

33

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

The reliability of a transfer data service depends on some “hidden” variables that
are out of the simple model of reliability here presented. These variables include
things like workload of the service server, load of the destination host, rate of
service requests, and seasonal usage of the service.

Our service selection rule adapts to changes of service reliability as illustrated in
the figure below. We assume that service 1 is 100% reliable the first 50 transfers,
then 10% reliable for the next 50 transfers, and finally 100% reliable for the next
100 transfers. Service 2 remains 50% reliable all the time. When knowing the
actual reliability, Kubrick “immediately” starts using service 2 when service 1
reliability decays to 10%. When using reliability estimates, there is a “lag” period
between when the service “true” reliability changes and Kubrick’s estimation of
the reliability reflects that change (about 25 transfers). During that time Kubrick
equally uses both services until the estimate for service 1 reliability is close to its
actual value (10%), time at which Kubrick starts using service 2 more often.

4.6 Kubrick learning component

34

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

Kubrick uses job execution times to learn performance models that predict
workflow execution times under a given resource configuration. Much work exist
learning performance models for job execution [Smith et al. 1998, Jang et al, 2004,
Wu and Xu, 2006]. We have used decision tree like approaches to learn these
models from workload logs collected from large scale parallel systems
[http://www.cs.huji.ac.il/labs/parallel/workload/logs.html]. Below we discuss some
initial results.

The table below summarizes the performance of two learning algorithms using the
logs for the San Diego Super Computer (SDSC) center, with 23 queues. The
algorithms are M5 [Quinlan 1992, Wang & Witten, 1997] and a combination of
Kmeans and M5 (we first apply Kmeans, with K=12, for the 12 months of the year,
and then apply M5 to each data cluster). Although the results vary per queue, two
observations can be made from the data: (i) we obtain high standard deviations on
the predictions, whereas (ii) the mean error seems acceptable.

Queue Weka km5p

 Mean error

Standard deviation

Percentage error

Kubrick Kmean + m5

Mean error

Standard deviation

Percentage error

0
(interactiv
e)

677.3158920014358

110.3411699636768

12%

521.3423794902953

133.37535981577432

11%

1 (express) 552.5078970958339

271.6066280206868

52%

630.3617670528236

219.91734993432067

41%

2 (high) 2919.174511162218

333.0247814208248

44%

2231.2343609757704

297.24746226866085

45%

3 (normal) 3275.045535285894

205.96520488208276

26%

1451.1399200967567

230.54473072420268

46%

4 (low) 5039.532617391392

2020.6239638615225

69%

2572.418660686894

1131.6901212805194

71%

5
(standby)

764.5333333333334

1286.4

207%

10.666666666666666

32.0

70%

23 (legion) 222.15126050420167

262.29411764705884

437%

26.357142857142858

5.0

57%

35

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

5 References cited
[Aggarwal et al, 2005] M. Aggarwal, R.D. Kent and A. Ngom, “Genetic Algorithm
Based Scheduler for Computational Grids”, In Proc. Of the 19th Annual International
Symposium of High Performance Computing Systems and Applications (HPCS’05,
pp. 209-215, Guelph, Ontario Canada, May 2005.
[Casanova et al., 2000] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman,
“Heuristics for Scheduling Parameter Sweep Applications in Grid Environments”, in
Proc. O f the 9th hereogeneous Computing Workshop (HCW’00), pp. 349-363,
Cancun, Mexico, May 2000.
[Cooper et al., 2004] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G.
Marin, M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, A. Chien, H. Dail, X.
Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed, W. Deng, C.
Mendes, Z. Shi, A. Yarkhan and J. Dongarra, “New Grid Scheduling and
Rescheduling Methods in the GrADS Project”, In Proc. of the 18th International
Parallel and Distributed Processing Symposium (IPDPS’04), pp. 199-206, Santa Fe,
New Mexico USA, April 2004.

[Braun et al., 2001] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.
Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen and R. Freund, “A Comparison
of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems”, in J. of Parallel and Distributed
Computing, Vol. 61, No 6. pp 810-837, 2001.

[Cao03]Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Graham R. Nudd.
Gridflow: Workflow management for grid computing. In Proceedings of the 3st
International Symposium on Cluster Computing and the Grid, page 198. IEEE
Computer Society, 2003.

[Czajkowski et al., 2001] K. Czajkowshi, S. Fitzgerald, I. Foster, and C. Kesselman,
“Grid Information Services for Distributed Resource Sharing”, in Proc. the 10th IEEE
International Symposium on High-Performance Distribute Computing (HPDS-10),
pp. 181-194, San Francisco, California, USA, August 2001.

[Deelman04] Pegasus: Mapping Scientific Workflows onto the Grid.

[Deelman05] Task Scheduling Strategies for Workflow-based Applications in Grids.
 [Dong and Akl, 2006] Dong F. and Akl S.G., “Scheduling Algorithms for Grid
Computing: State of the Art and Open Problems”, Technical Report No. 2006-504,
School of Computing, Queens University, 2006.

[El-Rewini et al., 1994] H. El-Rewini, T. Lewis, and H. Ali, “Task Scheduling in Parallel
and Distributed Systems”, ISBN: 0130992356, PTR Prentice Hall, 1994.

[Foster 2002] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation," presented at
Scientific and Statistical Database Management, 2002.
[Garey and Johnson, 1979] M. Garey and D. Johnson. “Computers and Intractability:
A Guide to the Theory of NP-Completeness”, W.H. Freeman and Company, New
York., 1979.

36

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

[Ghalab et. al., 2004] Ghallab, M., Nau, D. and Traverso, P. 2004 “Automated
Planning: Theory and Practice” Morgan Kaufman, 2004.
[Gong et al., 2002] L. Gong, X. Sun and E.F. Watson, “Performance Modeling and
Prediction of Nondedicated Network Computing”, in IEEE Transaction on
Computers, Vol. 51, No. 9, pp. 1041-1055, September 2002.

[He X et al, 2003] X He, X. Sun and G. Laszewski, “A QoS Guided Min-Min Heuristic
for Grid Task Scheduling”, in J. of Computer Science and Technology, Special Issue
on Grid Computing, Vol. 18, No. 4, pp 442-451, July 2003.
[Jang et al, 2004] S. H. Jang, X. Wu, V. Taylor, G. Mehta, K. Vahi and E. Deelman,
“Using Performance Prediction to Allocate Grid Resources”, GridPhyN Technical
Report 2004-25, 2004.

[Jang05] Seung-Hye Jang, Valerie Taylor, Xingfu Wu, Mieke Prajugo, Ewa Deelman,
Gaurang Mehta, Karan Vahi, Performance Prediction-based versus Load-based Site
Selection: Quantifying the Difference, the 18th International Conference on Parallel
and Distributed Computing Systems (PDCS-2005), Las Vegas, Nevada, 12 -14
September 2005
[Kiciman02] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, Eric A.
Brewer: Pinpoint: Problem Determination in Large, Dynamic Internet Services. DSN
2002: 595-604

[Kim and Brown, 1988] S.J. Kim and J.C. Browne. “A general approach to mapping of
parallel computations upon multiprocessor architectures”. In Proceedings of
International Conference on Parallel Processing, pages 1–8, 1988.
[Kim04] Jihie Kim, Marc Spraragen, Yolanda Gil. "An Intelligent Assistant for
Interactive Workflow Composition ", In Proceedings of the International Conference
on Intelligent User Interfaces (IUI-2004); Madeira, Portugal, 2004

[Kim and Weissman, 2004] S. Kim and J.B. Weissman, “A Genetic Algorithm Based
Approach for Scheduling Decomposable Data Grid Applications”, in Proc. Of the
2004 International Conference on Parallel Processing (ICPP’04), pp. 406-413,
Montreal, Canada, August 2004

[Kwok and Ahmad, 1996] Yu-Kwong Kwok and Ishfaq Ahmad. “Dynamic critical-path
scheduling: An effective technique for allocating task graphs to multiprocessors”.
IEEE Transactions on Parallel and Distributed Systems, 7(5):506–521,1996.
[Laurence 1997] P. Lawrence, editor, Workflow handbook 1997, John Wiley 1997.

[Liu, 2004] Y. Liu, “Survey on Grid Scheduling”, Department of Computer Science,
University of Iowa, http://www.cs.uiowa.edu/~yanliu/, April 2004.

[Mandal et al. 2005] Mandall A., Kennedy K., Koelbel C., Liu B. and Johnsson
L.,”Scheduling Strategies for Mapping Application Workflows onto the Grid”, in IEEE
International Symposium on High Performance Distributed Computing (HPDC’05),
2005.

[Menasce04] "Composing Web Services: A QoS View," D. Menasce, IEEE Internet
Computing, Vol. 8., No. 6, November/December 2004.

[Musa 1998] Musa, John. Software Reliability Engineering, New York, NY,
McGraw-Hill, 1998.

37

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

[Quinlan, 1992] Ross J. Quinlan: Learning with Continuous Classes. In: 5th
Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.
[Radulescu and van Gemund, 1999] A. Radulescu and A.J.C van Gemund, “On the
Complexity of List Scheduling Algorirhtms for Distributed Memory Systems”, In
Proc. Of 13th International Conference on Supercomputing, pp. 68-75, Portland,
Oregon, USA, November 1999.
[Sakellariou and Zhao, 2004a] R. Sakellariou and H. Zhao, “A Low-cost
Rescheduling Policy for Efficient Mapping of Workflows on Grid Systems”, in J. of
Scientific Programming, Vol. 12, No. 4, pp. 253-262, 2004.

[Sakellariou and Zhao, 2004b] R. Sakellariou and H. Zhao, “A Hybrid Heuristic for
DAG Scheduling on Heterogeneous Systems”, In IPDPS, 2004.

[Sample et al., 2002] N. Sample, P. Keyani and G. Wiederhold, “Scheduling under
Uncertainty: Planning for the Ubiquitous Grid”, In book, Coordination Models and
Languages, pp. 300-316, 2002.
[Sarkar 1999] V. Sarkar. “Partitioning and Scheduling Parallel Programs for
Multiprocessors”. MIT Press, Cambridge, MA, 1989.
[Smallen et al., 2007] S. Smallen, K. Ericson, J. Hayes, C. Olschanowsky, “User-level
Grid Monitoring with Inca 2”, SDSC Technical Report (SDSC TR-2007-1) and
submitted to the HPDC 2007 Workshop on Grid Monitoring, June 2007.

[Smith et al. 1998] W. Smith, I. Foster and V. Taylor, “Predicting Application Run
Times Using Historical Information”, Lecture Notes in Computer Science, No 1459,
1998.
[Sun and Wu, 2003] X. Sun and M. Wu, “Grid Harvest Service: A System for
Long-term Application-level Tasks Scheduling”, In Proc of the 2003 International
Parallel and Distributed Processing Symposium (IPDPS 203), pp. 25-32, Nice ,
France, April 2003.
[Thain03]Douglas Thain, Todd Tannenbaum, and Miron Livny, "Condor and the
Grid", in Fran Berman, Anthony J.G. Hey, Geoffrey Fox, editors, Grid Computing:
Making The Global Infrastructure a Reality, John Wiley, 2003. ISBN: 0-470-85319-0

[Topcuoglu et al., 2002] H. Topcuoglu, S. Haririr, M.Y. Wu, “Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous Computing”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 13, No. 3, pp. 260-274, 2002.
[Truong05] Hong-Linh Truong and Thomas Fahringer and Francesco Nerieri and et
al. Performance Metrics and Ontology for Describing Performance Data of Grid
Workflows, 2005.

[Trong06] Hong-Linh Truong, Robert Samborski, Thomas Fahringer, Towards a
Framework for Monitoring and Analyzing QoS Metrics of Grid Services ,2nd IEEE
International Conference on e-Science and Grid Computing, (c) IEEE Computer
Society Press, Dec. 4- 6, 2006, Amsterdam, Netherlands.

[von Laszewski05] Gregor von Laszewski and Mike Hartegan, “Grid Workflow an
Integrated Approach”, Draft Karajan Overview, at
http://www-unix.mcs.anl.gov/~laszewsk/papers/vonLaszewski-workflow-draft.pdf,
2005.

38

Stottler Henke Associates, Inc. Final Report DE-FG02-06ER84519

[Wang & Witten, 1997] Y. Wang, I. H. Witten: Induction of model trees for predicting
continuous classes. In: Poster papers of the 9th European Conference on Machine
Learning, 1997.

[Wolski et al, 1999] R. Wolski, N.T. Spring, J. Hayes, “The network weather service:
a distributed resource performance forecasting service for metacomputing”, J.
Future Generation Comput. Systems 15, pp. 757–768, 1999.
[Wu and Sun, 2004] M. Wu and X. Sun, “Self-adaptive Task Allocation and
Scheduling of Meta-tasks in Non-dedicated Heterogeneous Computing”, special
issue of the International J. of High Performance Computing and Networking
(IJHPCN), 2004.
[Wu and Sun, 2006] M. Wu and X. Sun, “Grid harvest service:A performance system
of grid computing”, J. Parallel Distrib. Comput., Vol. 66, pp. 1322 – 1337, 2006.
[Yang and Gerasoulis, 1994] T. Yang and A. Gerasoulis. “DSC: Scheduling parallel
tasks on an unbounded number of processors”. Technical Report TRCS94-12, 20,
1994.

[Young et al., 2003] L. Young, S. McGough, S. Newhouse, and J. Darlington,
“Scheduling Architecture and Algorithms within the ICENI Grid Middleware”, in
Proc. of UK e-Science All Hands Meeting, pp. 5-12, Nottingham, UK, September
2003.

39

	Summary
	1 Background
	1.1 Problem
	1.2 Opportunity
	1.3 Technical approach

	2 Benefits
	2.1 Relevance to federal and commercial markets

	3 Phase I goals
	4 Solution: The Kubrick Grid Workflow Management System
	4.1 Workflow adaptations: abstract task representations
	4.2 Kubrick interactions with the workflow engine
	4.3 Kubrick scheduling component: generating concrete workflows
	4.4 Kubrick monitoring and rescheduling component
	4.5 Kubrick QoS and service performance component
	4.6 Kubrick learning component

	5 References cited

